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Abstract A numerical algorithm and code are developed and applied to direct numerical simulation (DNS)
of unsteady two-dimensional flow fields relevant to stability of the hypersonic boundary layer. An implicit
second-order finite-volume technique is used for solving the compressible Navier–Stokes equations. Numer-
ical simulation of disturbances generated by a periodic suction-blowing on a flat plate is performed at free-
stream Mach number 6. For small forcing amplitudes, the second-mode growth rates predicted by DNS agree
well with the growth rates resulted from the linear stability theory (LST) including nonparallel effects. This
shows that numerical method allows for simulation of unstable processes despite its dissipative features. Cal-
culations at large forcing amplitudes illustrate nonlinear dynamics of the disturbance flow field. DNS predicts
a nonlinear saturation of fundamental harmonic and rapid growth of higher harmonics. These results are con-
sistent with the experimental data of Stetson and Kimmel obtained on a sharp cone at the free-stream Mach
number 8.
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1 Introduction

Prediction of laminar-turbulent transition is important for aerothermal design [1, 2] and drag calculations [3]
of high-speed vehicles. This motivates extensive experimental, theoretical and numerical studies of transition
in supersonic and hypersonic boundary layer flows. Progress made in transition prediction methodology is
reviewed by Malik [4]. There are at least two routes to turbulence [5]. The first, which is typical for low
disturbance environments, involves: receptivity, linear growth of unstable modes, and nonlinear breakdown to
turbulence. The second, which occurs in high-disturbance environments, involves bypass of the linear phase.

For the first route, receptivity and the nonlinear phase are the stumbling blocks of transition prediction. In
this case, the state-of-the-art method, for engineering applications, remains the eN -method [6], which accounts
for the linear phase only.

The second route is poorly understood; it is treated empirically [5] using limited wind-tunnel data. Direct
numerical simulation (DNS) may help to fill these gaps. Since stability and transition experiments in hy-
personic wind tunnels are very limited, reliable numerical experiments seem to be the only way to acquire
detailed data on the disturbance-field dynamics related to receptivity, nonlinear breakdown and bypass. Such
data can be used for development and verification of theoretical models. They can also be correlated for en-
gineering applications, especially, to highly non-uniform flows, which are not covered by the compressible
nonlinear parabolized stability equations (NPSE) [7].
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This explains high interest in DNS of different phases of hypersonic transition during the last two decades.
Pruett and Chang [8] used combined NPSE and DNS to compute through the transition zone for a Mach 8
boundary layer. Balakumar et al. [9] numerically investigated stability of hypersonic boundary layer over a
compression corner using high-order weighted essentially non-oscillatory (WENO) shock-capturing scheme
[10]. Zhong et al. conducted a series of numerical simulations related to receptivity and stability of hy-
personic flow over: a parabolic leading edge [11–13]; a flat plate [14, 15]; a blunt cone [16] relevant to
the Mach = 8 experiments of [17, 18]. These studies were carried out using a high-order shock-fitting
scheme.

Though the methods mentioned above allowed for DNS of unsteady processes in compressible flows,
new numerical algorithms are desired. Shock-capturing schemes are preferable for practical configurations.
However, their robustness is due to relatively high dissipation, which may damp physically unstable dis-
turbances. We attempt to develop a method, which could blend these opposite tendencies. The method is
based on the total variation diminishing (TVD) finite volume second-order scheme adapted for non-uniform
meshes associated with DNS on bodies of engineering interest. In this paper we demonstrate that the de-
veloped method allows for simulation of unstable processes in the boundary layer despite its dissipative
features.

As a first step, we carry out DNS of two-dimensional flow fields relevant to stability of the hypersonic
boundary layer. Disturbances are generated by local forcing (periodic suction-blowing) on a flat plate at free-
stream Mach number 6. For this relatively simple configuration it is feasible to compare numerical solutions
with linear stability theory (LST) and validate the method. In addition, physical effects associated with linear
and nonlinear dynamics of boundary-layer disturbances are discussed.

2 Numerical method

2.1 Governing equations and boundary conditions

Viscous compressible flows are governed by the Navier–Stokes equations, which result from the conservation
laws of mass, momentum and energy. For two-dimensional flows, these equations in an arbitrary curvilinear
coordinate system (ξ∗, η∗), where x∗ = x∗(ξ∗, η∗), y∗ = y∗(ξ∗, η∗) are Cartesian coordinates, may be
written in the conservative form

∂Q∗

∂t∗
+ ∂E∗

∂ξ∗ + ∂G∗

∂η∗ = 0. (1)

Here, asterisks denote dimensional variables, Q∗ is the vector of dependent variables, E∗ and G∗ are the
flux vectors in the curvilinear coordinate system. These vectors are expressed in terms of the corresponding
vectors Q∗

c , E∗
c , G∗

c in Cartesian coordinate system as
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where J = det ‖∂(x∗, y∗)/∂(ξ∗, η∗)‖ is the transformation Jacobian. The Cartesian vector components for
the two-dimensional Navier–Stokes equations are
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(3)

Here, ρ∗ is density; u∗,v∗ are Cartesian components of the velocity vector V∗; p∗ is pressure; T∗ is temper-
ature; e∗ = ρ∗[c∗

vT ∗ + (u∗2 + v∗2)/2] is the total energy; H∗ = c∗
pT ∗ + (u∗2 + v∗2)/2 is the total specific
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enthalpy, c∗
p, c∗

v are specific heat capacities at constant pressure and volume, respectively; λ∗ is the heat con-
ductivity coefficient; µ∗ is the dynamic viscosity coefficient; and τ ∗ is the stress tensor with the components

τ ∗
xx = µ∗

(
−2

3
div V∗ + 2

∂u∗

∂x∗

)
, τ ∗

xy = µ∗
(
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∂y∗ + ∂v∗

∂x∗

)
, τ ∗

yy = µ∗
(

−2

3
div V∗ + 2

∂v∗

∂y∗

)
. (4)

The fluid is a perfect gas with the specific heat ratio γ = 1.4. The heat conductivity λ∗ = µ∗c∗
p/Pr is

calculated with the assumption that c∗
p and Prandtl number Pr = 0.72 are constant. The viscosity-temperature

dependence is approximated by the power law µ∗/µ∗∞ = (T ∗/T ∗∞)0.7. Numerical simulations are carried
out for hypersonic flow over a flat plate with sharp leading edge. Calculations are conducted at the free-
stream Mach number M∞ = 6 and Reynolds number Re∞ = ρ∗∞U∗∞L∗/µ∗∞ = 2 × 106, where ρ∗∞ is free-
stream density, U∗∞ is free-stream velocity, and L∗ is the plate length. Hereafter the flow variables are made
nondimensional using free-stream parameters, as follows: (u, v) = (u∗, v∗)/U∗∞, p = p∗/(ρ∗∞U∗2∞ ), ρ =
ρ∗/ρ∗∞, T = T ∗/T ∗∞. The nondimensional coordinates and time are (x, y) = (x∗, y∗)/L∗, t = t∗U∗∞/L∗.

The computational domain is a rectangle with its bottom side corresponding to the flat plate surface. The
no-slip boundary conditions (u, v) = 0 are imposed on the plate surface. The wall temperature corresponds to
the adiabatic condition ∂Tw/∂n = 0 for the steady-state solution. Numerical simulations require an additional
condition on the wall pressure. This condition is obtained by extrapolation of the near-wall pressure to the
plate surface assuming that ∂pw/∂n = 0. On the outflow boundary, the unknown variables u, v, p, T are
extrapolated using the linear approximation. On the inflow and upper boundaries, the conditions correspond
to free stream.

The problem is solved in two steps. Firstly, the steady-state solution is calculated to provide the mean
flow field. Then, the local suction-blowing is switched on the wall surface at the initial time moment and the
unsteady problem is solved. The boundary conditions corresponding to the unsteady problem are formulated
in Sect. 3.

2.2 Approximation of differential equations

The problem is solved numerically using a conservative finite-volume method. For calculations of steady-
state solution providing the mean flow field, the implicit scheme is more preferable, that helps (in theory) to
avoid restrictions on its stability, especially for stiff systems of differential equations. Calculations of unsteady
disturbances, in which the time step is very small to provide sufficient accuracy in simulating unstable waves,
require less computational time than does the steady-state problem because the steady solution should be
obtained with very low numerical residual in the case of small disturbances. Therefore, the implicit numerical
scheme is used for both steady and unsteady problems. With this approach Eq. (1) are approximated by the
differences equations.

3Qn+1
j,k − 4Qn
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j,k
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+
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2
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= 0, (5)

where n is the index of time step; j, k are the indices of nodes along ξ, η-coordinates; �t is the time step;
hξ , hη are steps on ξ, η-coordinates, respectively. The second-order temporal discretization (5) is used for
unsteady computations, while the first order temporal discretization is used for the steady-state problem.

To approximate the inviscid part of the intercell flux vectors E and G, the second-order Godunov-type
scheme [19] and the approximate [20] method are used for solving the Riemann problem. Then

E j+ 1
2

= 1

2
[E(QL) + E(QR) − R(QLR)φ(ϕ(λk))R(QLR)−1(QR − QL)], (6)

where φ(ϕ(λk)) is a diagonal matrix with the elements ϕ(λk); λk are eigenvalues of the operator A = ∂E/∂Q.
Columns of the matrix R(QLR) are the right eigenvectors of the operator A. Hereafter the entropy correction
function ϕ(λ) has the form

ϕ(λ) =



|λ|, |λ| ≥ ε

λ2 + ε2

2ε
, |λ| ≤ ε

, (7)
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Fig. 1 The stencil of numerical scheme (a) and the stencil of Jacobi matrix formation (b)

where ε is small parameter (in computations discussed hereafter ε = 10−3). To increase the spatial approxi-
mation order to the second order, the principle of minimum derivatives [21] (TVD) is used for interpolation
of the dependent variables on the boundary of an elementary cell

QL = Q j + 1

2
m(Q j − Q j−1, Q j+1 − Q j ), QR = Q j+1 − 1

2
m(Q j+1 − Q j , Q j+2 − Q j+1)

(8)

m(a, b) =



2ab

a + b
, ab > 0

0, ab < 0
,

where m(a, b) is the limiter function [22].
Eigenvalues and eigenvectors of the operator A are calculated using the [20] method of approximated

solution of the Riemann problem. To approximate the viscous part of the intercell flux vectors E and G, a
second-order central-difference scheme is used. Direct and mixture derivatives are approximated as(
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)
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, (9)

where U is the vector of non-conservative problem variables. The difference scheme stencil for the approxi-
mation of Navier–Stokes equations consists of thirteen points (Fig. 1a).

2.3 Solution of differences equations

Nonlinear differences equations F(X) = 0, where X is the vector of discrete dependent variables for nodal
values, are solved using the modified Newton–Raphson [23] method

X[k+1] = X[k] − τk+1D−1
k0

F
(
X[k]). (10)

Here Dk0 = (∂F/∂X)k0 is the Jacobi matrix, k, k0 are the iteration indices, k0 ≤ k; the regularization
parameter τk is determined as

τk+1 = (�X[k] − �X[k−1], X[k] − X[k−1])
(�X[k] − �X[k−1])2

, (11)

where �X[k] = D−1F(X[k]) is the residual vector. As the iteration process converges the regularization pa-
rameter tends to 1. Recalculation of the Jacobi matrix is performed only if the decrement of iteration residual
is less than 10%.

The Jacobi matrix is formed using the finite differences approach. In general, the operator D in the ap-
proximation of Navier–Stokes equations has the sparse matrix of 13-diagonal block structure. For flows of
a perfect gas, its elementary block is a full 4 × 4 matrix. Herein, the Jacobi matrix is generated using a
truncated stencil, which has three nodes in ξ coordinate and three nodes in η coordinate (Fig. 1b). Usage of
this truncated stencil essentially decreases the computational time and memory despite some slowing of the
convergence process [24]. Then the operator D has the sparse matrix of 5-diagonal block structure, excluding
boundary nodes.
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Fig. 2 Grid 1501 × 201, every 5th grid point is shown

Fig. 3 Pressure contours in the computational domain

In the nonlinear iteration process, a solution of the linear algebraic system is obtained with the help of
the iteration general minimum residual method [25] GMRES(k) and ILU-decomposition as a preconditioner.
Note that the iteration process (compared with the direct method) is sufficiently stable despite simplification
of the numerical procedure. This allows for substantial reduction of the CPU time and required memory. The
GMRES residual is less than 10−7 at each nonlinear iteration.

The computational grid has 1501 × 201 nodes with node clustering [26] near the leading edge and the
plate surface (Fig. 2). The boundary layer contains approximately 70 grid nodes in the direction normal to the
plate surface at the middle station x = 0.5. The residual at each time step achieves 1 × 10−6 for unsteady
computations.

3 Results

Numerical simulation is performed for hypersonic flow over a flat plate. Calculations are conducted at the
free-stream Mach number M∞ = 6 and the Reynolds number Re∞ = ρ∗∞U∗∞L∗/µ∗∞ = 2 × 106. Figure 3
shows contours of pressure in the computational domain. A shock wave forms in the leading edge vicinity
due to viscous-inviscid interaction.

In the boundary-layer region, the numerical solution is compared with the compressible Blasius solution
at several downstream locations. As an example, profiles of the longitudinal velocity and temperature are
shown in Fig. 4 at the downstream station x = 0.7. Small discrepancy between the numerical and Blasius
solutions seems to be due to the viscous–inviscid interaction, which was neglected in calculations of the
Blasius profiles.

An unsteady disturbance is induced by a local suction-blowing on the plate surface (Fig. 5). This forcing
is simulated using the following expression for the mass flow on the plate surface

qw(x, t) = ρ∗
wv∗

w

ρ∗∞U∗∞
= A sin

(
2π

x − x1

x2 − x1

)
sin(ωt), x1 ≤ x ≤ x2, t > 0, (12)

where A is the forcing amplitude; x1 = 0.0358, x2 = 0.0495 are boundaries of the forcing region; ω =
ω∗L∗/U∗∞ = 260 is the dimensionless frequency corresponding to the frequency parameter F = ω/Re =
1.3×10−4. At this frequency the maximum amplitude predicted by LST corresponds to the station x ≈ 0.9 and
relates to the second mode according to the terminology of Mack [27]. Preliminary computations indicated
that 1501 grid nodes in the x direction are needed to simulate unstable waves of such frequency with sufficient
accuracy.
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Fig. 4 The longitudinal velocity and temperature profiles resulted from DNS and the self-similar compressible Blasius solution,
M∞ = 6, Re∞ = 2 × 106, x = 0.7

Fig. 5 Sketch of the suction-blowing process

Fig. 6 Disturbance pressure fields induced by the local periodic suction-blowing at A = 3.6 × 10−2 (contour levels are shown
from −5 × 10−4 to 5 × 10−4 with step 10−4)

Calculations were performed for different forcing amplitudes. The minimal value A = 6 × 10−4 was
chosen small in order to compare DNS results with the linear stability theory. For simulation of nonlinear
effects, the forcing amplitude is progressively increased as A = 1×10−3, 1×10−2, 2×10−2, 3×10−2, 3.6×
10−2. In the unsteady problem, the wall temperature equals the adiabatic-wall temperature of the steady
solution, Tw(x, t) = Tad(x); i.e., the unsteady temperature disturbance is zero at the plate surface. Note that
the disturbance amplitude should be much larger than the numerical error of the steady solution; i.e., the
steady flow needs to be calculated with high accuracy. This requirement strongly increases the computational
time.

For the unsteady problem, the Navier–Stokes equations are solved until a periodic flow is reached in the
entire domain. The difference between unsteady and steady solutions at a fixed moment in time gives an
instantaneous disturbance field. A typical example of the pressure disturbance (the forcing amplitude A =
3.6 × 10−2) at a fixed moment in time is shown in Fig. 6. Just downstream of the forcing element at 0.06 <
x < 0.2, the disturbance predominantly consists of acoustic waves trapped by the shock wave. These waves
fill up the shock layer. For x > 0.2, the acoustic field splits up to the upper region behind the shock wave
and the lower region associated with the boundary layer. These regions are separated from each other by a
“quiet” zone whose thickness increases downstream. The disturbance field resembles the analytical solutions
[28] obtained for acoustic modes in a thin shock layer.
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Fig. 7 Pressure disturbance on the plate surface, linear case A = 6 × 10−4
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Fig. 8 Growth rates σ of the wall pressure disturbance; (1) nonparallel LST; (2) parallel LST; (3) DNS

At x ≈ 0.5, the boundary-layer mode starts to grow downstream. The wall pressure disturbance is shown
in Fig. 7 at a fixed moment in time. This distribution clearly indicates downstream amplification of the
boundary-layer mode for x > 0.5. The disturbance growth rate is determined as

σ = d

dx
[ln a(x)] (13)

where a(x) is the pressure amplitude on the plate surface. The growth rates resulting from the DNS solution,
are compared with those predicted by LST for the second mode [29, 30]. One of these comparisons is shown
in Fig. 8. The curve 2 corresponds to the LST data obtained in the local parallel flow approximation; the
curve 1 shows the LST data including nonparallel effects; the curve 3 with symbols shows the DNS data. For
x > 0.6 (where the unstable wave becomes dominant in the boundary layer), the DNS results are in good
agreement with the nonparallel LST. This allows us to conclude that the developed code can be used for direct
numerical simulation of the boundary-layer instability.

The downstream amplification of boundary-layer disturbances to sufficiently large amplitudes triggers
nonlinear interactions. To estimate this effect we performed calculations at various initial amplitudes and plot
the maximum wall pressure amplitude pw,max = max[pw (x)] as a function of the forcing amplitude A (see
Fig. 9). For A > 0.015 the disturbance amplitude deviates from the linear trend and ultimately tends to a
constant level. Note that a similar saturation of the second mode was observed on a 7◦ half angle cone tested
in the AEDC Tunnel B at the free-stream Mach number 8 [17].

Comparison of the linear (A = 6 × 10−4) and nonlinear (A = 3.6 × 10−2) cases is shown in Figs. 10
and 11. The difference between these cases is most profound in the region of maximal disturbances in the
boundary layer. Detailed snapshots of pressure disturbances for the linear (A = 6 × 10−4) and nonlin-
ear (A = 3.6 × 10−2) cases at a fixed moment in time are presented in Fig. 10. Two-cell structures are
formed in the boundary layer. Their longitudinal wavelength approximately equals twice the boundary-layer
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Fig. 9 The wall pressure disturbance maximum, pw,max ≡ max[pw(x)], as a function of the forcing amplitude A

Fig. 10 The pressure disturbance in the boundary layer for the linear (a, A = 6 × 10−4) and nonlinear (b, A = 3.6 × 10−2)
cases

thickness, which is typical for the second mode. Comparing Fig. 10a and b we see that the instantaneous
pressure field for a large forcing amplitude (A = 3.6 × 10−2) is different from that observed at a small
forcing (A = 6 × 10−4). This difference is most noticeable in the lower cells. Two neighboring cells
in x-direction (one of which corresponds to the positive and the other to negative levels of pressure dis-
turbances) have different shapes in the nonlinear case (Fig. 10b) whereas they coincide in the linear case
(Fig. 10a).

Distributions of the density disturbance reveal more complicated structures in the boundary layer, es-
pecially at large amplitudes. An example of this field is shown in Fig. 11b for the forcing amplitude
A = 3.6 × 10−2, the linear case is given for comparison in Fig. 11a. Near the upper boundary-layer edge
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Fig. 11 Density disturbance field for the linear (a, A = 6 × 10−4) and nonlinear (b, A = 3.6 × 10−2) cases

(y ≈ 0.011), the density disturbance has a structure resembling rope-like waves observed in schlieren images
of the experiments [31]. Pruett and Chang [8] performed detailed numerical studies of the rope-like structures
and showed that these structures are artifacts of the second-mode disturbances. They generally concurred
with Stetson and Kimmel [31] that the original association of “ropes” with secondary instability by Pruett and
Zang [32] was in error. This conclusion is consistent with our DNS as well as two-dimensional DNS of [33].
Nevertheless Pruett and Chang [8] noted that the effect of the disturbance obliqueness angle on the appear-
ance of the “ropes” remains unclear, since the equal and opposite oblique second-mode waves may also give
rope-like waves in schlieren images.

Figure 11a and b also show that topology of rope-like structures is sensitive to nonlinear effects. For rel-
atively small amplitudes (a) the neighboring cells have almost identical shapes, whereas for large amplitudes
(b) these cells are essentially different and their interlacing is more pronounced.

The temperature distribution for the nonlinear case A = 3.6 × 10−2, which includes both the mean flow
and disturbance components, is shown in Fig. 12. At the upper boundary-layer edge, there are protuberances,
which move slightly faster than structures within the boundary layer. These protuberances slowly roll up
similar to vortices in shear layers.

Another interesting feature is observed near the plate wall. Disturbances of large amplitudes induce local
separation bubbles, which move downstream with the phase speed of the fundamental harmonic. The shape
of these bubbles is visualized by the streamline contours shown in Fig. 13. The maximum upstream velocity
Usep in the bubble region is shown in Fig. 14 as a function of the forcing amplitude A. These data indicate
the separation bubbles are due to a nonlinear mechanism, which first occurs (in our series of computational
cases) at A = 10−2. Similar to the behavior of wall-pressure disturbances (Fig. 9), the upstream velocity Usep
approaches a plateau as the forcing amplitude A increases.

The total drag coefficient (integrated over plate length), Cx , is shown in Fig. 15 for the case A = 3.6 ×
10−2. Its mean value tends to the new level Cx = 1.66×10−3, which is slightly higher than Cx = 1.56×10−3
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Fig. 12 Temperature field (disturbance plus mean flow) for the nonlinear case A = 3.6 × 10−2

Fig. 13 Streamline contours near the plate surface for the nonlinear case A = 3.6 × 10−2
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Fig. 14 Maximal upstream velocity Usep in the separation bubbles as a function of the forced amplitude A
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Fig. 15 Time history of the total drag coefficient Cx
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Fig. 16 Pressure oscillations in the boundary layer at y = 4.2 × 10−3; (a) x = 0.52, (b) x = 0.8, (c) x = 0.919

of the undisturbed flow. This is another indication of nonlinearity, i.e., the change of the mean flow by the
disturbances.

To investigate nonlinear distortions of disturbances a temporal spectral analysis of pressure fluctuations
(induced by suction-blowing with A = 3.6×10−2) is performed at the two sets of spatial points (x, y) located
in the boundary layer at the stations x = 0.52, 0.8, 0.919: the first set corresponds to the vertical coordinate
y = 4.2 × 10−3 lying between two cells of the pressure disturbance field; the second y = 3.15 × 10−4

corresponds to the near-wall region. The first station, x = 0.52, is close to the beginning of disturbance
growth, the second, x = 0.8, corresponds to the unstable region, and the third, x = 0.919, is located in the
region of the maximal disturbances. For each point (x, y) the temporal spectrum is computed using the fast
Fourier transform (FFT) of the pressure oscillogram for the time interval 0 ≤ t ≤ 2.1.

Figure 16 shows the pressure fluctuations at the vertical coordinate y = 4.2 × 10−3. At the first station
x = 0.52, the signal is purely harmonic. The oscillation peaks become sharper at x = 0.8 and, ultimately,
new local maximums are formed near the primary peaks at x = 0.919. Corresponding spectra, which are
normalized to the amplitude of fundamental harmonic of frequency ω = 260, are shown in Fig. 17. Rapid
amplification of the second and even third harmonics indicates the presence of nonlinear effects. At the near-
wall level y = 3.15 × 10−4, the disturbance spectra (Fig. 18) are dominated by the fundamental harmonic in
all three stations.

Note that spectra in Fig. 17 resemble the experimental data of Stetson and Kimmel [31] obtained on a
sharp cone at the free-stream Mach number 8. As an example, Fig. 19 shows fluctuation spectra measured
with hot-wire anemometer in the boundary layer. The two-dimensional component of second-mode waves
(fundamental harmonic) is saturated, whereas the second harmonic experiences rapid growth. There is also
indication of the filling of the valleys between the spectral peaks that may be due to low-frequency sideband
interactions discussed in the work of Shiplyuk et al. [34]. The DNS spectra in Figs. 17 and 18 do not reveal
this effect because the forcing spectrum does not contain low-frequency disturbances typical for wind-tunnel
experiments.
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Fig. 17 Normalized spectra of pressure disturbances at y = 4.2 × 10−3

Fig. 18 Normalized spectra of pressure disturbances at y = 3.15 × 10−4

Fig. 19 Fluctuation spectra in the boundary layer on a 7-degree half angle sharp cone at M∞ = 8; scanned from Fig. 4 of Stetson
and Kimmel [31]
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4 Conclusions

A numerical algorithm and code were developed and applied to DNS of unsteady two-dimensional flow fields
relevant to stability of the hypersonic boundary layer. The method is based on the TVD finite volume second-
order scheme adapted for non-uniform meshes associated with DNS on bodies of engineering interest.

A numerical simulation of disturbances generated by a periodic suction-blowing on a flat plate was per-
formed at free-stream Mach number 6. It was found that just downstream the forcing element, the disturbance
predominantly consists of acoustic waves trapped by the shock wave. Then, the acoustic field splits up to the
upper region downstream the shock wave and the lower region associated with the boundary layer. The spatial
structure of the boundary-layer disturbance corresponds to the second mode, which amplifies downstream.

For small forcing amplitudes, the second-mode growth rates predicted by DNS agree well with the
growth rates from the linear stability theory including nonparallel effects. This shows that the numer-
ical method allows for simulation of unstable processes in the boundary layer despite its dissipative
features.

Calculations at large forcing amplitudes indicate the following features of nonlinear dynamics:

• Near the upper boundary-layer edge, the density disturbance has a structure resembling rope-like waves
observed in experiments of Stetson and Kimmel [31].

• A nonlinear saturation of the fundamental harmonic is accompanied by rapid growth of the second and
third harmonics. This is consistent with the experimental data of Stetson and Kimmel [31] obtained on a
sharp cone at the free-stream Mach number 8.

• Near the plate wall, disturbances of large amplitudes induce local separation bubbles, which move down-
stream with the phase speed of fundamental harmonic.

In future work, the numerical method will be used for DNS of unsteady disturbances in more complicated
flows relevant to practical configurations.
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