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Abstract. The onset of instability in the flow by an impulsively started rotating cylinder is
analyzed under linear theory. It is well-known that at the critical Taylor number Tc = 1695 the
secondary flow in form of Taylor vortices sets in under the narrow-gap approximation. Here
the dimensionless critical time τc to mark the onset of instability for T � Tc is presented as
a function of the Taylor number T . Available experimental data of water indicate that devia-
tion of the velocity profiles from the primary flow occurs starting from a certain time τ ∼= 4τc.
It seems evident that during τc ≤ τ ≤ 4τc the secondary flow is very weak and the primary state
of time-dependent annular Couette flow is maintained.
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1 Introduction

In a rotating Couette flow apparatus a fluid is initially at rest. At a time t = 0, the angular velocity of the in-
ner cylinder is suddenly increased to a high velocity Ωi. The ensuing unsteady Couette flow evolves into the
secondary flow of Taylor-like vortices at a certain time. Chen and Christensen [2] reported their experimental
results that the average spacing between the vortices and the detection time for the first appearance of vor-
tices decreases as Ωi increases. In the present study we present the results of an instability analysis of this
flow phenomenon.

Chen and Kirchner [3] examined the above instability problem by employing the initially distributed per-
turbations of a given wavelength and monitoring their growth under linear theory. The detection time tD
of the secondary flow is usually defined as the time at which the ratio of the transient kinetic energy of
disturbances to the assumed initial one reaches 103. In addition to this so-called amplification theory they
employed the quasi-steady approach, in which the stability of the instantaneous velocity profile of the pri-
mary flow is analyzed. This is called the frozen-time model. In this model, the growth rate of disturbances
is usually assumed to be zero and the stability criteria are obtained under the principle of the exchange of
stabilities. For a given Ωi the smallest time tc to satisfy the perturbation equations is obtained. Recently Tan
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and Thorpe [17] defined a transient Taylor number and the critical conditions were determined by assuming
the maximum value of this transient-Taylor number as the well-known steady-state critical Rayleigh number
by considering the similarity between the time-dependent Rayleigh-Bénard instability problem (for brevity,
the R-B problem) and the time-dependent Taylor one. Since it is well-known that the governing equations
and the boundary conditions for these two problems are very similar (Chandrasekhar [1], Zierep [20]), the
above-mentioned methods have originally been developed for the R-B problem.

Another model which has analyzed the time-dependent convective instability problem is the propagation
theory (Choi [4], Yang and Choi [18], Kim et al. [12]). This theory has dealt with R-B problems in initially
motionless fluid layers heated rapidly from below. The resulting stability criteria have represented well ex-
perimental data of various systems. This model is extended to the flow system of fluid in an impulsively
started rotating cylinder. According to this model it is here assumed that at t = tc infinitesimal disturbances
of the angular velocity are propagated mainly within the hydrodynamical boundary-layer thickness ∆ of the
primary Couette flow. The length scales in disturbance variables and the stability parameters are rescaled
with the characteristic length ∆. In usual deep-pool systems of ∆ ∝ √

νt, the most important parameter
becomes the time-dependent Taylor number, which is yielded by replacing the length scale in the usual Tay-
lor number with ∆. Here ν is the kinetic viscosity. The resulting theoretical results will be compared with
available experimental data.

2 Stability analysis

2.1 Governing equations

The system considered here is a Newtonian fluid confined between two concentric cylinders of radii Ri and
Ro(> Ri). Let the axis of the inner cylinder be along the z′ axis of the cylindrical coordinates (r ′, θ, z′). At
time t = 0, the inner cylinder is impulsively started and maintained at a constant surface speed V ′

0(= RiΩi)

and the outer cylinder is kept stationary (Ωo = 0). Here Ωi and Ωo are the angular velocities of the inner
and the outer cylinder, respectively. The schematic diagram of the primary system is shown in Fig. 1. The
governing equations of the present flow field is expressed by

∇ ·U = 0, (1)

{
∂

∂t
+U ·∇

}
U = −1

ρ
∇ P +ν∇2U (2)

where U, P and ρ represent the velocity vector, the dynamic pressure and the density, respectively.
The important parameters for describing the present system are the Taylor number T , the Reynolds

number Re, the ratio µ of angular speeds and the radius ratio η defined as

T = V ′2
0 d3

ν2 Ri
, Re = R2

i Ωi

ν
, µ = Ωo

Ωi
, η = Ri

Ro
(3)

In case of a very slow rotating speed the primary velocity profile finally becomes time-independent and
Taylor vortices appear at T = Tc (Chandrasekhar [1]):

Tc = 1695 for η → 1 and µ → 0 (4)

which means a narrow-gap system.
But for systems of large T , the secondary flow sets in before the primary-flow field becomes fully-

developed and time-independent. In this transient system it is important to predict the critical time to mark
the onset of Taylor-like vortices. The primary velocity field of developing Couette flow is represented for the
case of constant physical properties in dimensionless form:

∂v0

∂τ
= ∂

∂r

(
∂

∂r
+ 1

r

)
v0 (5)
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Fig. 1. Schematic diagram of system considered here

with the following initial and boundary conditions,

v0=0 at τ = 0 (6)

v0=0 at r = 1/(1−η)

v0=1 at r = η/(1−η)

where τ = νt/d2, v0 = V0/V ′
0, r = r ′/d and d = (R′

o − R′
i).

Tranter (1956) obtained the exact solutions of Eqs. (5) and (6) by using the Hankel transform as

v0(x, τ1) = η

ξ

(
ξ2 −1

η2 −1

)
+

∞∑
i=0

Q (λi, η)

[
J1

(
λi

ξ

η

)
Y1 (λi)− J1 (λi) Y1

(
λi

ξ

η

)]
exp

(
−λ2

i τ1

)
(7)

where x = {
(r ′ − Ri)+ (r ′ − R0)

}
/2d and τ1 = νt/R2

i . Here J1 and Y1 are the 1st kind Bessel functions and
the functions ξ and Q are

ξ = (1+η)/2+ (1−η)x (8)

Q (λi, η) = π
{[J1(λi)/J1(λi/η)]2 −1

}−1 (9)

The λi’s are the roots of the equation

J1

(
λ

η

)
Y1 (λ)− J1 (λ) Y1

(
λ

η

)
= 0 (10)

The present study concerns the case of η → 1, i.e. narrow-gap systems and τ → 0, i.e. large T . For the
former limiting case, the gap size d(= (Ro − Ri)) is small compared to the mean radius (Ro + Ri)/2 and
there is no difference between ∂/∂r +1/r and ∂/∂r (Chandrasekhar [1]), i.e. no effect of curvature. Since the
above solution does not work so well for the case of η → 1, the following primary-flow solution is useful
(Schlichting and Gersten [15]):

v0 =
∞∑

i=0

{
erfc

(
i√
τ

+ ζ

2

)
−erfc

(
i +1√

τ
− ζ

2

)}
as η → 1 (11)

where τ = νt/d2, ζ = y/
√

τ and y = (r ′ − Ri)/d with d = Ro − Ri. Here erfc denotes the complementary
error function. For deep-pool systems of small τ , where the boundary-layer thickness is much smaller than
the gap size, the above solution reduces to

v0 = erfc
(

ζ

2

)
with δ = 3.65

√
τ as τ → 0 (12)

where δ(= ∆/d) denotes the usual dimensionless boundary-layer thickness with v0(δ) = 0.01. In the present
study Eq. (11) is used since it involves Eq. (12).
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2.2 Stability equation

The typical disturbances of the secondary flow which are observed experimentally are the axisymmetric ones
having the following forms (Chandrasekhar [1]):

(U1, V1, P1) = (u′, v′, p′) cos kz′ (13)

W1 =w′ sin kz′

where k is the wavenumber and the primed quantities representing amplitude functions are a function of
r ′ and t. Under linear theory the stability equations are obtained when w′ and p′ are eliminated. Under
the narrow-gap approximation, where ∂/∂r +1/r ∼= ∂/∂r (Chandrasekhar, 1961), the resulting dimensionless
disturbance equations are represented by(

∂2

∂r2 −a2 − ∂

∂τ

)(
∂2

∂r2 −a2
)

u = v0a2v (14)

(
∂2

∂r2 −a2 − ∂

∂τ

)
v = 2T

∂v0

∂r
u (15)

with the proper boundary conditions,

u = ∂u/∂r = v = 0 at y = 0 and 1 (16)

where u = d2u′/(νRi), v = 2v′/V ′
0 and a = kd. The subscript ‘0’ denotes the primary state and a represents

the dimensionless vertical wavenumber.

2.3 Propagation theory

The propagation theory employed to find the onset time of the secondary flow, i.e., the critical time tc, is
based on the assumption that in deep-pool systems of small time the perturbed angular velocity component
V1 is propagated mainly within the hydrodynamic boundary-layer thickness ∆(∝ √

νt) of the primary flow
near the onset time tc of the secondary flow and the following scale relations are valid for perturbed quantities
from the linearized equations of equation (2):

ν
u′

∆2 ∼ V ′
0

Ri
v′ (17)

u′ ∂V ′
0

∂r
∼ ν

v′

∆2 (18)

from the balance between viscous and inertia terms in equation (2). Now, based on the relation (17), the
following amplitude relation is obtained in dimensionless form:∣∣∣u

v

∣∣∣ ∼ δ2 (19)

where δ(∝ τ1/2) is the usual dimensionless boundary-layer thickness. The relation (18) yields

∂V0

∂r
∼ νRi

∆4V ′
0

= V ′
0

∆

(
∆3V ′2

0

νRi

)−1

= V ′
0

∆
T−1

∆ (20)

where T∆ is the Taylor number based on the boundary-layer thickness ∆. With increasing T , both the onset
time tc and its corresponding thickness ∆ become smaller and the characteristic value of T(∆/d)3, i.e. Tτ3/2,
will become a constant. For small time, the modified Taylor number T ∗(= Tτ3/2) has been used in stability
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analyses (Otto [14]). There are many possible forms of dimensionless amplitude functions of disturbances
like

[u(τ, y), v(τ, y)] =
[
τn+1u∗(τ, y), τnv∗(τ, y)

]
(21)

which satisfy the relation (19).
At this stage the criterion to determine n is necessary. Shen [16] suggested the momentary instability con-

dition: the temporal growth rate of the kinetic energy of the perturbation velocity should exceed that of the
primary velocity at the onset time of secondary flow. In the present system the dimensionless kinetic energy
is defined as

E(t) = 1

2
‖ u ‖2 (22)

where ‖ · ‖ denotes the norm. Here his concept is extended, based on the work of Choi et al. (2003) who
treated the R-B problem. Since there is no primary flow in the θ- and the z′-direction and the condition of
|u/v| → 0 is valid for τ → 0 (see the relation (19)), the dimensionless kinetic energy can be divided into the
basic one and its perturbed one:

E0(t) = 1

2
‖ v0 ‖2, E1(t) = 1

2
‖ v ‖2 (23)

Then the temporal growth rate of the basic kinetic energy (r0) and the perturbed one (r1) are obtained as the
root-mean-square quantities in the present two dimensional fields:

r0(τ) = 1

〈v0〉
d〈v0〉

dτ
, r1(τ) = 1

〈v〉
d〈v〉
dτ

(24)

where 〈·〉 =
√(∫

A(·)2dA
)
/A and A = Sdr ′ with S = πd/a. For the case of n = 0 the condition of r0 = r1

is satisfied at τ = τc. This condition has been suggested as the critical condition in R-B problems (Choi
et al. [5], Chung [6]). In the present flow system it is assumed that at the marginal state T ∗ = constant and
v = v∗(ζ). This means that the amplitude function of the perturbed velocity in the radial direction follows
the behavior of the primary flow for small τ (see Eq. (12)). Furthermore the relation of T ∗ = constant is
shown even in theoretical results from the amplification theory (Chen and Kirchner [3]) and the maximum-
transient-Taylor-number criterion (Tan and Thorpe [17]). By the above reasoning we set u = τu∗(ζ) and
v = v∗(ζ).

For deep-pool systems of δ ∝ √
τ , the dimensionless time τ is related with the time for development of

the boundary-layer thickness, which plays dual roles of time and length. By using relations (19) and (20) the
following self-similar stability equations are obtained with ∂/∂τ = (−ζ/2τ)D and ∂2/∂r2 = (1/τ)D2 from
Eqs. (14) and (15), {(

D2 −a∗2
)2 + 1

2

(
ζD3 −a∗2ζD+2a∗2

)}
u∗ = v0a∗2v∗ (25)

(
D2 + 1

2
ζD−a∗2

)
v∗ = 2T ∗u∗Dv0 (26)

where D = d/dζ and a∗ = a
√

τ . The proper boundary conditions of no slip are

u∗ = Du∗ = v∗ = 0 at ζ = 0 and ∞ (27)

For a given τ , T ∗ and a∗ are treated as eigenvalues and the minimum value of T ∗ is found in the plot of T ∗
vs. a∗ under the principle of exchange of stabilities. This produces the earliest time τc and its corresponding
wavenumber ac.

The conventional frozen-time model neglects the terms involving ∂/∂τ in Eqs. (14) and (15) in ampli-
tude coordinates τ and y. This results in

(
D2 −a∗2

)2
u∗ = v0a∗2v∗ and

(
D2 −a∗2

)
v∗ = 2T ∗u∗Dv0 instead

of Eqs. (25) and (26). The minimum T -value is obtained for a given τc.
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Fig. 2. Marginal stability curve under the principle of exchange of stabilities for small time of τc → 0 from the propagation
theory

3 Solution method

In the present study the stability Eqs. (25)∼(27) are solved by employing the outward shooting scheme. In
order to integrate the stability equations the proper values of D2v∗, D3v∗ and Du∗ at ζ = 0 are assumed
for a given a∗. Since the stability equations and the boundary conditions are all homogeneous, the value of
D2v∗(0) can be assigned arbitrarily and the T ∗-value is assumed. This procedure can be understood easily by
taking into account of characteristics of the eigenvalue problem. After all the values at ζ = 0 are provided,
this eigenvalue problem can be proceeded numerically.

Integration is performed from the inner cylinder ζ = 0 to a fictitious outer boundary with the fourth order
Runge–Kutta-Gill method. If guessed values of T ∗, D3v∗(0) and u∗(0) are correct, v∗, Dv∗ and u∗ will
vanish at the outer boundary. To improve the initial guesses the Newton-Raphson iteration is used. When
convergence is achieved, the outer boundary is increased by a predetermined value and the above procedure
is repeated. Since the disturbances decay exponentially outside the boundary-layer thickness, the incremen-
tal change of T ∗ also decays fast with an increase in outer boundary depth. This behavior enables us to
extrapolate the eigenvalue T ∗ to the infinite depth by using the Shank transform. The results of this proced-
ure are presented in Fig. 2, as a plot of T ∗ vs. a∗. The minimum value of T ∗, i.e., T ∗

c = 89.81 at a∗
c = 0.83,

will mark the onset of vortices. In the case of the frozen-time model a similar technique is employed and the
characteristic values are obtained.

4 Results and discussion

For a single-mode instability the stability criteria to mark the onset of secondary flow in form of Taylor-like
vortices, based on Eq. (12), are obtained from Fig. 2:

τc = 20.05T−2/3, ac = 0.19T 1/3 as τc → 0 (28)

The resulting normalized amplitude functions of u∗ and v∗ are shown in Fig. 3. It is shown that v′ is prop-
agated mainly within the boundary-layer thickness of the primary Couette flow (see Eq. (12)). For a given
T , a fastest growing mode of infinitesimal disturbances in form of Taylor-like vortices would set in with
a = ac at τ = τc. The above equations show that τc decreases with an increase in T . From distributions of
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Fig. 3. Amplitude profiles at τ = τc for small time of τc → 0 from the propagation theory

the primary flow (Eq. (12)) and the perturbation quantities, we can obtain the following relation:

r0 = r1 = 1

4τc
as τ → 0 (29)

which satisfies the condition of marginal state of instabilities we have suggested.
Now, the domain of time is extended to finite τ with η → 1 by keeping Eqs. (25) and (26) and using

Eq. (11). In Eq. (27) the infinite upper boundary is replaced with the finite one y = 1, i.e. ζ = 1/
√

τc and
in Eqs. (25) and (26) T ∗ and a∗ are replaced with τ

3/2
c T and aτ

1/2
c . Also, in Eq. (11) τ is fixed as τc but ζ

is maintained. Since τ is the fixed parameter, the resulting stability equations are a function of ζ only and
the spirit of relations (19) and (20) is still alive. For a given τc, the minimum T -value and its corresponding
wavenumber ac are obtained. The results are summarized in Fig. 4, wherein those obtained from the conven-
tional frozen-time model are also shown. For τc < 0.01 with η → 1 the present predictions are the same as
those in deep-pool systems (Eq. (28)). For large τc they approach the well-known critical value of Tc = 1695
in the steady state (see Eq. (4)). It is known that for small τ the frozen-time model yields the lower bound of
τc and the terms involving ∂/∂τ in Eqs. (25) and (26) stabilize the system. It is interesting that the propaga-
tion theory yields smoothly the stability criteria over the whole domain of time like those in the R-B problem
(Yang and Choi [18]).

Foster [8] commented that with correct dimensional relations the relation of τm ≈ 4τc would be kept for
a small time in the R-B problem. This means that a fastest growing mode of instabilities, which sets in at
τ = τc, will grow with time until manifest convection is detected near the whole bottom boundary at τ = τm.
For the present system, based on the amplification theory pioneered by Foster [7], Chen and Kirchner [3]
reported a similar trend for the present system. Their results show that the characteristic time τi at which
disturbances first tend to grow, is about one-fourth of the time at which the secondary flow is clearly observ-
able experimentally. Figure 5a illustrates that the present predictions of 4τc with η → 1 or τ → 0 compare
well with Liu’s [13] experimental data for T > 5×105 and Kasagi and Hirata’s [11] ones for the whole-T
domain. The former experiment was conducted with η = 0.2 and the latter one with η = 0.75. Recently Tan
and Thorpe [17] suggested a simple instability analysis. They assumed that at the detection time of manifest
convection, τm, the following relation is maintained, based on Eq. (12):

Maximum of

{
d3V ′2

0

ν2 Ri
y5

(
∂v0

∂y

)2
}

= 1100 (30)
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Fig. 4a,b. Stability conditions for η → 1: (a) critical time and (b) critical wavenumber

which is satisfied by ymax = √
5τ . The value 1100 is the critical Rayleigh number in the isothermally heated

R-B problem with a free upper boundary. This results in τm = 82.9T−2/3, which corresponds to the system
of η → 1 and large T . Their τm-predictions agree very well with the present 4τc-values for large T but they
deviates with decreasing T . It is interesting that a common relation is involved in the above results: T ∗ =
constant. In Fig. 5b the critical wavenumbers predicted from the above models are compared with the avail-
able experimental data. The present predictions agree well with experimental data in the whole T -range. It
seems that ac is a weak function of η.

It is evident that during τc ≤ τ ≤ τm flow patterns would not change significantly with time. For small
η, e.g., η = 0.2 in Fig. 5a the curvature effect becomes important in predicting the stability criteria. There-
fore, the present prediction is invalid for T < 5 × 105 with η = 0.2 (see (1), (2) and (6a) in Fig. 5a). But
incorporating the results from the frozen-time model with those from the propagation theory brings rea-
sonable stability criteria for the whole T -domain even in the case of η = 0.75 like those for η = 0.2. As
shown in Figs. 4 and 5, the frozen-time model yields the minimum bound of the stability criteria. Once in-
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Fig. 5a,b. Comparison of predictions with experimental data of η = 0.2 and 0.75; (a) characteristic times and (b) critical
wavenumbers. With η → 1: (1), present τc; (2), present 4τc; (3), Tan and Thorpe’s τm . Chen and Kirchner’s (1971) predictions:
(4a), τi ; (4b), τm from the amplification theory with η = 0.2; (5), prediction from the amplification theory with η = 0.75. From
the frozen-time model, τc: (6a), η = 0.2; (6b), η = 0.75

finitesimal secondary flow sets in at τ = τc, it should grow until detected at τ ∼= 4τc. This behavior has been
shown in the time-dependent Bénard-type convection problems (Yoon and Choi [19], Kang and Choi [9],
Kang et al. [10])

Considering the above theoretical results, it is known that the present predictions provide the reasonable
stability criteria for deep-pool systems of τc → 0 and also for systems of η → 1. It seems that the propagation
theory is a powerful method to predict the stability criteria reasonably well in the simple systems, hydrody-
namic or thermal, of which the primary states involve a similarity variable like ζ in time-dependent diffusion
processes. Their τm-values compare well with the present 4τc-values. This means that incipient instabilities
should grow until the secondary flow is detected at τ = τm.
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5 Conclusions

The onset of the secondary flow in the flow by an impulsively started rotating cylinder has been analyzed by
using linear stability theory. The propagation theory has been employed to predict the critical time τc to mark
the onset of convective instability for τ → 0 or η → 1. Even though the propagation theory is a rather simple
model, the relation of τm � 4τc is consistent with experimental measurements for large T . The present results
show that the infinitesimal disturbance sets in at τ = τc and grows until detected around τ ∼= 4τc. This means
that secondary flow is very weak during τc ≤ τ ≤ τm. More refined studies on the η-effect and the nonlinear
growth of disturbances are now under progress.
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