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A hydrodynamical model based on the maximum entropy principle is formulated for GaAs
semiconductors. Explicit closure relations for the moment equations of the electron density,
energy, velocity and energy-flux are obtained by using the Kane dispersion approximation for
the description of the conduction bands. All the relevant scattering mechanisms are included:
interaction of electrons with acoustic, polar and non-polar optical phonons, impurities. Appli-
cation to the bulk case reveals that the model describes with accuracy the effect of negative
differential conductivity, typical of GaAs, as well as the velocity overshoot and saturation.

1 Introduction

The semiclassical Boltzmann transport equation accurately describes the transport properties of electrons in
semiconductors. However simulating submicron electron devices by a direct integration of the Boltzmann
equation is a daunting computational task and it is not practical for computer aided design purposes. This has
led to the development of macroscopic models whose main problem is the closure of the evolution equations.
This arises because the number of unknown functions exceeds that of the balance equations. In the past,
several hydrodynamical models, with ad hoc closure relations containing free adjustable parameters, have
been introduced (e.g. see [1, 2]) without any thermodynamically consistent justification.

Recently a systematic approach to the question, based on the maximum entropy principle, has been
followed for silicon semiconductors [3, 4, 5, 6] in the framework of extended thermodynamics [7, 8], in the
case of parabolic and Kane’s dispersion relations for the description of the electron energy bands. Previous
attempts in the same direction can also be found in [9, 10, 11]. These models may also be arranged in the
context of the moment theory of Levermore [12].

Here we consider the case of Gallium Arsenide (GaAs), which is a compound semiconductor currently
used as a generator of microwave radiation. Its main peculiarity is the negative differential conductivity.
While in silicon the velocity is an increasing function of the electric field, in GaAs beyond a certain threshold
value of the electric field the velocity decreases with the increasing of the field. This non-monotone behaviour
of the velocity-field relation generates instabilities that give rise to electromagnetic emissions.

A further difference of GaAs compared to silicon is the presence of the polar optical phonon scattering
mechanism, typical of polar semiconductors. Being anisotropic, this process introduces considerable difficul-
ties in the hydrodynamical modeling.
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We also remark that the treatment of the scattering with impurities, which we propose, is different from
that in [5]. Here the Grinberg-Luryi approximation is not used, but the general form of the collision operator
is retained.

The plan of the paper is as follows. In Sect. 2 a brief account of the electron transport and scattering
mechanisms in GaAs is given. In Sect. 3 the balance equations are deduced as moment equations of the
Boltzmann equation and the maximum entropy principle is employed for getting approximate forms of the
electron distribution functions. These functions are used in Sect. 4 to obtain the necessary closure relations. In
Sect. 5 applications to bulk GaAs are presented, with particular attention to velocity overshoot and saturation
and to negative differential conductivity.

2 Main transport properties in GaAs

In this section we present a brief account of the main transport properties of electrons in GaAs. For more
details the interested reader is referred to [13].

2.1 Energy bands and transport equations

The solution of the single-electron stationary Schrödinger equation, with the periodic potential generated by
the ions of the crystal lattice, gives the relation between the electron energy E in each conduction band and
the wave vector k varying in the first Brillouin zone.

At normal operating conditions of electron devices, it is sufficient to take into account only the lowest
conduction band, because the others are scarcely populated. Moreover, the electrons in this band are essentially
located in the neighborhoods of the lowest energy local minima, the so-called valleys.

In the case of GaAs the lowest conduction band has an absolute minimum at the center of the Brillouin
zone, the Γ -point, and local minima at the 4 L-points along the Λ crystallographic orientations, see Fig. 1
and [13]. There are also other secondary minima which become relevant only at very high electric fields and
will be neglected in the following.

In the deduction of hydrodynamical models, the energy in each valley is represented by analytical ap-
proximations. Among these the most common are the parabolic one and the Kane dispersion relation.

In the isotropic parabolic band approximation, the energy EA of the A-valley, measured from the bottom
of the valley EA, A = Γ,L, has an expression similar to that of a classical free particle

EA =
�

2|kA|2
2m∗

A

, kA ∈ �3, (1)

where m∗
A is the effective mass of electrons in the A-valley, see Table 1. �kA is the crystal momentum with

respect to the bottom of the valley and kA is assumed to vary in all �3.
In the case of Kane’s dispersion relation which, at higher energies, furnishes a better approximation than

the parabolic one, EA still depends only on kA, the magnitude of kA, but the dependence is given by the more
complex expression

EA(kA)
[
1 + αAEA(kA)

]
=

�
2|kA|2
2m∗

A

, kA ∈ �3, A = Γ,L, (2)

involving a parameter αA, called the non-parabolicity factor, see Table 1.
The electrons in each valley are treated as different populations and described by distinct distribution

functions. Due to the symmetries of the Brillouin zone, which are inferred by the symmetries of the crystal,
the evolution of the L-valley distribution functions is the same. Therefore, at a kinetic level, a semi-classic
description is based on two Boltzmann equations, one for the Γ -valley and the other for one L-valley. These
equations, which are coupled through the Poisson equation and the collision terms, read

∂fA
∂t

+ vA(kA) · ∂fA
∂x

− qE
�

· ∂fA
∂ kA

= CA[f ], A = Γ,L, (3)

∇x · (εE) = q
[
N+(x) − N−(x) − n(x)

]
,
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Fig. 1. A schematic representation of the
lowest energy electron conduction band
along the Λ direction (E (k ) versus k in
arbitrary units). Note the presence of two
minima at the Γ and L points. The dashed
lines represent the Kane approximation

where fA(x, t ,kA) is the one-particle distribution function relative to the electrons in the A-valley and kA

the correspondent wave vector, q represents the absolute value of the electron charge, E the electric field,
� the reduced Planck constant, ε the dielectric constant, N+ and N− the donor and acceptor concentrations
respectively, and n the total electron number density. vA, the electron group velocity in the A-valley, depends
on the correspondent energy EA through the relation

vA(kA) =
1
�
∇kAEA(kA).

CA[f ] is the collision term, which we proceed to discuss.

2.2 The collision operator

The expression for the collision term is obtained by means of the Fermi’s golden rule [15, 16]. It reflects the
various scattering mechanisms the electrons undergo in a semiconductor. Some of them leave the electrons
in the same valley as they are before the collision (intravalley transitions), while other scatterings can drive
the electrons into a different valley (intervalley transitions) according to suitable selection rules. Therefore,
in general, the collision term may be split according to

CA[f ] = CA[fA, fA] +
∑

B

CA[fA, fB ].

The first term represents the intravalley scatterings, the second one takes into account the intervalley scatter-
ings. The main scattering mechanisms, to which electrons are subjected in semiconductors, are the ones with
phonons, impurities, other electrons and stationary imperfections of the crystal such as vacancies and external
and internal crystal boundaries. In the present paper the electron-electron scattering will not be considered,
because it is relevant only for very high doping, which usually occurs at ohmic contacts where electrons are
in thermal equilibrium. We also neglect the stationary imperfections.

GaAs is a compound semiconductor, therefore the electrons interact with the phonons not only because
of the deformation of the crystal but also through the polarization waves, see [17]. The deformation of the
lattice, due to vibrations of the ions about their equilibrium positions, is described by deformation potentials.
Either the acoustic or the optical modes can be excited. The scattering arising from the excitation of the
acoustic mode is typically called acoustic scattering, while the one arising from the excitation of the optical
mode is called non-polar optical scattering.

The coupling through the polarization waves is due to the permanent electric dipole moment of the
constituent ions in a compound material. This coupling can be mediated through both the optical and the
acoustic branches, but the latter contribution is marginal at room temperature in very pure semiconductors.

In the present paper we consider the following scattering mechanisms:

– the acoustic phonon scattering,
– the non-polar optical phonon scattering,
– the polar optical phonon scattering,
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– the impurity scattering.

All these scattering mechanisms are intravalley, except the non-polar optical phonon scattering. Their
contributions to the collision operator, in the non-degenerate approximation, 1 may schematically be written,
respectively for the intravalley and intervalley scatterings, as

C
(η)

A [fA, fA] =
∫

�3

[
P (η)(k′

A,kA)fA(k′
A) − P (η)(kA,k′

A)fA(kA)
]

dk′
A,

C
(η)

A [fA, fB ] =
∫

�3

[
P (η)(k′

B ,kA)fB (k′
B ) − P (η)(kA,k′

B )fA(kA)
]

dk′
B , (4)

where P (η)(k,k′) is the electron transition probability per unit time from a state k to a state k′ and η labels
the different types of scattering. The first terms in (4) represent the gains and the second ones the losses.
From the principle of detailed balance we have

P (η)(k′
B ,kA) = P (η)(kA,k′

B ) exp

(
−EA − EB +∆AB

kB TL

)
,

where kB is the Boltzmann constant, TL the lattice temperature, which will be taken as constant, and ∆AB =
E A − E B .

In the case of acoustic phonon scattering in its elastic approximation, valid when the thermal energy is
much greater than that of the phonon involved in the scattering, we have

P (ac)(kA,k′
A) = Kacδ(EA − E ′

A), (5)

where δ is the Dirac delta function and Kac a physical parameter.
For the non-polar optical phonon interaction, the transition rate is given by the sum of an absorption and

an emission term

P (np)(kA,k′
B ) = ZAB Knp

[
N (np)δ(E ′

B − EA − �ω+
np) + (N (np) + 1)δ(E ′

B − EA + �ω−
np)
]
, (6)

where Knp is a physical parameter, �ω±
np = �ωnp ±∆AB , �ωnp is the longitudinal optical phonon energy, N (np)

is the equilibrium non-polar optical phonon Bose-Einstein distribution given by

N (np) =
1

exp(�ωnp/kB TL) − 1
,

and ZAB , see Table 1, is the degeneracy of the final valley, that is the valley the electron reachs after the
scattering, with respect to the initial one. In GaAs, non-polar optical phonons contribute to the electron
intervalley transfer between two L-valleys and between Γ -valley and L-valleys.

As said, the polar optical phonon scattering is a very important scattering mechanism in compound
semiconductors. It is an intravalley inelastic process whose transition rate is given by

P (p)(kA,k′
A) =

Kp

8π2�|kA − k′
A|2 G (kA,k′

A)
[
N (p)δ(E ′

A − EA − �ωp)+

+(N (p) + 1)δ(E ′
A − EA + �ωp)

]
, (7)

where Kp is a physical parameter, �ωp is the polar optical phonon energy, N (p) the thermal equilibrium polar
optical phonon number and G (kA,k′

A) the so-called overlap factor given by [15]

G (kA,k′
A) = (aAa ′

A + cAc′
A eA · e′

A)2, (8)

where eA and e′
A are unit vectors pointing in the directions of kA and k′

A and

aA =

√
1 + αAEA

1 + 2αAEA
, a ′

A =

√
1 + αAE ′

A

1 + 2αAE ′
A

, cA =

√
αAEA

1 + 2αAEA
, c′

A =

√
αAE ′

A

1 + 2αAE ′
A

.

1 That is by linearizing the operator with respect to the distribution functions.
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At last, the transition rate for the scattering with impurities, which is an elastic mechanism of interaction,
reads

P (imp)(kA,k′
A) =

Kimp[|kA − k′
A|2 + β2

]2 δ(E ′
A − EA),

where Kimp is a physical parameter, and β is the inverse Debye length.
The values of Kac , Knp , Kp , Kimp and β are indicated in Sect. 7.

3 Moment equations and maximum entropy principle

Starting from the transport equations (3), one can get balance equations for macroscopic quantities associated
with the electron flow. For simplicity we drop the valley label.

Multiplying eqs (3) by a regular generic function ψ(k) and integrating over the wave vector space, one
finds

∂Mψ

∂t
+
∫

�3

ψ(k)vi (k)
∂f
∂x i

d3k − qE j

�

∫
�3

ψ(k)
∂f
∂k j

d3k =
∫

�3

ψ(k)C [f ]d3k, (9)

with

Mψ =
∫

�3

ψ(k)fd3k

as the moment corresponding to ψ.
By taking ψ as 1, �kA, EA and EA vA, with A = Γ , L, one has the following set of balance equations,

[4, 5],

∂nA

∂t
+
∂(nAV i

A )
∂x i

= nA CnA , (10)

∂(nAPi
A)

∂t
+
∂(nAU ij

A )
∂x j

+ nAqE i = nACPi
A
, (11)

∂(nAWA)
∂t

+
∂(nAS j

A)
∂x j

+ nAqV j
A Ej = nACWA , (12)

∂(nAS i
A)

∂t
+
∂(nAF ij

A )
∂x j

+ nAqEj G
ij
A = nACS i

A
, (13)

where

nA =
∫

�3

fAdkA is the electron density,

V i
A =

1
nA

∫
�3

vi
AfAdkA the average electron velocity,

WA =
1
nA

∫
�3

EA(kA)fAdkA the average electron energy,

S i
A =

1
nA

∫
�3

vi
AEA(kA)fAdkA the average energy flux,

Pi
A =

1
nA

∫
�3

�k i
AfAdkA = m∗

A

(
V i

A + 2αAS i
A

)
the average crystal momentum,

U ij
A =

1
nA

∫
�3

vi
A�k j

AfAdkA the average crystal momentum flux, (14)

Gij
A =

1
nA

∫
�3

[
∂

∂k j
A

(
1
�
vi

A EA(k)

)]
fAdkA,

F ij
A =

1
nA

∫
�3

vi
Av

j
AEA(kA)fAdkA the average flux of energy flux,
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CnA =
1
nA

∫
�3

CA[f ]dkA the density production,

CPi
A

=
1
nA

∫
�3

�k i
ACA[f ]dkA the crystal momentum production,

CWA =
1
nA

∫
�3

EA(kA)CA[f ]dkA the energy production,

CS i
A

=
1
nA

∫
�3

vi
AEA(kA)CA[f ]dkA the energy flux production.

All these quantities refer to electrons in the A-valley, A = Γ , L.
The moment equations (10)-(13) do not form a set of closed relations because the number of the unknowns

is greater than that of the equations. Therefore it is necessary to choose a set of fundamental variables and try
to express the others in terms of these. A way to get constitutive relations, which lies on sound physical bases,
is to use the maximum entropy principle [7, 8, 12, 18]. This principle furnishes the form of the distribution
functions that makes the best use of the knowledge of a finite number of moments.

In particular, if we assume as fundamental variables nA,VA, WA and SA the maximum entropy distributions
fA are those which make the electron entropy extremal under the constraints of fixed values of the fundamental
variables.

The entropy of the electrons in the Γ -valley and the 4 L-valleys read

s
[
fΓ , fL

]
= −kB

[∫
�3

(fΓ logfΓ − fΓ ) dkΓ + 4
∫

�3

(fL logfL − fL) dkL

]
.

and the distribution functions fA (A = Γ,L) that maximize it under the constraints nA,VA, WA and SA are given
by 2 (see [4])

f ME
A = exp

[
−
(

1
kB
λA + λW

A EA + λV i

A vi
A + λS i

A vi
A EA

)]
, A = Γ ,L,

where the λ’s are Lagrange multipliers that take care of the constraints.
In order to determine the Lagrange multipliers in terms of nA, VA, WA, SA, A = Γ , L, one has to insert

the expressions of the maximum-entropy-distribution functions into (14)1−4 and solve the resulting system.
Then the closure relations can be obtained by evaluating the appropriate moments of fA, and CA[f ], with fA,
A = Γ ,L, replaced by the corresponding maximum entropy functions. However, on account of the algebraic
difficulties, we get only approximate explicit expressions for the Lagrange multipliers under reasonable
physical assumptions on the distribution functions.

At equilibrium the distribution functions are isotropic

f (eq)
A = exp

[
−
(

1
kB
λ(eq)

A +
EA

kB TL

)]
,

that is at equilibrium

λW (eq)
A =

1
kB TL

, λVi (eq)
A = 0, λSi (eq)

A = 0, A = Γ ,L .

We assume that the anisotropy of the f ME
A , A = Γ ,L remains small even out of equilibrium. We formally

introduce a small anisotropy parameter δ, assume that the Lagrange multipliers are analytic in δ and expand
them around δ = 0 up to the first order. By taking into account the representation theorems for isotropic
functions, one has that λA and λW

A are of order zero in δ, while λV i

A and λS i

A are of the first order in δ

λA = λA, λW
A = λW

A ,

λVi
A = δ λVi

A , λSi
A = δ λSi

A ,

2 Summation over repeated lowercase letters is understood.
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and the maximum entropy distribution functions can be written as

f ME
A = exp

(
−λA

kB
− λW

A EA

)[
1 − δ

(
λVi

A vi
A + λSi

A v
i
AEA

)]
, A = Γ ,L . (15)

4 Inversion of the constraint relations

In order to express the Lagrange multipliers in terms of the fundamental moments, we have to invert the
following system of equations

nΓ =
∫

�3

f ME
Γ dkΓ , nL =

∫
�3

f ME
L dkL,

nΓ WΓ =
∫

�3

EΓ f ME
Γ dkΓ , nL WL =

∫
�3

ELf ME
L dkL, (16)

nΓ V i
Γ =

∫
�3

vi
Γ f ME
Γ dkΓ , nL V i

L =
∫

�3

vi
Lf ME

L dkL,

nΓ S i
Γ =

∫
�3

vi
ΓEΓ f ME

Γ dkΓ , nL S i
L =

∫
�3

vi
LELf ME

L dkL .

where f ME
Γ and f ME

L are given by (15).
For computational reasons, it is better to express the volume element dkA, A = Γ , L, in terms of energy

EA and the elementary solid angle dΩA

dkA = k 2
A dkA dΩA =

m∗
A

�3

√
2m∗

AEA
(
1 + αAEA

) (
1 + 2αAEA

)
dEA dΩA.

By retaining only the terms up to the first order in δ, from the constraints 3 (16), we get the following results

λΓ = −kB log

(
�

3nΓ

4π m∗
Γ

√
2 m∗

Γ
dΓ

0

)
, λL = −kB log

(
�

3nL

4π m∗
L

√
2 m∗

L dL
0

)
,

λW
Γ = g−1

Γ (WΓ ), λW
L = g−1

L (WL),

λVi
Γ = bΓ11 V i

Γ + bΓ12 S i
Γ , λVi

L = bL
11 V i

L + bL
12 S i

L,

λSi
Γ = bΓ12 V i

Γ + bΓ22 S i
Γ , λSi

L = bL
12 V i

L + bL
22 S i

L,

(17)

where

dA
k

(
λW

A

)
=
∫ ∞

0
E k

A

√
EA
(
1 + αA EA

) (
1 + 2αA EA

)
exp(−λW

A EA) d EA,

g−1
A are the inverse functions of

gA
(
λW

A

)
=

dA
1

(
λW

A

)
dA

0

(
λW

A

) , A = Γ,L, (18)

and the coefficients bA
ij , A = Γ ,L, are given by

bA
11 =

aA
22

∆A
, bA

12 = − aA
12

∆A
, bA

22 =
aA

11

∆A
, (19)

with

aA
11 = − 2 pA

0

3 m∗
A dA

0

, aA
12 = − 2 pA

1

3 m∗
A dA

0

, aA
22 = − 2 pA

2

3 m∗
A dA

0

,

and
3 V i

A and S i
A, A = Γ , L, are consistently considered as terms of order δ.
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Fig. 2. λW
Γ and λW

L vs. the electron average energy.
Note the difference in the energy range of the two
valleys

∆A = aA
11 aA

22 − (aA
12

)2
, A = Γ ,L ,

pA
k being

pA
k =

∫ ∞

0

E k
A

[
EA
(
1 + αA EA

)]3/2

1 + 2αA EA
exp(−λW

A EA) d EA , A = Γ ,L .

For the inversion of the functions (18) we have resorted to a numerical approach. The results are shown in
Fig. 2.

5 Fluxes

Once the Lagrangian multipliers are expressed as functions of the fundamental variables, the constitutive
equations for the fluxes can be obtained. Up to the first order terms, one has

U ij
A = UA δ

ij , F ij
A = FA δ

ij , Gij
A = GA δ

ij , A = Γ, L ,

with

UA =
2

3 dA
0

∫ ∞

0

[
EA
(
1 + αA EA

)]3/2
exp(−λW

A EA) d EA,

FA =
2

3 m∗
A

pA
1

dA
0

,

GA =
1

m∗
A dA

0

∫ ∞

0

[
1 +

2
3

1 + αA EA(
1 + 2αA EA

)2

]
E

3/2
A

√
1 + αA EA exp(−λW

A EA) d EA .

In Fig. 3 we represent these tensors as functions of the electron average energy.

6 Production terms

By using the same procedure as before, also the expressions of the moments of the collision term can be
found.
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Fig. 3. The fluxes UA, m∗
A FA and m∗

A GA, A = Γ , L

6.1 Acoustic phonon scattering

The collision term for acoustic phonon scattering reads

C
(ac)

A [fA, fA] ≈ C
(ac)

A [f ME
A , f ME

A ]

=

√
2 nAKac√
m∗

A dA
0

{
EA
(
1 + αAEA

) (
λVi

A + EA λ
Si
A

)
exp(−λW

A EA) ei
A

}
.

Since the scattering is intravalley and elastic, one gets

C (ac)
nA

= 0, C (ac)
WA

= 0 , A = Γ ,L,

while for the production terms relative to the crystal momentum and energy flux, we have

C (ac)
PA

= c(ac)
A 11(WA)VA + c(ac)

A 12(WA)SA, (20)

C (ac)
SA

= c(ac)
A 21(WA)VA + c(ac)

A 22(WA)SA. (21)

The production matrix

Ĉ (ac)
A =

(
c(ac)

A 11 c(ac)
A 12

c(ac)
A 21 c(ac)

A 22

)

is given by
Ĉ (ac)

A = Q̂ (ac)
A B̂A,

where the coefficients of the symmetric matrices B̂A are given in (19) and those of Q̂ (ac)
A are

q (ac)
A 11 =

K
A
ac

dA
0

∫ ∞

0
E 2

A

(
1 + αAEA

)2 (
1 + 2αAEA

)
exp

(−λW
A EA

)
dEA, (22)

q (ac)
A 12 =

K
A
ac

dA
0

∫ ∞

0
E 3

A

(
1 + αAEA

)2 (
1 + 2αAEA

)
exp

(−λW
A EA

)
dEA, (23)

q (ac)
A 21 =

K
A
ac

m∗
A dA

0

∫ ∞

0
E 3

A

(
1 + αAEA

)2
exp

(−λW
A EA

)
dEA, (24)

q (ac)
A 22 =

K
A
ac

m∗
A dA

0

∫ ∞

0
E 4

A

(
1 + αAEA

)2
exp

(−λW
A EA

)
dEA, (25)

with

K
A
ac =

8π
√

2(m∗
A )3/2Kac

3�3
, A = Γ ,L.
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6.2 Non-polar optical phonon scattering

The non-polar optical phonon scattering is an intervalley interaction mechanism whose collision term can be
written as the sum of a gain and a loss part

C
(np)

A [f ] ≈ C
(np)

A [fME ] =
∑

B

{
C

(np)
+ [f ME

A , f ME
B ] − C

(np)
− [f ME

A , f ME
B ]

}
.

As a consequence of the selection rules [15, 16], in this sum when A is equal to Γ , B can only be equal to
L, while when A is L, B can be either Γ or L.

At the first order in δ, we have for the gain part

C
(np)

+ [f ME
A , f ME

B ] =
3
2

N (np) K
AB
np exp

(
−λB

kB

){
exp

(
−λW

B E +
A +

�ωnp

KbTL

)[
E +

A (1

+αB E +
A

)] 1
2
(
1 + 2αB E +

A

)
+ exp

(−λW
B E

−
A

) [
E

−
A

(
1 + αB E

−
A

)] 1
2
(
1 + 2αB E

−
A

)}
,

where E
±

A = EA ± �ω±
np and

K
AB
np =

8
√

2π
3 �3

m∗ 3/2
B ZAB Knp .

The loss term can be expressed as

C
(np)

− [f ME
A , f ME

B ] =
3
2

N (np) K
AB
np f ME

A (kA)
{[

E +
A

(
1 + αB E +

A

)] 1
2

× (1 + 2αB E +
A

)
+
[
E

−
A

(
1 + αB E

−
A

)] 1
2
(
1 + 2αB E

−
A

)
exp

(
�ωnp

kB TL

)}
.

When acting from Γ to L valleys or vice versa, the non-polar optical scattering does not conserve the electron
number density and one has

nA C (np)
n AB = nB C (np)+

n AB (WB ) − nA C (np)−
n AB (WA) ,

with

nB C (np)+
n AB =

3
2

(
m∗

A

m∗
B

)3/2 nB

dB
0

N (np) K
AB
np

[
e
(
−λW

B �ω+
np +

�ωnp
Kb TL

)
η+

0

(
λW

B , αA, αB ,E
+

AB

)
+exp

(
λW

B �ω−
np

)
η−

0

(
λW

B , αA, αB ,E
−

AB

)]
,

nA C (np)−
n AB =

3
2

nA

dA
0

N (np) K
AB
np

[
η+

0

(
λW

A , αA, αB ,E
+

AB

)

+exp

(
�ωnp

KbTL

)
η−

0

(
λW

A , αA, αB ,E
−

AB

)]
, A �= B .

The functions η±
k together with the E

±
AB are reported in Appendix A.

Also energy is not conserved and, up to the first order in δ, one finds

nA C (np)
W AB = nB C (np)+

W AB (WB ) − nA C (np)−
W AB (WA),

with

nB C (np)+
W AB =

3
2

(
m∗

A

m∗
B

)3/2 nB

dB
0

N (np) K
AB
np

[
e
(
−λW

B �ω+
np +

�ωnp
Kb TL

)
η+

1

(
λW

B , αA, αB ,E
+

AB

)
+exp

(
λW

B �ω−
np

)
η−

1

(
λW

B , αA, αB ,E
−

AB

)]
,

nA C (np)−
W AB =

3
2

nA

dA
0

N (np) K
AB
np

[
η+

1

(
λW

A , αA, αB ,E
+

AB

)

+exp

(
�ωnp

KbTL

)
η−

1

(
λW

A , αA, αB ,E
−

AB

)]
, A �= B or A = B = L .
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The production terms for the crystal momentum and energy flux have again the form

C (np)
PAB

= c(np)
AB 11(WA)VA + c(np)

AB 12(WA)SA, (26)

C (np)
SAB

= c(np)
AB 21(WA)VA + c(np)

AB 22(WA)SA. (27)

The production matrix

Ĉ (np)
AB =

(
c(np)

AB 11 c(np)
AB 12

c(np)
AB 21 c(np)

AB 22

)

is given by
Ĉ (np)

AB = Q̂ (np)
AB B̂A,

and the components of the matrix Q̂ (np)
AB read

q (np)
AB 11 =

N (np)K
AB
np

dA
0

{
ζV

0

(
λW

A , αA, αB ,E
+

AB

)
+ e
(

�ωnp
Kb TL

)
ζV

0

(
λW

A , αA, αB ,E
−

AB

)}
, (28)

q (np)
AB 12 =

N (np)K
AB
np

dA
0

{
ζV

1

(
λW

A , αA, αB ,E
+

AB

)
+ e
(

�ωnp
Kb TL

)
ζV

1

(
λW

A , αA, αB ,E
−

AB

)}
, (29)

q (np)
AB 21 =

N (np)K
AB
np

m∗
A dA

0

{
ζS

1

(
λW

A , αA, αB ,E
+

AB

)
+ e
(

�ωnp
Kb TL

)
ζS

1

(
λW

A , αA, αB ,E
−

AB

)}
, (30)

q (np)
AB 22 =

N (np)K
AB
np

m∗
A dA

0

{
ζS

2

(
λW

A , αA, αB ,E
+

AB

)
+ e
(

�ωnp
Kb TL

)
ζS

2

(
λW

A , αA, αB ,E
−

AB

)}
, (31)

A �= B or A = B = L.

The functions ζV
k and ζS

k are also reported in Appendix A.

6.3 Polar optical phonon scattering

The polar optical phonon collision term reads

C
(p)

A [fA, fA] ≈ C
(p)

A [f ME
A , f ME

A ] =

= K
p
A N (p)

{
R(EA,E

+p
A ) + S (EA,E

−p
A ) +

√
2

m∗
A

ei
A

[
Ri (EA,E

+p
A ) + Si (EA,E

−p
A )

]}
,

where K
p
A =

√
2 (m∗

A )
3
2

�4 Kp and E
±p

A = EA ± �ωp , while the functions R, S , Ri , Si can be found in Appendix A.
Therefore the production terms for the density, energy, crystal momentum and energy flux are given by

C (p)
nA

= 0,

C (p)
WA

=
N (p)K

p
A

dA
0

e
λA
kB

{∫ ∞

E
−p
A

R(EA,E
+p

A )EA

√
EA
(
1 + αA EA

) (
1 + 2αA EA

)
d EA

+
∫ ∞

E
+p

A

S (EA,E
−p

A )EA

√
EA
(
1 + αA EA

) (
1 + 2αA EA

)
d EA

}
,

with E
±p

A = max (0,±�ωp), and

C (p)
PA

= c(p)
A 11(WA)VA + c(p)

A 12(WA)SA, (32)

C (p)
SA

= c(p)
A 21(WA)VA + c(p)

A 22(WA)SA. (33)
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As usual the production matrix

Ĉ (p)
A =

(
c(p)

A 11 c(p)
A 12

c(p)
A 21 c(p)

A 22

)

is given by
Ĉ (p)

A = Q̂ (p)
A B̂A,

and the components of the matrix Q̂ (p)
A by

q (p)
A 11 =

2
3

N (p)K
p
A

dA
0

[
φV +

0

(
λW

A ,E
−p

A

)
+ φV −

0

(
λW

A ,E
+p

A

)]
, (34)

q (p)
A 12 =

2
3

N (p)K
p
A

dA
0

[
φV +

1

(
λW

A ,E
−p

A

)
+ φV −

1

(
λW

A ,E
+p

A

)]
, (35)

q (p)
A 21 =

2
3 m∗

A

N (p)K
p
A

dA
0

[
φS +

0

(
λW

A ,E
−p

A

)
+ φS−

0

(
λW

A ,E
+p

A

)]
, (36)

q (p)
A 22 =

2
3 m∗

A

N (p)K
p
A

dA
0

[
φS +

1

(
λW

A ,E
−p

A

)
+ φS−

1

(
λW

A ,E
+p

A

)]
, (37)

A = Γ and L .

The functions φV ±
k , and φS±

k are in Appendix A.

6.4 Scattering with impurities

If we insert f ME
A , A = Γ , L, into the expression of the collision operator relative to the scattering with

impurities, this assumes the relaxation form

C (imp)
A [f ] � − 1

τ imp
A

[
f ME
A (kA) − f ME

0A (EA)
]
,

where f ME
0A is the isotropic part of f ME

A , f ME
0A = exp

(
−λA

kB
− λW

A EA

)
, and the relaxation times are

τ imp
A =

(
K

A
imp

)−1 E 2
A

(
1 + αAEA

)
χ(EA) N (EA)

,

with K
A
imp = �

4
√

2 m∗
A

Kimp , χ(EA) = log
[

8 m∗
A

�2β2 EA
(
1 + αAEA

)
+ 1
]

−
8 m∗

A
�2β2 EA(1+αAEA)

8 m∗
A

�2β2 EA(1+αAEA)+1
and

N (EA) =
√

EA
(
1 + αAEA

) (
1 + 2αAEA

)
, A = Γ, L.

Such an expression for C (imp)
A is valid also under the more general assumption that the distribution function

is weakly anisotropic. We note that, in the parabolic approximation, one recovers the same expression as in
[15], (see page 67, formula 2.6.14 ).

Since this scattering is intravalley and elastic, computing the moments of C (imp)
A [f ME ], one gets

C (imp)
nA

= 0, C (imp)
WA

= 0 , (38)

while the production terms of the crystal momentum and energy flux are respectively given by

C (imp)
PA

= c(imp)
A 11 (WA)VA + c(imp)

A 12 (WA)SA, (39)

C (imp)
SA

= c(imp)
A 21 (WA)VA + c(imp)

A 22 (WA)SA. (40)

The production matrix
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Ĉ (imp)
A =

(
c(imp)

A 11 c(imp)
A 12

c(imp)
A 21 c(imp)

A 22

)

decomposes as

Ĉ (imp)
A = Q̂ (imp)

A B̂A,

and the components of the matrix Q̂ (imp)
A read

q (imp)
A 11 =

2 K
A
imp

3 dA
0

∫ ∞

0

(
1 + 2αA EA

)
χ(EA) exp

(−λW
A EA

)
d EA, (41)

q (imp)
A 12 =

2 K
A
imp

3 dA
0

∫ ∞

0
E A

(
1 + 2αA EA

)
χ(EA) exp

(−λW
A EA

)
d EA, (42)

q (imp)
A 21 =

2 K
A
imp

3 m∗
A dA

0

∫ ∞

0
EA χ(EA) exp

(−λW
A EA

)
d EA, (43)

q (imp)
A 22 =

2 K
A
imp

3 m∗
A dA

0

∫ ∞

0
E 2

A χ(EA) exp
(−λW

A EA
)

d EA, (44)

A = Γ and L .

7 Applications to the case of bulk GaAs

In this section we test the model in the case of bulk GaAs. The physical situation is represented by a GaAs
semiconductor with uniform doping. Two different impurity concentrations, N+ =1014cm−3, 1017cm−3 are
considered, and all the above-mentioned scattering mechanisms are taken into account.

Simulating bulk semiconductors represents a basic preliminary step in the analysis of semiconductor
devices. Usually from the results obtained in this case, one figures out the transport coefficients used in
hydrodynamical models based on phenomenological assumptions.

From a physical point of view, the main features, common also to other types of semiconductors like
silicon, revealed by measurements and MC simulations are the following:

– during the transient period the average velocity overshoots its asymptotic value, that is the value attained
in the stationary case. This effect is observed when the applied electric field is increased and it is due to
the fact that the velocity relaxation time is smaller than the energy relaxation time;

– by increasing the electric field, the asymptotic value of the velocity (V -E curves) shows a saturation
effect.

Besides these, other phenomena are present which are typical of GaAs:

– an electron transfer from the Γ -valley to the L-valleys at the increase of the electric field;
– in the V -E curves one observes a decrease of the electron velocity when the electric field overcomes a

certain threshold value. Such a phenomenon, known as negative differential conductivity, is the conse-
quence of the transfer of electrons from the Γ -valley to the L-valleys, where their effective mass is much
larger. It is also observed that at higher impurity concentrations both the low field mobility, the slope of
the V -E curves at low fields, and the electron peak velocity decrease.

The parameters that appear in the scatterings rates can be expressed in terms of physical quantities charac-
teristic of the considered material

Kac =
kB TLΞ

2
d

4π2�ρv2
s
,

Knp =
(Dt K )2

8π2ρωnp
,
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Kp =
�ωp q2

8π2�

(
1
ε∞

− 1
ε

)
,

Kimp =
NI Z 2 q4

4π� ε2
, β =

[
q2 NI

ε kB TL

]1/2

,

where Ξd is the deformation potential of acoustic phonons, ρ the mass density of the semiconductor, vs

the sound velocity of the longitudinal acoustic mode, Dt K the deformation potential for non-polar optical
phonons, ε∞ the dielectric constant at optical frequency range and NI and Z q are respectively the impurity
concentration and charge. Among these quantities, the deformation potentials cannot be deduced by means of
first principles. In fact the perturbation theory employed to evaluate the transition probabilities is not able to
calculate them from the quantum theory of scattering. In all the simulators, even the Monte Carlo ones, these
quantities are considered as fitting parameters. Their values depend on the approximation used for the energy
bands, on the specific characteristics of the material and on the energy range of interest in the applications.

We have adopted for them the same values as in [19]. For the sake of completeness all the physical
parameters are summarized in Table 1.

Table 1. Values of the physical parameters used for GaAs

me electron rest mass 9.1095 × 10−28 g

m∗
Γ effective electron mass in the Γ -valley 0.067 ×me

m∗
L effective electron mass in the L-valley 0.35 ×me

TL lattice temperature 300 K

ρ0 density 5.360 g/cm3

vs longitudinal sound speed 5.24 × 105 cm/sec

αΓ non parabolicity factor in the Γ -valley 0.611 eV−1

αL non parabolicity factor in the L-valley 0.242 eV−1

εr relative dielectric constant 12.90

ε∞ relative dielectric constant at optical frequency range 10.92

ε0 vacuum dieletric constant 1.24 × 10−22 C2/(eV cm)

Ξd acoustic-phonon deformation potential 7 eV

Dt K non-polar optical phonon deformation potential 109 eV/cm

�ωnp non-polar optical phonon energy 0.03 eV

�ωp polar optical phonon energy 0.03536 eV

E Γ Γ -valley bottom energy 0 eV

E L L-valley bottom energy 0.32 eV

ZΓ L degeneracy from Γ to L valleys 4

ZLΓ degeneracy from L to Γ valley 1

ZLL degeneracy from L to L valleys 3

Concerning the evolution equations, taking into account the symmetry with respect to space translations,
we can drop the spatial dependence. Therefore the balance equations reduce to the following set of ordinary
differential equations

d
dt

nΓ = nL C (np)+
n ΓL (WL) − nΓ C (np)−

n ΓL (WΓ ), (45)

m∗
Γ

d
dt

nΓ (V i
Γ + 2αΓ S i

Γ ) = −qnΓE i + cΓ11 nΓV i
Γ + cΓ12 nΓ S i

Γ , (46)

d
dt

nΓWΓ = −qnΓV k
ΓEk + nLC (np)+

W ΓL(WL) + nΓ
[
C (p)

WΓ
(WΓ ) − C (np)−

W ΓL(WΓ )
]
, (47)

d
dt

nΓ S i
Γ = −q nΓEk Gik

Γ + cΓ21nΓV i
Γ + cΓ22nΓ S i

Γ , (48)

d
dt

nL = −nL C (np)−
n LΓ (WL) + nΓ C (np)+

n LΓ (WΓ ), (49)

m∗
L

d
dt

nL(V i
L + 2αLS i

L) = −qnLE i + cL
11 nLV i

L + cL
12 nLS i

L, (50)
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d
dt

nLWL = −qnLV k
L Ek + nΓC (np)+

W LΓ (WΓ ) + nL

[
C (p)

WL
(WL) + C (np)

W LL(WL)

−C (np)−
W LΓ (WL)

]
, (51)

d
dt

nLS i
L = −q nLEk Gik

L + cL
21nLV i

L + cL
22nLS i

L, (52)

where
cA

ij = c(ac)
A ij (WA) + c(np)

A ij (WA) + c(p)
A ij (WA) + c(imp)

A ij (WA) A = Γ ,L .

From (45), (49) and the expressions of the production terms, one has that n = nΓ + 4 nL = const, so that the
total electron number is conserved, as it must be. In cases when a constant bias voltage is applied to the
semiconductor, the Poisson equation (3)2 is satisfied with n equal to the value of the doping concentration
and E constant. The motion is along the direction of the electric field and, if we take this as the x-direction,
the system (45)-(52) reads

d
dt

nΓ = nL C (np)+
n ΓL (WL) − nΓ C (np)−

n ΓL (WΓ ), (53)

d
dt

nΓVΓ =

(
2αΓGΓ − 1

m∗
Γ

)
q E nΓ +

(
cΓ11

m∗
Γ

− 2αΓ cΓ21

)
nΓVΓ +

+

(
cΓ12

m∗
Γ

− 2αΓ cΓ22

)
nΓ SΓ , (54)

d
dt

nΓWΓ = −qnΓVΓE + nLC (np)+
W ΓL(WL) + nΓ

[
C (p)

WΓ
(WΓ ) − C (np)−

W ΓL(WΓ )
]
, (55)

d
dt

nΓ SΓ = −q nΓE GΓ + cΓ21nΓVΓ + cΓ22nΓ SΓ , (56)

d
dt

(nΓ + 4 nL) = 0, (57)

d
dt

nLVL =

(
2αLGL − 1

m∗
L

)
q E nL +

(
cL

11

m∗
L

− 2αL cL
21

)
nLVL +

+

(
cL

12

m∗
L

− 2αL cL
22

)
nLSL, (58)

d
dt

nLWL = −qnLVLE + nΓC (np)+
W LΓ (WΓ ) + nL

[
C (p)

WL
(WL) + C (np)

W LL(WL)

−C (np)−
W LΓ (WL)

]
, (59)

d
dt

nLSL = −q nLE GL + cL
21nLVL + cL

22nLSL , (60)

where VA and SA are the x-components of VA and SA and GA is the xx-component of Gij
A , A = Γ , L. In the

evolution equations the x-component E of the electric field enters as a parameter.
As initial conditions for (53)-(60), we take, in suitable units,

nΓ (0) + 4 nL(0) = 1,

nΓ (0)
nL(0)

=

∫
�3 f (eq)

Γ dkΓ∫
�3 f (eq)

L dkL

=

(
m∗
Γ

m∗
L

)3/2 dΓ0 ( 1
kB TL

)

dL
0 ( 1

kB TL
)
,

VA(0) = 0,

WA(0) = gA

(
1

kB TL

)
,

SA(0) = 0, A = Γ ,L .

The crystal temperature, TL, is assumed to be 300 K.
The solutions of (53)-(60) for electric fields respectively equal to 0.2, 0.5, 1, 2 and 6 V

µm , are reported in
Fig. 4. The stationary regime is reached in a few picoseconds.
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Fig. 4. The time evolution of the electron average velocity for different values of the electric field and for N+ = 1014/cm3 and 1017/cm3
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Fig. 5. Electron occupancy in the Γ - and L-valleys for N+ = 1014/cm3 and 1017/cm3 respectively

The typical phenomena of overshoot and saturation of the velocity are both qualitatively and quantitatively
well described, see [19] page 111, Fig. 3.23 for a comparison with results obtained by MC simulations. We
also report the curves representing the electron valley occupancy, nΓ

nΓ +4nL
and 4nL

nΓ +4nL
, and average velocity as

functions of the electric field (see Figs. 5 and 6) for the above impurity concentrations. Figure 5 clearly shows
the electron transfer from the Γ -valley to the L-valleys. The population inversion is observed at electric fields
of about 1.8V /µm .

Figure 6 shows that the low field mobility and the electron peak velocity decrease with the increase
of the impurity concentration, see [19] Figs. 3.16 and 3.17 for a comparison with results obtained by MC
simulations.
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Appendix A

In this Appendix we report some functions entering into the expressions of the scattering mechanisms we
have taken into account.
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Fig. 6. Electron velocity versus electric field characteristics for N+ =
1014/cm3 and 1017/cm3 respectively

Table 2. Values of E
±

AB

absorption emission

initial valley final valley E
+

AB E
−

AB

Γ L E L − �ωnp E L + �ωnp

L Γ 0 0

L L 0 �ωnp

In the production terms relative to the non-polar optical phonon scattering the following functions appear

(the values of E
±

AB are given in Table 2 for each different type of interaction)

η±
k

(
λW

C , αA, αB ,E
±

AB

)
=
∫ ∞

E
±

AB

E k
A

[
EA
(
1 + αA EA

)]1/2 (
1 + 2αA EA

) [
E

±
A

(
1 + αB E

±
A

)]1/2

(
1 + 2αB E

±
A

)
exp

(−λW
C EA

)
d EA,

ζV
k

(
λW

A , αA, αB ,E
±

AB

)
=
∫ ∞

E
±

AB

E k
A

[
EA
(
1 + αA EA

)]3/2 [
E

±
A

(
1 + αB E

±
A

)]1/2

(
1 + 2αB E

±
A

)
exp

(−λW
A EA

)
d EA,

ζS
k

(
λW

A , αA, αB ,E
±

AB

)
=
∫ ∞

E
±

AB

E k
A

[
E

±
A

(
1 + αB E

±
A

)]1/2
(
1 + 2αB E

±
A

)
1 + 2αA EA

[
EA (1+

+αA EA
)]3/2

exp
(−λW

A EA
)

d EA.

As regards the polar optical scattering, we have 4

R(EA,E
+

A ) = g0(EA,E
+

A )N
(
E +

A

)
e− λA

kB

{
exp

(
�ωp

kB TL

)
exp

(−λW
A E +

A

)− exp
(−λW

A EA
)}

,

S (EA,E
−

A ) = g0(EA,E
−

A )N
(
E

−
A

)
e− λA

kB

{
exp

(−λW
A E

−
A

)− exp

(
�ωp

kB TL

)
exp

(−λW
A EA

)}
,

Ri (EA,E
+

A ) = N (E +
A )

{
exp

(
�ωp

kB TL

) [
E +

A

(
1 + αAE +

A

)]1/2

1 + 2αAE +
A

g1(EA,E
+

A )fA i (E
+

A )+

−
[
EA
(
1 + αAEA

)]1/2

1 + 2αAEA
g0(EA,E

+
A )fA i (EA)

}
,

4 For simplicity, we have omitted the superscript p in E
± (p)

A and E
± (p)

A(0) .
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Si (EA,E
−

A ) = N (E −
A )

{[
E

−
A

(
1 + αAE

−
A

)]1/2

1 + 2αAE
−

A

g1(EA,E
−

A )fA i (E
−

A )+

−exp

(
�ωp

kB TL

) [
EA
(
1 + αAEA

)]1/2

1 + 2αAEA
g0(EA,E

−
A )fA i (EA)

}
,

with

N
(
EA
)

=
√

EA(1 + αAEA)(1 + 2αAEA),

fA i (EA) = −exp(−λA

kB
− λW

A EA)
[
λVi

A + EAλ
Si
A

]
and

g0(xA, yA) = 2π

{[
a(xA, yA)
δ(xA, yA)

− b(xA, yA)λ(xA, yA)
δ(xA, yA)2

+
c(xA, yA)λ(xA, yA)2

δ(xA, yA)3

]

×log
λ(xA, yA) + δ(xA, yA)
λ(xA, yA) − δ(xA, yA)

+
2 b(xA, yA)
δ(xA, yA)

− 2 c(xA, yA)λ(xA, yA)
δ(xA, yA)2

}
,

g1(xA, yA) = 2π

{
a(xA, yA)

[
2

δ(xA, yA)
+
λ(xA, yA)
δ(xA, yA)2

log
λ(xA, yA) − δ(xA, yA)
λ(xA, yA) + δ(xA, yA)

]

+
b(xA, yA)λ(xA, yA)

δ(xA, yA)3

[
λ(xA, yA) log

λ(xA, yA) + δ(xA, yA)
λ(xA, yA) − δ(xA, yA)

− 2δ(xA, yA)

]

+
c(xA, yA)
δ(xA, yA)4

[
2
3
δ(xA, yA)3 + 2λ(xA, yA)2δ(xA, yA)

+λ(xA, yA)3log
λ(xA, yA) − δ(xA, yA)
λ(xA, yA) + δ(xA, yA)

]}
,

where

a(xA, yA) =
(1 + αAxA)(1 + αAyA)

(1 + 2αAxA)(1 + 2αAyA)
,

b(xA, yA) =
2αA

[
xA yA(1 + αAxA)(1 + αAyA)

]1/2

(1 + 2αAxA)(1 + 2αAyA)
,

c(xA, yA) =
α2

A xA yA

(1 + 2αAxA)(1 + 2αAyA)
,

λ(xA, yA) =
2 m∗

A

�2

[
xA(1 + αAxA) + yA(1 + αAyA)

]
,

δ(xA, yA) = −4 m∗
A

�2

[
xA yA(1 + αAxA)(1 + αAyA)

]1/2
.

In the end, we have

φV +
k

(
λW

A ,E
−

A

)
=
∫ ∞

E
−

A

EA
(
1 + αAEA

) (
1 + 2αAEA

)
N

(
E +

A

){
E k

A

[
EA(1 + αAEA)

]1/2

1 + 2αAEA

×g0
(
EA,E

+
A

)
exp

(−λWA EA
)− exp

(
�ωp

kB TL

)(
E +

A

)k

×
[
E +

A (1 + αAE +
A )
]1/2

1 + 2αAE +
A

g1
(
EA,E

+
A

)
exp

(−λW
A E +

A

)}
d EA,

φV −
k

(
λW

A ,E
+

A

)
=
∫ ∞

E
+

A

EA
(
1 + αAEA

) (
1 + 2αAEA

)
N

(
E

−
A

){
E k

A

[
EA(1 + αAEA)

]1/2

1 + 2αAEA
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×g0
(
EA,E

−
A

)
exp

(
�ωp

kB TL

)
exp

(−λW
A EA

)− (E −
A

)k

×
[
E

−
A (1 + αAE

−
A )
]1/2

1 + 2αAE
−

A

g1
(
EA,E

−
A

)
exp

(−λW
A E

−
A

)}
d EA

and

φS +
k

(
λW

A ,E
−

A(0)

)
=
∫ ∞

E
−

A

E 2
A

(
1 + αAEA

)
N

(
E +

A

){
E k

A

[
EA(1 + αAEA)

]1/2

1 + 2αAEA

×g0
(
EA,E

+
A

)
exp

(−λW
A EA

)− exp

(
�ωp

kB TL

)(
E +

A

)k

×
[
E +

A (1 + αAE +
A )
]1/2

1 + 2αAE +
A

g1
(
EA,E

+
A

)
exp

(−λW
A E +

A

)}
d EA,

φS−
k

(
λW

A ,E
+

A(0)

)
=
∫ ∞

E
+

A

E 2
A

(
1 + αAEA

)
N

(
E

−
A

){
E k

A

[
EA(1 + αAEA)

]1/2

1 + 2αAEA

×g0
(
EA,E

−
A

)
exp

(
�ωp

kB TL

)
exp

(−λW
A EA

)− (E −
A

)k

×
[
E

−
A (1 + αAE

−
A )
]1/2

1 + 2αAE
−

A

g1
(
EA,E

−
A

)
exp

(−λW
A E

−
A

)}
d EA.
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