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This work concerns a generalization of the classical theory of mixtures appropriate for mul-
ticomponent media made up of an infinite number of constituents with continuously varying
properties. Such a concept affords a valuable starting point for the description of many ther-
modynamic systems found in physical, geological, chemical and biological sciences. The main
matter of this study lies in an extension of the entropy principle of continuum thermodynam-
ics to the higher-dimensional spaces which characterize such kind of multicomponent media.
To illustrate the potential of the theory, it is applied to the analysis of induced anisotropy in
rigid rodlike polymer solutions, in different concentration regimes. Among other interesting
inferences of the constitutive theory, it is shown that the microstructure evolution is governed
by a hyperbolic equation, which after suppression of inertial effects reduces to a non-linear
evolution equation of the Fokker-Planck type. Finally, an analogy between the results derived
by this continuum approach and those usually obtained from molecular theories is established,
by particularizing the predictions for ideal solutions.

1 Introduction

Presently, it seems rather natural to regard any common chemical mixture as composed of a discrete number
of chemically distinct species. Some hundred years ago, however, this fact was far from trivial even for the
most prominent alchemists, and particularly doubtful for those who did not believe in the atomistic nature
of the matter, as conceived by Democritus more than two thousand years ago. Indeed, since then there was
an arduous way to explain, formally, why every substance should present particular physical and chemical
properties [1].

Of course, the modern theory of mixtures [2]–[28] was mostly developed under this scheme, with the
identification of the constituents being usually performed through a discrete set of labels or indices. Never-
theless, it must be observed that the fundamentals of this theory are in fact based on a much wider realm than
that of usual chemical mixtures. This enabled scientists to apply such concepts to many other multicompo-
nent environments, from granular media [22]–[24], [26]–[28] and bubbly liquids [23] to composite materials
[20, 23] and (after a suitable change of terminology) also population dynamics [29]–[33].

Ironically, in some of the examples above, the discrete identification of species seems to be a simplified
picture of the macroscopic reality. It is basically about such less conventional applications of the mixtures
theory that this work is concerned.

An apology is needed to the language employed in this communication. In order to exploit the generality
of the theme, words like mixture, species, constituents and diversity will be often utilized in their broadest
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sense, instead restricted to their specific meanings in chemistry, physics or biology. In particular, I ask
permission to introduce here the neologism mixture with continuous diversity, in order to generically refer to
a multicomponent medium made up of a continuous set of mutually interacting components (i.e., constituents
whose distinctive properties vary smoothly from one to another).

To illustrate this concept, consider the example of a dry granular medium composed of (roughly) spherical
solid particles of the same material but with different sizes. Experience shows that the mechanical response
of this medium is strongly dependent on the grain size distribution [34]–[37], in such a way that one can
expect distinct material behavior, depending on the dimensions of the grains. In other words, the granular
medium can be viewed as a mixture of solid particles, of which the different species are classified according to
their grain sizes (e.g. diameters). While the gross features of such a medium can be qualitatively understood
with the usual mixture theory, by using some discrete classification of the granular species (for example,
a 2-component mixture of large and small grains, as considered by Savage & Lun [38]), a general theory
should take into account the whole grain size distribution, in order to afford quantitative predictions. This is
particularly true if one intends to describe, quantitatively, complex size effects like grain size segregation, or
the (more or less) gradual degradation of large grains to smaller ones by erosional phenomena like abrasion and
fragmentation [39]. However, a modern thermodynamic theory, founded on an appropriate entropy principle
capable of dealing with the whole continuous spectrum of grain diameters, is lacking.

Actually, it is not difficult to construct an heuristic procedure to extend the fundamental concepts of
some well-known discrete description, in order to obtain a continuous version of it. In fact, such an idea was
already used at the end of the 19th century by Volterra [40] (see also the note of Whittaker [41]) to construct
a mathematical theory for what he named “functions depending on other functions”, nowadays simply called
functionals, due to Hadamard [42, 43]. More closely related to the framework of multicomponent media,
Prager [44] remarked that the translational diffusion phenomenon in an isotropic suspension of rodlike solid
particles resembles well diffusive processes in a mixture of species with different diffusion coefficients. On the
other hand, the similarity between a gas of non-spherical molecules and a mixture with continuous diversity
was demonstrated by Curtiss [45]. Later, Condiff & Brenner [46] took advantage of this analogy to construct
a phenomenological theory of fluids composed of orientable particles, using some classical results of the
irreversible thermodynamic theory of mixtures.

The aim of this article is actually twofold. First, a general theory of mixtures with continuous diversity
is presented, including the formulation of an entropy principle adequate for such multicomponent media.
Thereafter, a practical application of the theory is illustrated by considering a simple constitutive model
for the study of microstructure evolution in suspensions of rigid rodlike polymers (evidently, the general
results remain valid also for homogeneous suspensions of axially symmetric slender rigid-bodies). These
topics are organized in the text as follows. The next three sections are concerned with the formulation of the
thermodynamic theory already cited. Section 2 draws a sketchy survey of the classical theory of mixtures,
emphasizing the generality of mass balance and entropy inequality. The results presented there form the basis
for the heuristic derivation of the equations of a mixture with continuous diversity, presented in Sects. 3
and 4. After that, the remainder of the work deals with the use of this extended concept of mixture in
the microstructural dynamics of polymeric suspensions in different concentration regimes. The fundamentals
of the theory are presented in Sect. 5, while the appropriate forms of the balance equations of energy and
momenta are discussed in Sect. 6; Section 7 deals with the generalities of the constitutive theory, while an
exploitation of the entropy inequality by means of the method of Lagrange multipliers of Liu [47] is performed
in Sects. 8 and 9; finally, an evolution equation for the suspension microstructure is derived in Sect. 10, being
applied for dilute as well as non-dilute polymer suspensions. Conclusions of the whole analysis are discussed
in Sect. 11.

Cartesian tensor notation with the usual summation convention is adopted for capital as well as lowercase
Latin indices. By contrast, repeated (dummy) Greek indices should not be summed, except when explicitly
indicated. Lowercase Latin indices refer always to components of some tensorial field in the usual three-dimen-
sional Euclidian space. On the other hand, capital Latin indices serve to denote the components of a tensorial
field in arbitrary finite-dimensional Cartesian spaces. Parentheses denote symmetrization of all Latin indices
while square brackets and angular parentheses indicate antisymmetrization and traceless symmetrization,
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respectively. Finally, all thermodynamic fields are assumed continuously differentiable functions of their
arguments.

2 Short survey of the classical mixture theory

Following the assertion of Truesdell [24], the continuum theory of mixtures will be regarded here so as
to describe the phenomena of diffusion, dissociation, combination, transformation and interaction of the
constituents in the broader sense.

Mathematically, a mixture is defined as a superposition of N continuous bodies B α (α = 1, 2, . . . ,N ),
all able to occupy simultaneously the same region of space. Consequently, in order to refer to any particle of
some constituent of this continuum, at a given time t , it is necessary to identify not only the current position
xi of the respective particle, but also its constituent label α. Accordingly, the mass density of the component
α at the position xi and time t is given by �α (xi , t), while the mass density of the mixture � (xi , t) and the
concentration, or mass fraction, of the constituent f α (xi , t) are respectively defined by

� =
N∑

α=1

�α and f α =
�α

�
. (2.1)

The balances of mass of the constituents are expressed by the set of equations

∂�α

∂t
+
∂�αvα

i

∂xi
= Γα, (α = 1, 2, . . . , N ) (2.2)

where vα
i is the constituent velocity (relative to some frame of reference) and Γα is the production density

of mass of the αth species. In most cases of interest, the conservation of mass implies the condition

N∑
α=1

Γα = 0. (2.3)

Hence, as a consequence of (2.1)–(2.3) and the third metaphysical principle of Truesdell1 [24], there follows
the continuity equation for the mixture in its usual form

∂�

∂t
+
∂�vi

∂xi
= 0, (2.4)

with vi (xn , t) denoting the barycentric velocity of the mixture

vi =
N∑

α=1

�α

�
vα

i =
N∑

α=1

f αvα
i . (2.5)

When local conservation of mass cannot be asserted (e.g. in non-local continua [48, 49]) and exchanges
of mass with the outside world are allowed (i.e., open systems [30]), then (2.3) does not hold and the mass
balances (2.2) and (2.4) take the general forms

∂�α

∂t
+
∂�αvα

i

∂xi
= Γα + mα, (α = 1, 2, . . . , N ) (2.6)

and

∂�

∂t
+
∂�vi

∂xi
=

N∑
α=1

(Γα + mα) , (2.7)

1 In resume, the three metaphysical principles of Truesdell state that: 1) all properties of the mixture are mathematical consequences
of the constituent properties; 2) so as to describe the motion of a constituent, one can imagine it isolated from the rest of the mixture,
provided the actions of the other constituents upon it are allowed; 3) the motion of the mixture is governed by the same equations as a
single medium.
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where mα denotes the mass supply density of the component α, and the right-hand side of (2.7) defines the
net mass production of the mixture. Note that (2.6) and (2.7) are quite general, involving all mass changes
in non-relativistic continua (relativistic counterparts of (2.2) and (2.4) can be found in [17, 50, 51]).

Balance equations of momenta and energy will not be presented explicitly here for two reasons. The
first is brevity: they play no role in the formulation of the entropy principle at all. The second is generality:
in fact there are no general forms of these equations capable to encompass at the same time all possible
applications. To illustrate this last assertion, it is sufficient to mention a few examples of media where these
balance equations take distinct forms:

• porous and granular media [22]–[24], [26]–[28],
• mixtures with multiple temperatures [11, 13, 19, 21, 24, 27, 28],
• non-local mixtures [14],
• electromagnetic multicomponent media [6],
• composite materials [20, 23],
• mixtures of continua with microstructure, like polar media and liquid crystals, as well as emulsions and

bubbly liquids [12, 16, 23].

In any case, however, the balances of momenta and energy of the αth constituent of the mixture must be
compatible with the general balance equation [5, 25]

∂Ψα

∂t
+

∂

∂xi

(
Ψαvα

i + Φα
i

)
= Ξα + Σα (α = 1, 2, . . . , N ) (2.8)

where Ψα is the density of some additive quantity, Φα
i is its non-convective flux, Ξα its production density

and Σα an external supply.
The entropy density of the mixture is also governed by a balance equation of the type (2.8). Its most

general form reads (see [5, 10, 18, 24, 25, 52])

∂�η

∂t
+

∂

∂xi
(�ηvi + φi ) = �ς + �s. (2.9)

In the expression above, η denotes the specific entropy of the mixture, φi its flux, ς the specific entropy pro-
duction and s the specific entropy supply. Moreover, as a consequence of the second law of thermodynamics,
the inequality

ς ≥ 0 (2.10)

must hold for all thermodynamic processes, defined as the solutions of the system of field equations derived
from (2.6) and (2.8). The generality of (2.9) (subjected to (2.10)) is also quite remarkable. It embraces
actually almost all entropy inequalities found in the literature of non-relativistic continua, with only very
scarce exceptions [7, 14, 28, 48, 49].

Finally, the general balance equation (2.8) can be rewritten in a compact notation (cf. [50]) which will be
very useful in the next sections. Consider first the 4-dimensional (standard) Newtonian space-time E × R of
the classical mechanics [53], formed by the product space (Cartesian product) of a 3-dimensional Euclidean
space E = R

3 and the reals R. A point yA (A = 1, 2, 3, 4) in this hyperspace is called an event and consists
of the position coordinates xi and the time t , respectively. Accordingly, introduce the 4-dimensional vector

Ψα
A =

(
Ψαvα

i + Φα
i , Ψ

α
)
, (α = 1, 2, . . . , N ) (2.11)

and rewrite (2.8) in a compact way as

∂Ψα
A

∂yA
= Ξα + Σα, (α = 1, 2, . . . , N ) (2.12)

which states that the divergence of Ψα in space-time is balanced by its production and supply, defined before.
The compact formulation discussed in the last paragraph evidences that spatial and temporal variables can

be treated at the same footing, as coordinates of an event. In addition, the assumption of form invariance of
the balance equation (2.12) will serve as starting point for the heuristic generalizations to be presented in the
next two sections.
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3 Mixtures with continuous diversity

Suppose that the label α is no longer related to a finite-enumerating set of integer numbers, but defined in
a closed interval [αmin, αmax] = A ⊂ R, which will be called the species assemblage. The extrema αmin

and αmax are so defined as the assemblage A to be complete, i.e., it accounts for all possible species in
the medium. At first sight, the adoption of this new picture brings no dramatic changes in the description
of the medium. For instance, whatever the particular meaning given for α, the reference to any particle of
the continuum, at a given time t , continues to be defined by the current position xi of this particle and its
constituent label α.

However, α is now continuous. In other words, this means that α ∈ A acquired the status of a new
variable, in addition to xi and t , whence the Newtonian space-time E × R, introduced at the end of the last
section, must be replaced by the space-time-assemblage E × R × A. Without loss of generality, it will be
assumed that α is chosen in such a way that the space-time-assemblage is a Cartesian hyperspace. A point
of it will be called a sorted event, being denoted by zB = (xi , t , α), with B = 1, 2, . . . , 5.

Regarding this 5-dimensional space structure, the derivation of balance equations appropriate for a mixture
with continuous diversity is reduced to a simple heuristic generalization of the results presented in the last
section. Effectively, if Ψ∗(xi , t , α) denotes the density of some arbitrary additive quantity in this hyperspace2,
then one can introduce the 5-dimensional vector

Ψ∗
B =

(
Ψ∗v∗

i + Φ∗
i , Ψ

∗ , Ψ∗u∗ + Υ ∗) , (3.13)

and obtain a general balance equation similar in form to (2.12), but in the space-time-assemblage:

∂Ψ∗
B

∂zB
= Ξ∗ + Σ∗. (3.14)

As might be expected, by using (3.13) and the definition of sorted event, Eq. (3.14) can be rewritten as (cf.
(2.8))

∂Ψ∗

∂t
+

∂

∂xi

(
Ψ∗v∗

i + Φ∗
i

)
+

∂

∂α

(
Ψ∗u∗ + Υ ∗) = Ξ∗ + Σ∗. (3.15)

In (3.13)–(3.15), the fields v∗
i (xj , t , α), Φ∗

i (xj , t , α), Ξ∗(xi , t , α) and Σ∗(xi , t , α) have basically the same
meaning as their standard counterparts vα

i , Φα
i , Ξα and Σα, presented in the last section. Moreover, in

order to account for fluxes in the direction of the species axis (i.e., the α-direction) two new scalar fields
were introduced, viz. the interspecies flux Υ ∗(xi , t , α) and the transition rate u∗(xi , t , α). Notice that the
completeness assumed for the species assemblage can be written as∫

A

∂(Ψ∗u∗)
∂α

dα =
∫
A

∂Υ ∗

∂α
dα = 0, (3.16)

which simply reflects the fact that there are no species defined outside A.
To clarify the meaning of the field of transition rate, consider first the example of a non-reacting mixture

whose mass is conserved. In this case one obtains for the balance of mass the identifications

Ψ∗ = �∗ and Φ∗
i = Υ ∗ = Ξ∗ = Σ∗ = 0 (3.17)

which allow the derivation of the following balance equation of mass for the αth constituent

∂�∗

∂t
+
∂�∗v∗

i

∂xi
+
∂�∗u∗

∂α
= 0, (3.18)

where �∗(xi , t , α) denotes the mass density of the constituent α.
Equation (3.18) is the simplest non-trivial generalization of the continuity equation (2.4) for a mixture

with continuous diversity. It asserts that, besides the usual mass changes due to transport phenomena, the

2 In order to distinguish the thermodynamic fields of the components from those of the mixture, from now on a superscribed asterisk
will serve to indicate that the respective quantity is a function of xi , t and α.
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density of constituent α can vary in time also through species transitions. In fact, by considering a unit volume
in a medium at rest (v∗

i = 0), it is easy to conclude that the quantity u∗ determines the rate at which the
amount of mass �∗ performs a continuous transition from constituent α to some other species, by altering its
distinguishing properties. Note that the nature of such a transition is not restricted to any particular type of
transformation, mutation, degradation or regeneration of the constituent properties. Nevertheless, it must be
continuous. In other words, it must occur between familiar species.

The concept of familiarity is the key to characterize a medium as a mixture with continuous diversity. It
is a direct consequence of the existence of a metric in the interval A, and is in fact the counterpart of the
notion of closeness in Euclidian space. Transitions between familiar species are very peculiar processes in
mixtures with continuous diversity, and they occur frequently, even when chemical reactions are absent. For
example, in the gas with non-spherical molecules considered by Curtiss [45], a transition of this kind would
be given simply by a slight reorientation of the particles. The rate at which such continuous changes occur
is just described by the transition rate u∗.

In some situations, the mass balance of the αth component of the mixture can assume more complicated
forms, when compared with the simple example considered above. For the general case of an open and
reacting medium, the following identifications are necessary

Ψ∗ = �∗, Φ∗
i = Υ ∗ = 0, Ξ∗ = Γ ∗ and Σ∗ = m∗, (3.19)

which lead to the balance equation

∂�∗

∂t
+
∂�∗v∗

i

∂xi
+
∂�∗u∗

∂α
= Γ ∗ + m∗, (3.20)

where Γ ∗ and m∗ have the same meaning as their classical counterparts Γα and mα.
For any case, however, the relations∫

A

�∗ dα = �, f ∗ =
�∗

�
and

∫
A

f ∗v∗
i dα = vi , (3.21)

remain valid (cf. (2.1), (2.5)), with �(xi , t) and vi (xj , t) denoting (again) the mass density and the barycentric
velocity of the mixture, respectively, while f ∗(xi , t , α) expresses the mass fraction of constituent α. From
(3.16) and (3.21) follows, by integration of (3.20) over all species, the usual mass balance of the mixture

∂�

∂t
+
∂�vi

∂xi
=
∫
A

(
Γ ∗ + m∗) dα, (3.22)

and therefore, the third metaphysical principle (see last section) is again fulfilled. Moreover, for a closed
system whose mass is locally conserved, the additional conditions

m∗ = 0,
∫
A

Γ ∗ dα = 0 (3.23)

hold, and (3.22) reduces to the common continuity equation (2.4).
As discussed in the last section, balance equations of momenta and energy will not be considered at this

stage. Besides the reasons presented above, one more argument arises in the case of mixtures with continuous
diversity: different forms of such balance equations can occur, depending on the physical meaning specified
for the variable α. Of course, these equations must have the same general form, namely Eq. (3.15).

Before proceeding with thermodynamics, some remarks are appropriate here. For simplicity, throughout
this communication only one temperature field, the temperature of the mixture, will be considered. Accord-
ingly, the main objective of the thermodynamic theory, viz., the prediction of the mixture behavior once the
external agents are specified, reduces to the determination of the constituent fields of density, velocity and
transition rate, as well as the temperature of the mixture (if no further fields are specified). Clearly, balance
equations of mass, momenta and energy do not suffice for the determination of these fields, because they
contain also additional fluxes and production terms which depend on the particularities of the medium. Hence,
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one must introduce supplementary hypotheses, in order to relate these additional quantities to the basic fields
of the theory, through the so called constitutive relations. Nonetheless, these relations cannot be arbitrary.
They must satisfy some fundamental physical axioms, among them the entropy principle.

The results presented up to now provide a solid background for the formulation of an entropy principle
appropriate for mixtures with continuous diversity. Actually, no modification of the classical version of this
principle is necessary for the mixture as a whole, the relations (2.9) and (2.10) still being valid. Nevertheless,
in contrast to the usual theory of mixtures, an entropy inequality in the form (2.10) is somewhat unworthy
for a constitutive theory in the space-time-assemblage. In fact, the standard method of exploitation of the
entropy principle by the use of Lagrange multipliers, as proposed by Liu [47], is no longer applicable in such
a situation. The reason is that the algebraic equivalence on which the whole method is founded cannot be
justified, in this case, by customary arguments.

The admissibility of the method of Lagrange multipliers became a very desirable feature for any thermo-
dynamic theory of continua. In fact, the use of Lagrange multipliers makes the exploitation of the entropy
principle not only a systematic and straightforward procedure, but also equivalent to the maximization of
entropy in non-equilibrium, as proved by Dreyer [54]. Therefore, in order to confer such a pleasant feature
to the theory developed here, one has two alternatives: the first could be the derivation of a new version of
the method of Lagrange multipliers, by introducing multiplier-functions in integral form; the second would
require a reformulation of the entropy principle in space-time-assemblage, which should be compatible (at
least for the most common cases) with the conventional form of the Lagrange multiplier method. In this work
I will deal with the second option, the first one being left for the mathematicians.

In order to present the entropy principle appropriate for mixtures with continuous diversity, it is sufficient
to rephrase (with only some slight modifications) the axiomatic formulation of Müller [25]. It will be stated
here in three parts:

Postulate [Entropy principle]

1. There exists for each component of the mixture an additive scalar quantity, the entropy of constituent α.
2. The specific entropy, the entropy fluxes and the specific entropy production of each component of the mixture

are given by constitutive equations.
3. The entropy production of the mixture is non-negative for all thermodynamic processes.

From the first axiom follows, with the help of (3.14) (or equivalently of (3.15)), the entropy balance equation
in the form

∂�∗η∗

∂t
+

∂

∂xi

(
�∗η∗v∗

i + φ∗
i

)
+

∂

∂α

(
�∗η∗u∗ + ϕ∗) = �∗ς∗ + �∗s∗, (3.24)

where η∗ is the specific entropy of the αth constituent, φ∗
i and ϕ∗ its fluxes, ς∗ its specific production and s∗

its external supply. According to the second axiom, all these fields (but the last, which is defined by external
conditions) are given by constitutive functions. Note also that the additivity of the densities of entropy, entropy
production and entropy supply immediately imply the following relations between constituent and mixture
fields (cf. Eq. (2.9))∫

A

�∗η∗ dα = �η,

∫
A

�∗ς∗ dα = �ς and
∫
A

�∗s∗ dα = �s. (3.25)

Hence, in order to derive the entropy balance equation of the mixture (2.9) using Eqs. (3.24) and (3.25), one
more definition is necessary, viz.,

�ηvi + φi =
∫
A

(
φ∗

i + �∗η∗v∗
i

)
dα. (3.26)

Finally, the last axiom guarantees the validity (again) of the inequality (2.10), i.e.,

ς =
∫
A

f ∗ς∗ dα ≥ 0. (3.27)
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Observe that the production ς∗ can also assume negative values, caused by the influence of the other
components present in the mixture. One can exclude for a while such intricate influences by considering the
limiting case when all constituents are absent but one, i.e., a one-component continuum. In such a simple
situation, the specific entropy production of the pure constituent would be given simply by

ς∗P ≥ 0, (3.28)

as obviously should be for a single medium.
Consequently, returning to the general case, one can define for every component of the mixture, a deviation

measure of the constituent entropy production from its expected behavior in a single medium by

δ∗ = ς∗ − ς∗P , (3.29)

which will be called the entropy production deviation due to constituent interactions, or for short, entropy
production deviation.

Once ς∗ is a constitutive function (due to the second axiom of the entropy principle), so it is ς∗P .
Accordingly, from (3.29) there follows that the deviation function δ∗(xi , t , α) must also be a constitutive
quantity. These results, combined with the inequality (3.28), complete the proof of

Theorem [Entropy production deviation]
There exists a function δ∗ : E ×R×A → R, defined through (3.29), which is given by a constitutive equation
and such that the inequality

ς∗ ≥ δ∗ (3.30)

holds for all thermodynamic processes.

This theorem is the most prominent result of the theory, and enables the entropy principle to be expressed
in the space-time-assemblage. In simple words, it guarantees the existence of the deviation function δ∗(xi , t , α)
and asserts that it is a constitutive quantity whose value is upper-bounded by the constituent entropy production
for all thermodynamic processes.

4 Extension for the case of multi-labelled species

The generalization of the mixture theory presented in the last section is still not able to deal with many of
the common mixtures with continuous diversity found in nature. In fact, the identification of a particular
species requires in many situations the specification of more than one distinctive property. A simple example
is the gas with non-spherical molecules considered by Curtiss [45], where any species is identified by two
parameters, related to the azimuthal and the polar orientation angles, respectively. Therefore, following the
motto “once you start with generalizations, it is hard to stop”, a trivial extension of the theory, valid for the
case of multi-labelled species, will now be derived.

Consider first that every component of the mixture is identified with a set of continuous labels αI (I =
1, 2, . . . ,M ), each one defined in a particular closed interval AI ⊂ R. Hence, the space-time-assemblage
assumes the multi-dimensional form E × R × M, where M = A1 × A2 × · · · × AM . A sorted event in
such a hyperspace is given by zC ′ = (xi , t , αI ), with C ′ = 1, . . . , (M + 4), and one can introduce, in a similar
way as before, a (M + 4)-dimensional vector of the form

Ψ∗
C ′ =

(
Ψ∗v∗

i + Φ∗
i , Ψ

∗ , Ψ∗u∗
I + Υ ∗

I

)
. (4.31)

Accordingly, the general balance equation appropriate for the case of multi-labelled species remains essentially
identic in form to (3.14), with a simple substitution of yB by zC ′ . Consequently, with the help of (3.14), (4.31)
and the definition of sorted event, such a balance equation can be rewritten as (cf. (3.15))

∂Ψ∗

∂t
+

∂

∂xi

(
Ψ∗v∗

i + Φ∗
i

)
+

∂

∂αI

(
Ψ∗u∗

I + Υ ∗
I

)
= Ξ∗ + Σ∗, (4.32)
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with the evident summation convention of the dummy indices i = 1, 2, 3 and I = 1, 2, . . . ,M .
All the essential assumptions considered in the last section remaining valid, it is straightforward to derive

the extended version of the theory, by trivial replacement of α, u∗ and A in Eqs. (3.16)–(3.30) respectively
by αI , u∗

I and M. For instance, the mass balance equation (3.20) and the expressions (3.21)1 and (3.21)3

are rewritten in this case as

∂�∗

∂t
+
∂�∗v∗

i

∂xi
+
∂�∗u∗

I

∂αI
= Γ ∗ + m∗, (4.33)

∫
M

�∗ dMα = �, and
∫
M

f ∗v∗
i dMα = vi , (4.34)

where the following notation was adopted:∫
M

( ) dMα =
∫
A1

∫
A2

· · ·
∫
AM

( ) dαM . . . dα2dα1.

Furthermore, the completeness assumption (3.16) takes the form∫
M

∂(Ψ∗u∗
I )

∂αI
dMα =

∫
M

∂Υ ∗
J

∂αJ
dMα = 0. (4.35)

From the considerations above, the vectorial character achieved by the label αI , the interspecies flux Υ ∗
I

and the transition rate u∗
I becomes now clear. As remarked by Condiff & Brenner [46], this vectorial character

is a fundamental feature in the study of anisotropic media.
Finally, keeping in mind also that, in such a generalized case, all thermodynamic fields are defined in the

hyperspace E × R × M, no further modification of the entropy principle and production deviation theorem,
as presented in the last section, is necessary. Therefore, the extension of the theory is complete3. In the next
sections, the application of these concepts will be illustrated through the study of the induced anisotropy in
polymeric suspensions.

5 Configuration and mass changes in solutions of rodlike polymers

When rigid rodlike polymer molecules are suspended in a carrier liquid (like some polypeptides in suitable
helicogenic solvents [55, 56]), complex microstructures can be induced by flow, affecting the material response
of the fluid in several ways. For instance, stream-induced anisotropy can be optically measured by flow
birefringence [57]–[59] and dynamic light scattering [56, 60, 61]. In fact, the instantaneous configuration of
these polymeric suspensions is determined not only by the position of fluid particles, but in addition also by
the orientational distribution of the identical rodlike molecules which constitute its microstructure.

Motivated by this microstructural picture, Kirkwood and co-workers [62]–[64] studied in a series of papers
(within the frames of statistical rheology) the flow of dilute suspensions of rodlike macromolecules, basing
on early works of Jeffery [65], Burgers [66] and Kuhn & Kuhn [67]. These were followed, among others,
by the works of Prager [68], Kotaka [69], Doi & Edwards [70] and Dahler and co-workers [71, 72] by
extending the range of the theory to the semidilute regime. An extensive survey of the literature on molecular
theories of polymeric fluids can be found in the treatises of Ferry [55], Bird et al. [73], Doi & Edwards
[74], Larson [75] and Beris & Edwards [76]. In addition, the research on dilute and semidilute suspensions
of slender rigid-bodies was reviewed by Brenner [77] and Petrie [78]. (Worthy of note is also the series of
papers of Hinch & Leal [79]–[82]). Common to all microscopic approaches cited above is the adoption of an
orientational distribution function to describe the microstructure configuration of the fluid.

3 Of course, an “hybrid” version of the theory could also be obtained by mixing continuous and discrete distinctive properties.
Nonetheless, once such derivation is straightforward from the results presented here, I will omit it for brevity. (After all, it is included
by simply using the measure theoretic concept of integration over M).
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On the other hand, the analogy between a microstructured medium and a multicomponent mixture was
mainly evidenced by Prager [44] and Curtiss [45]. The first author observed that, in dealing with translational
diffusion of suspended rod-shaped particles, a group of randomly oriented rods should behave fairly like
a mixture of species with different diffusion coefficients. Curtiss went further and, after deriving a kinetic
theory for a gas of rigid non-spherical molecules, he showed that many of the resulting relations were
similar to expressions for a mixture made up of an infinite number of components of continuously varying
properties. Condiff & Brenner [46] later also emphasized this equivalence, designating it a “dichotomy of
representation”. They made use of some fundamentals of irreversible thermodynamics of mixtures to derive
a phenomenological theory of suspensions of orientable particles.

Curiously, not much attention was devoted to this theme from that time on, despite the drastic progress
achieved in continuum thermodynamics of mixtures. In fact, in the frames of phenomenological approaches
there always prevailed the description of microstructural dynamics by means of tensorial measures associated
to observable anisotropic phenomena of optical and thermomechanical character. Such a type of description
has a long tradition in continuum theories, dating back to the turn of the 20th century and being associated
with the names of Duhem [83] and the Cosserat brothers [84]. The cited tensorial measures were at the
beginning one or several unitary vectors called directors [5], [85]–[87] (in the classical case, a rigid triad
of them [83]), but later more elaborate descriptions using structure tensors (also called order, alignment or
conformation tensors) became avaliable [88]–[90].

Whilst the connection between the orientational distribution function of statistical physics and the tensorial
measures of phenomenological approaches was already known in the domain of molecular theories for a long
time (through the moments of the distribution function), a concept somewhat equivalent to the orientational
distribution function was formally introduced in continuum thermodynamics in a much slower pace. In some
sense, it could be traced back to Condiff & Brenner [46]. Actually, the essential idea proposed by these
authors lies on a well-known concept of statistical rheology and kinetic theory, namely the consideration of
a 6-dimensional hyperspace, which is nothing else than the product of the Newtonian space-time E × R and
the 2-dimensional orientation space, defined by the surface of the unitary sphere S 2. At any instant of time
t , a particle of the medium is identified in E × R × S 2 by a composition of coordinates, related to the
independent Cartesian components of the position vector xi and the (normalized) orientation vector nj , radial
to the spherical surface of S 2. Contrary to the directors of the Cosserat continua, the orientation vector has
no direct relation to any directional property of the medium; in other words, it is not attached to any material
particle. Consequently, one can regard the reference to nj in S 2 as the orientational counterpart to the spatial
(Eulerian) description in the usual physical space E .

From the considerations above, the correspondence between the 6-dimensional description of the mi-
crostructure and the theory of mixtures with continuous diversity presented in the foregoing sections becomes
clear. For instance, one may define for any monodisperse and homogeneous suspension4 of rigid rodlike
polymers the partial mass density �∗(xi , t , nj )5, which represents the mass density, at position xi and time
t , of the “constituent” with orientation nj . In accordance with (4.34)1, the mass density of the “mixture” is
given by

�(xi , t) =
∮
S 2

�∗(xk , t , nj ) d2n, (5.36)

integration being performed over the whole spherical surface of S 2.
In the absence of chemical reactions and mass supplies, there follows from (4.33) the partial mass balance

∂�∗

∂t
+
∂�∗v∗

i

∂xi
+ ∂i

(
�∗u∗

i

)
= 0, (5.37)

where
4 For inhomogeneous suspensions one should necessarily distinguish between the fields of mass density and polymer concentration;

on the other hand, polydispersity would imply on an additional dimension to the space-time-assemblage, related to the length distribution
of the polymer chains. Such features, although tractable, will not be considered in this simple version of the theory.

5 As a matter of fact, the orientation vector has only two independent components, since it is normalized. For simplicity, however,
the notation nj will be maintained, together with the constraint nk nk = 1.
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∂i =
∂

∂ni
− ni nj

∂

∂nj
(5.38)

denotes the orientational gradient operator (sometimes also written as εijk nj ∂/∂nk , see, e.g., [46]). Its peculiar
form results from the explicit consideration of the normalization condition6 nk nk = 1. A further consequence
of this normalization is the identity ni u∗

i = 0, which allows one to rewrite the transition rate as

u∗
i = εijk s∗

j nk = S ∗
ik nk . (5.39)

In the definition above, s∗
i (xj , t , nk ) denotes the partial spin (i.e., the partial field of microstructural angular

velocity), while S ∗
ik = εkij s∗

j represents its respective skew-symmetric tensor. It should be observed that (5.39)
does not specify the component of partial spin parallel to ni . Insofar as needle-like polymer molecules are
considered, it seems natural to assume that these molecules will tend to rotate about their long-axis with the
fluid in which they are embedded, that is,

s∗
i ni =

1
2

ni εijk
∂vk

∂xj
. (5.40)

The adoption of (5.39) and (5.40) allows a simple statistical interpretation of s∗
i as the angular velocity

average of the suspended molecules instantaneously located in xi and oriented in the ni direction.
Finally, by introducing the co-transitional time derivative

À∗ =
∂A∗

∂t
+ v∗

i
∂A∗

∂xi
+ u∗

k ∂kA
∗, (5.41)

where A∗ denotes some arbitrary tensor field, Eq. (5.37) can be rewritten as

�̀∗ + �∗ ∂v
∗
i

∂xi
+ �∗∂k u∗

k = 0. (5.42)

As expected, with the help of (5.36), (A.4)1 and revoking the usual definition of barycentric velocity of the
“mixture”, namely (cf. (4.34)2)

vi (xj , t) =
∮
S 2

f ∗(xk , t , nl )v
∗
i (xp , t , nq ) d2n, (5.43)

one can retrieve the usual equation of continuity (2.4), after integration of (5.37) over the whole orientation
space S 2.

6 Balance equations of energy and momenta

Isotropic suspensions of rigid polymers can be generally reckoned as macromolecular liquids with complex
microstructures, whose thermodynamics is well described by the conservation laws for polar fluids [91]–[93].
In the light of the approach presented here, this means that the balance equations of momenta and energy
appropriate for the “mixture” as a whole are

�v̇i − ∂tij
∂xj

= �gi , (6.44)

�
[
εijk xj v̇k +

(
Iij sj

)·]− ∂

∂xl

(
εijk xj tkl + mil

)
= �
(
εijk xjgk + ci

)
, (6.45)

�
[
ė + vk v̇k + 1

2

(
si Iij sj

)·]
+

∂

∂xj

(
qj − tijvi − mij si

)
= � (r + givi + ci si ) , (6.46)

6 Indeed, with reference to a polar coordinate system, the components of ∂i can be readily obtained from the components of the usual
gradient operator by simply discarding the radial term and assuming the normalization condition for the radius vector [46, 76].
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where

Ȧ =
∂A

∂t
+ vj

∂A

∂xj
(6.47)

expresses the usual material time derivative of an arbitrary quantity A, while e, qi , si , tij and mij denote the
“mixture” fields of specific internal energy, heat flux, spin, Cauchy stress and Voigt couple-stress, respectively.
Moreover, r , gi and ci are the extrinsic supplies per unit mass of internal energy (radiation), linear momentum
(body force) and angular momentum (body couple). Finally, the tensor field Iij (xk , t) represents the moment
of inertia of the microstructure.

Equations in the form (6.44)–(6.46) were first obtained from statistical considerations in the celebrated
memoir of Grad [94]. Later, this was followed by a number of different derivations and constitutive the-
ories [91, 92], [95]–[98]. A comprehensive formulation of these equations in the framework of continuum
thermodynamics, together with an historical synopsis of the subject, can be found in the review of Cowin
[91].

Assuming the cogency of the metaphysical principles of Truesdell (see Sect. 2), balance equations for
partial momenta and energy (i.e., for the “constituents of the mixture”) can be easily obtained from the
results (3.14), (4.31), (4.32), (6.44)–(6.46) derived above. First, (2.4), (3.14), (4.31), (4.32), (5.43), (6.44) and
(6.47) immediately suggest the identifications

Ψ∗ = �∗v∗
i , Φ∗

i = t∗
ij , Υ ∗

i = τ∗
ij , Ξ∗ = �∗κ∗

i Σ∗ = �∗g∗
i , (6.48)

where t∗
ij is the partial Cauchy stress and g∗

i the the partial field of extrinsic body force per unit mass. Relations
(3.14), (4.31), (4.32), (5.41) and (6.48) lead thence to the general form of the balance equation of partial
linear momentum

�∗v̀∗
i − ∂t∗

ij

∂xj
− ∂j τ

∗
ij = �∗ (κ∗

i + g∗
i

)
, (6.49)

with τ∗
ij and κ∗

i playing the roles of an interspecies stress (flux of linear momentum) and a specific interaction
force, respectively.

Notice that, by construction, any given interspecies flux Υ ∗
i must be tangential to the spherical surface of

S 2, i.e.

Υ ∗
i ni = 0, (6.50)

since every species is assumed to be completely determined by the direction of the orientation vector ni .
Due to (6.50), the completeness condition (4.35) is automatically satisfied, as proved in the Appendix A.
Furthermore, there follows from (6.48)3 and (6.50) that τ∗

ij nj = 0.
Accordingly, repeating the foregoing procedure, one can introduce the partial fields of Voigt couple-stress

m∗
ij and extrinsic body couple per unit mass c∗

i , obtaining with the help of (3.14), (4.31), (4.32), (5.41), (6.45)
and (6.49) the general form of the balance equation of partial angular momentum

�∗ [εijk xj v̀
∗
k +
(
I ∗
ij s∗

j

)
`
]− ∂

∂xl

(
εijk xj t

∗
kl + m∗

il

)−
−∂l

(
εijk xj τ

∗
kl + �∗

il

)
= �∗ [εijk xj

(
g∗

k + κ∗
k

)
+ c∗

i + ν∗
i

]
, (6.51)

where �∗
ij and ν∗

i denote the interspecies couple-stress and the specific interaction couple, respectively. In
accordance with (5.40), the slenderness of the suspended macromolecules imply that the rotational inertia
about their long-axis can be neglected, and consequently, the moment of inertia I ∗

ij can be explicitly given by

I ∗
ij = R2

(
δij − ni nj

)
, (6.52)

where R2 is a material constant related to the radius of gyration of a typical polymer molecule. Again, from
(6.50), �∗

ij nj = 0.
Finally, the time rate of the sum of internal and kinetic energies is assumed to be balanced, as usual,

by heat supplies and the power of the forces and couples occurring in the balance of momenta. Therefore,
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using the same arguments presented above, there follows from (3.14), (4.31), (4.32), (5.41), (6.46), (6.49)
and (6.51) the general form of the balance equation of partial energy

�∗ [è∗ + v∗
k v̀

∗
k + 1

2

(
s∗

i I ∗
ij s∗

j

)
`
]

+
∂

∂xj

(
q∗

j − t∗
ij v

∗
i − m∗

ij s
∗
i

)
+

+∂j
(
ξ∗

j − τ∗
ij v

∗
i −�∗

ij s
∗
i

)
= �∗ [(κ∗

i + g∗
i

)
v∗

i +
(
ν∗

i + c∗
i

)
s∗

i + ε∗ + r∗] , (6.53)

with e∗, q∗
i and r∗ denoting the partial fields of specific internal energy, heat flux and extrinsic radiation per

unit mass, respectively, while ξ∗
i and ε∗ define the interspecies heat flux and the specific interaction energy

supply. Once again, due to (6.50), ξ∗
i ni = 0.

Relationships between partial and respective “mixture” fields are furnished by the third metaphysical
principle (see Sect. 2), through the procedure outlined by Truesdell [4]. Effectively, after integration of (6.49),
(6.51) and (6.53) over the whole orientation space S 2 (with the aid of (5.36)–(5.41), (5.43), (6.50) and (A.4))
and further confrontation of the results with (6.44)–(6.46), one can straightforwardly derive

gi =
∮
S 2

f ∗g∗
i d2n,

∮
S 2

f ∗κ∗
i d2n = 0, tij =

∮
S 2

(
t∗
ij − �∗C ∗

i C ∗
j

)
d2n, (6.54)

Iij sj =
∮
S 2

f ∗I ∗
ij s∗

j d2n, Iij =
∮
S 2

f ∗I ∗
ij d2n, ci =

∮
S 2

f ∗c∗
i d2n, (6.55)

∮
S 2

f ∗ν∗
i d2n = 0, mij =

∮
S 2

(
m∗

ij − �∗N ∗
i C ∗

j

)
d2n, (6.56)

e =
∮
S 2

f ∗
(

e∗ +
C ∗2

2
+

N ∗
i Σ

∗
i

2

)
d2n, (with C ∗2 = C ∗

k C ∗
k ) (6.57)

qj =
∮
S 2

[
q∗

j + �∗
(

e∗ +
C ∗2

2
+

N ∗
i Σ

∗
i

2

)
C ∗

j − t∗
ij C ∗

i − m∗
ijΣ

∗
i

]
d2n, (6.58)

r =
∮
S 2

f ∗ (r∗ + g∗
i C ∗

i + c∗
i Σ

∗
i

)
d2n, (6.59)

∮
S 2

f ∗ (ε∗ + κ∗
i C ∗

i + ν∗
i Σ

∗
i

)
d2n = 0, (6.60)

where C ∗
i = v∗

i − vi and Σ∗
i = s∗

i − si are the diffusion velocities of translation and angular motion, while
N ∗

i = I ∗
ij s∗

j − Iij sj .
Moreover, by subtracting (6.49) from (6.51) and likewise (6.49) and (6.51) from (6.53), there remain the

balance equations of partial spin and internal energy, respectively

�∗ (I ∗
ij s∗

j

)
` − ∂m∗

ij

∂xj
− ∂j�

∗
ij + εijk t∗

jk = �∗ (c∗
i + ν∗

i

)
, (6.61)

and

�∗è∗ +
∂q∗

j

∂xj
− t∗

ij
∂v∗

i

∂xj
− m∗

ij
∂s∗

i

∂xj
+ ∂j ξ

∗
j − τ∗

ij ∂jv
∗
i −

−�∗
ij∂j s

∗
i − εijk s∗

i t∗
jk = �∗ (ε∗ + r∗) . (6.62)



104 S.H. Faria

Expressions similar to (5.42) and (6.49)–(6.62) were already derived by Condiff & Brenner [46] and later
(statistically) by Blenk et al. [99], however with some slight differences. In the first work cited, the kinetic
energy of spin and the power sources due to couple-stresses were subsumed in “generalized” expressions
for the internal energy and heat flux, respectively. In the work of Blenk et al., which was concerned with
thermotropic liquid crystals, interaction terms were ignored as well as the rotation of the rodlike molecules
about their long-axes.

Finally, from (3.24)–(3.26), (5.41), (5.42) and the preceding arguments, immediately follows the entropy
balance equation

�∗ὴ∗ +
∂φ∗

i

∂xi
+ ∂iϕ

∗
i = �∗ς∗ + �∗s∗, (6.63)

where ∫
S 2

�∗η∗ d2n = �η,

∫
S 2

�∗ς∗ d2n = �ς,

∫
S 2

�∗s∗ d2n = �s, (6.64)

and

�ηvi + φi =
∫
S 2

(
φ∗

i + �∗η∗v∗
i

)
d2n. (6.65)

Again, due to (6.50), ϕ∗
i ni = 0 holds.

The results (5.42), (6.49), (6.61), (6.62) and (6.63) constitute the fundamental equations of the present
theory.

7 Constitutive relations

A thermodynamic process in an homogeneous and monodisperse solution of rigid rodlike polymers will be
characterized by the fields of

�∗(xi , t , nj ) partial mass density,

v∗
i (xj , t , nk ) partial velocity,

s∗
i (xj , t , nk ) partial spin,

T (xi , t) absolute temperature.

(7.66)

It is immediate to recognize that, at this stage, (5.42), (6.49), (6.61) and (6.62) cannot serve as a closed system
for the basic fields (7.66), since these equations still contain many other unknown quantities. As commented
in Sect. 3, to close the system one has to consider these additional quantities as material functions, that
are related to the basic fields through constitutive relations. Such relations are furthermore constrained by
the entropy principle, as expressed by (3.30) and (6.63), as well as the axiom of frame indifference. Thus,
by considering a first order gradient theory, one can employ the rule of equipresence [100] to propose the
following isotropic constitutive functional form{

t∗
ij , τ

∗
ij , κ

∗
i ,m

∗
ij , �

∗
ij , ν

∗
i , e

∗, q∗
i , ξ

∗
i , ε

∗, η∗, φ∗
i , ϕ

∗
i , δ

∗} =

= F
(

xk , nl , t ; �◦,T , v◦
m , S

◦
no ,

∂�◦

∂xp
,
∂T
∂xq

,D◦
rs ,W

◦
tu ,

∂s◦
v

∂xw

)
, (7.67)

where Ψ◦ denotes the set of values of the quantity Ψ∗ in all points of the orientation space, i.e., Ψ◦ =
{Ψ∗(xi , t , pj ) : pj ∈ S 2}, and

D∗
ij =

∂v∗
(i

∂xj )
=

1
2

(
∂v∗

i

∂xj
+
∂v∗

j

∂xi

)
, W ∗

ij =
∂v∗

[i

∂xj ]
=

1
2

(
∂v∗

i

∂xj
− ∂v∗

j

∂xi

)
(7.68)

denote the partial tensor fields of strain-rate and vorticity, respectively.
Of course, the functional (7.67) is quite general and too difficult to handle. Searching for a rather more

modest description, I will impose the following simplifying assumptions:
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1. Invariance of material response with respect to inversions of the orientation vector ni (i.e., fore-aft sym-
metry: rodlike molecules oriented anti-parallel to each other are assumed to be indistinguishable);

2. Exclusion of the functional dependence on gradients of density, provided that the elastic energy effects
characteristic of the liquid crystalline phases are beyond the scope of the present isotropic theory;

3. Linearization of (7.67) with respect to partial spin and all gradients of the basic fields;
4. Neglect of infinitesimal memory effects associated with the history of the entire microstructure configu-

ration by switching S ◦
ij → S ∗

ij on the set of constitutive variables;
5. Exclusion of the functional dependence on gradients of the spin, by assuming that S ∗

ij is of the order of
W ∗

ij and, consequently, that ∂s∗
i /∂xj is proportional to second order gradients;

6. Elision of translational diffusion effects by setting v◦
i = v∗

i = vi (xj , t), in order to concentrate attention on
the microstructure evolution driven by rotational diffusion phenomena.

The first two assumptions make clear that highly concentrated and optically active polymeric solutions are
excluded from the present constitutive theory. Besides that, the last restrictions are conspicuously stronger
than the first ones.

Additionally, the constitutive dependence on the instantaneous microstructure configuration (given by �◦)
will be approximated in a coarse, but effective manner, through the splitting of it in two independent variables.
These are namely the partial mass density �∗ of the “constituent” and its complementary structure parameter
β∗, this last a non-dimensional quantity which drafts the current microstructure configuration with reference
to the orientation ni . Generically, it can be defined by

β∗ (xi , t , nj
)

=
∮
S 2

B
(
f ∗

(p), pm , f
∗, nq

)
d2p, (7.69)

with the functional B obeying the condition (which ensures that β∗ is independent of �∗)

B
(
f ∗

(p), pm , f
∗, nq

)∣∣∣
pi =ni

= 0, (7.70)

where f ∗ (xi , t , nj
)

is (again) the mass fraction defined in (3.21), while f ∗
(p) = f ∗ (xk , t , pl ). The definite form

of the functional B depends on the character of the relevant microstructure interactions, usually modelled
from microscopic considerations. An explicit expression for the functional B will not be necessary in the
constitutive theory developed here (an illustrative expression for B, associated with the so-called entanglement
interactions, can be found in the specializations discussed in Sect. 10).

After the simplifications above, (7.67) reads{
t∗
ij , τ

∗
ij , κ

∗
i ,m

∗
ij , �

∗
ij , ν

∗
i , e

∗, q∗
i , ξ

∗
i , ε

∗, η∗, φ∗
i , ϕ

∗
i , δ

∗} =

= G
(

xk , nl , t ; �∗,T , β∗, vm , S
∗
no ,

∂T
∂xq

,Drs ,Wtu

)
. (7.71)

Further restrictions upon the constitutive functional (7.71) are imposed by the principle of frame indiffer-
ence [100]. It rests upon the invariance (objectivity) of the constitutive functions with respect to non-inertial
frame changes, which are given by the Euclidean transformation

x̃i = Oij xj + bi , t̃ = t + χ, ñi = Oij nj , (7.72)

where (x̃i , t̃ , ñj ) and (xi , t , nj ) denote position, time and orientation in two different frames of reference, with
χ representing an arbitrary time shift, while bi (t) and Oij (t) denote arbitrary time-dependent vector- and
orthogonal tensor-valued functions, respectively.

By using standard arguments, it is straightforward to derive from (7.72) the transformation rules

ṽi = Ȯij xj + Oijvj + ḃi , D̃ij = Oik Ojl Dkl , (7.73)

W̃ij = Oik Ojl Wkl + Ωij , S̃ ∗
ij = Oik Ojl S

∗
kl + Ωij , (7.74)
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T̃ = T ,
∂T̃
∂x̃i

= Oik
∂T
∂xk

, �̃∗ = �∗, β̃∗ = β∗, (7.75)

t̃∗
ij = Oik Ojl t

∗
kl , τ̃∗

ij = Oik Ojlτ
∗
kl , κ̃∗

i = Oijκ
∗
j , (7.76)

m̃∗
ij = sOik Ojl m

∗
kl , �̃∗

ij = sOik Ojl�
∗
kl , ν̃∗

i = sOijν
∗
j , (7.77)

ẽ∗ = e∗, q̃∗
i = Oij q

∗
j , ξ̃∗

i = Oij ξ
∗
j , ε̃∗ = ε∗, (7.78)

η̃∗ = η∗, φ̃∗
i = Oijφ

∗
j , ϕ̃∗

i = Oijϕ
∗
j , δ̃∗ = δ∗, (7.79)

where Ωij = Ȯik Ojk , and s = sign
[
det
(
Oij
)]

, with s = −1 for improper transformations (inversions of frame),
otherwise s = 1. Moreover, it should be recalled that

δij = Oik Ojk = Oik Ojlδkl and εijk = sOil OjmOknεlmn . (7.80)

Therefore, exploiting the frame-indifference principle in the usual manner, one can easily conclude that the
constitutive functions (7.71) cannot depend explicitly on xi , t , vi , S ∗

ij and Wij , implying a reformulation of
the constitutive functional (7.71) to{

t∗
ij , τ

∗
ij , κ

∗
i ,m

∗
ij , �

∗
ij , ν

∗
i , e

∗, q∗
i , ξ

∗
i , ε

∗, η∗, φ∗
i , ϕ

∗
i , δ

∗} =

= J
(

nl , �
∗,T , β∗,H ∗

mn ,
∂T
∂xq

,Drs

)
, (7.81)

where H ∗
ij is the partial field of the relative spin tensor, defined by

H ∗
ij (xl , t , nk ) = S ∗

ij − Wij . (7.82)

It should be remarked that, due to (5.40) and (7.68)2, εijk ni H ∗
jk = 0.

Explicit forms for the constitutive functions defined in (7.81) are summarized in the Appendix B. At
this point, however, it may suffice to express explicitly only the constitutive dependence on the linearized
variables Dij , H ∗

ij and ∂T/∂xi , viz.,

e∗ = e∗(1) + e∗I
ij Dij , η∗ = η∗(1) + η∗I

ij Dij , ε∗ = ε∗(1) + ε∗I
ij Dij , (7.83)

q∗
i = q∗I

ij
∂T
∂xj

, φ∗
i = φ∗I

ij
∂T
∂xj

, κ∗
i = κ∗I

ij
∂T
∂xj

, (7.84)

ν∗
i = ν∗(1)εijk H ∗

jk + ν∗(2)εijk nj D<kl>nl , (7.85)

ϕ∗
i = ϕ∗(1)(ni nj − δij )D<jk>nk − ϕ∗(2)H ∗

ij nj , (7.86)

ξ∗
i = ξ∗(1)(ni nj − δij )D<jk>nk − ξ∗(2)H ∗

ij nj , m∗
ij = m∗I

ijk
∂T
∂xk

, (7.87)

τ∗
ij = τ∗I

ijk
∂T
∂xk

, �∗
ij = �∗εijk nk + �∗(1)ni εjkl H

∗
kl + �∗I

ijkl Dkl , (7.88)

t∗
ij = − (p∗ + p∗I

kl Dkl
)
δij + σ∗n<i nj> + σ∗I

<ij>kl Dkl + σ∗II
<ij>kl H

∗
kl −

− 2t∗(1)n[i D<j ]k>nk − 2t∗(2)n[i H
∗
j ]k nk − t∗(3)H ∗

ij , (7.89)
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where the fore-aft symmetry of the molecules and the transformation properties (7.73)–(7.80) were already
considered. Furthermore, in the representations above, all scalar transport coefficients are functions only of
�∗, T and β∗, while the tensorial ones present an additional dependence on the orientation ni .

Finally, it should be remarked that no representation was proposed for δ∗. In fact, a linearization assump-
tion for the entropy production deviation usually seems to be physically inconsistent. The reason is that this
function is related by (3.29) to entropy production terms, which must be non-linear quantities even though the
constitutive relations are assumed linear. The information enclosed in the non-linear part of δ∗ could be called
with no shame “the price of ignorance”. Indeed, it is related to very complex microstructural interactions in
non-dilute solutions, which are expected to be hardly described (when feasible) even by ingenious molecular
models. As will be shown in the next sections, however, this price is actually not so high. The most important
features of the material behavior can be derived without any reference to the non-linearity of δ∗, while for
some simple cases the entropy production deviation can be readily neglected by plain physical arguments.

8 Exploitation of the entropy inequality

Insertion of (6.63) into (3.30) leads to the entropy inequality

�∗ὴ∗ +
∂φ∗

i

∂xi
+ ∂iϕ

∗
i − �∗δ∗ − �∗s∗ ≥ 0, (8.90)

which must hold, according to the entropy principle and the production deviation theorem (see Sect. 3), for
all thermodynamic processes.

To exploit the restrictions imposed by this inequality, I will employ the method of Lagrange multipliers
proposed by Liu [47], which asserts that, for the case at hand, the following inequality should be valid for
arbitrary values of the basic fields (7.66) (cf. (5.39), (5.40), (5.42), (6.49), (6.52), (6.61) and (6.62))

�∗ὴ∗ +
∂φ∗

i

∂xi
+ ∂iϕ

∗
i − �∗δ∗ − Λ∗�

(
�̀∗ + �∗ ∂vi

∂xi
+ �∗∂i S

∗
ij nj

)
−

−Λ∗v
i

(
�∗v̇i − ∂t∗

ij

∂xj
− ∂j τ

∗
ij − �∗κ∗

i

)
− Λ∗s

i

(
�∗I ∗

ij s̀∗
j − �∗ R2

2
S ∗

ij nj nk εklm
∂vm

∂xl
−

−∂m∗
il

∂xl
− ∂j�

∗
ij + εijk t∗

jk − �∗ν∗
i

)
− Λ∗e

(
�∗è∗ +

∂q∗
j

∂xj
− t∗

ij
∂vi

∂xj
−

−m∗
ij
∂s∗

i

∂xj
+ ∂j ξ

∗
j −�∗

ij∂j s
∗
i − εijk s∗

i t∗
jk − �∗ε∗

)
≥ 0. (8.91)

Without loss of generality, the balance equations were written here free of external supplies. As usual, it
is assumed that the undetermined multipliers Λ∗�, Λ∗v

i , Λ∗s
i and Λ∗e are functions of the same constitutive

variables listed in (7.81).
By performing the derivatives presented in (8.91), one obtains an inequality which is explicitly linear in

the quantities

∂vi

∂t
,
∂s∗

i

∂t
,
∂�∗

∂t
,
∂β∗

∂t
,
∂T
∂t

,
∂Dij

∂t
,
∂s∗

i

∂xj
,
∂�∗

∂xi
,
∂β∗

∂xi
,

∂2T
∂xi∂xj

, ∂i�
∗, ∂iβ

∗, ∂i H
∗
jk .

Since the basic fields (7.66) are now arbitrary, so are the above derivatives, and in order to preserve the
inequality (8.91) the coefficients of these derivatives must vanish. Consequently,

Λ∗v
i = 0, Λ∗s

i = Λ∗s ni , m∗
ij = 0, (8.92)

∂η∗

∂�∗ − Λ∗e ∂e∗

∂�∗ =
Λ∗�

�∗ ,
∂η∗

∂β∗ − Λ∗e ∂e∗

∂β∗ = 0, (8.93)
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∂η∗

∂T
− Λ∗e ∂e∗

∂T
= 0,

∂η∗

∂Dij
− Λ∗e ∂e∗

∂Dij
= 0, (8.94)

∂φ∗
i

∂�∗ − Λ∗e ∂q∗
i

∂�∗ = 0,
∂φ∗

i

∂β∗ − Λ∗e ∂q∗
i

∂β∗ = 0, (8.95)

∂φ∗
(i

∂T,j )
− Λ∗e ∂q∗

(i

∂T,j )
= 0,

∂ϕ∗
i

∂�∗ − Λ∗e ∂ξ
∗
i

∂�∗ + Λ∗s nj
∂�∗

ji

∂�∗ = 0, (8.96)

∂ϕ∗
i

∂β∗ − Λ∗e ∂ξ
∗
i

∂β∗ + Λ∗s nj
∂�∗

ji

∂β∗ = 0, (8.97)

∂ϕ∗
i

∂H ∗
jk

− Λ∗e ∂ξ
∗
i

∂H ∗
jk

+ Λ∗s nl
∂�∗

li

∂H ∗
jk

− �∗Λ∗�δi [j nk ] =
Λ∗e

2
εjkl�

∗
li , (8.98)

where the abbreviation T,i = ∂T/∂xi was introduced. The remainder of the inequality (8.91) reads(
∂φ∗

i

∂T
− Λ∗e ∂q∗

i

∂T

)
∂T
∂xi

− �∗Λ∗�Dkk + Λ∗e
(
t∗
(ij )Dij − t∗

[ij ]H
∗
ij + �∗ε∗)− �∗δ∗ +

+�∗
(
∂̂iη

∗ − Λ∗e ∂̂i e
∗
)

S ∗
ij nj + ∂̂iϕ

∗
i − Λ∗e ∂̂iξ

∗
i + Λ∗s ni ∂̂j�

∗
ij ≥ 0, (8.99)

with ∂̂i Q
∗ = (∂i Q

∗)�∗,β∗,H ∗
pq

for any given constitutive quantity Q∗.
From (7.84) and (8.96)1 immediately follows

φ∗I
(ij ) − Λ∗eq∗I

(ij ) = 0. (8.100)

However, according to (B.2), the general representation of the tensor q∗I
ij reads

q∗I
ij = −q∗(1)n<i nj> − λ∗δij , (8.101)

where the thermal conductivities q∗(1) and λ∗ are functions of �∗, β∗ and T (a similar representation holds
also for φ∗I

ij ). Hence, φ∗I
[ij ] = q∗I

[ij ] = 0 and

φ∗
i = Λ∗eq∗

i , (8.102)

with Λ∗e = Λ∗e(�∗, β∗,T ).
Condition (8.95)1, combined with (8.101) and (8.102), implies then

λ∗ ∂Λ
∗e

∂�∗ = 0. (8.103)

Therefore, excluding the unrealistic solution λ∗ = 0, expression (8.103) constrains Λ∗e to Λ∗e(β∗,T ). Ac-
complishing the same procedure with (8.95)2, one finally obtains

Λ∗e = Λe = Λe(T ). (8.104)

On the other hand, (8.93)2 and (8.94)2 combined with (8.104) read

∂(η∗ − Λee∗)
∂β∗ =

∂(η∗ − Λee∗)
∂Dij

= 0, (8.105)

and hence, from (8.94)1 and (8.105) ensues the condition

∂(η∗ − Λee∗)
∂T

= −e∗ ∂Λ
e

∂T
. (8.106)

Refusing the possibility that Λe be a mere constant, (8.106) implies
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e∗ = e∗(�∗,T ), η∗ = η∗(�∗,T ). (8.107)

The final step towards the determination of Λe arises from the following arguments. First, recall that for
the whole “mixture”, which is assumed to be a customary polar fluid, there holds the Gibbs equation in its
usual form [92, 98], and thereby also the well-known result

∂(�e)
∂T

= T
∂(�η)
∂T

. (8.108)

On the other hand, relations (6.57) and (6.64)1 immediately allow one to express (8.108) in the integral form

∮
S 2

∂(�∗e∗)
∂T

d2n = T
∮
S 2

∂(�∗η∗)
∂T

d2n. (8.109)

Therefore, after multiplication of (8.94)1 by �∗ and integration over all orientations, with further subtraction
of the result from (8.109), one finally obtains

Λe(T ) =
1
T
, (8.110)

provided that ∂e/∂T �= 0.
Through the introduction of the partial Helmholtz free energy

ψ∗ = e∗ − Tη∗, (8.111)

one achieves to ascertain from (8.93)1 one more undetermined multiplier, viz.

Λ∗�(�∗,T ) = −�∗

T
∂ψ∗

∂�∗ . (8.112)

On the other hand, with the help of (7.86)–(7.88), (8.98), (8.110) and (8.112), it is straightforward to infer
that the derivative ∂�∗

li/∂H ∗
jk must vanish, independently of the value of Λ∗s , in order to satisfy (8.98) for

arbitrary values of H ∗
ij . Consequently, the left hand side of (8.98) becomes a function only of �∗, β∗, T and

ni , implying that

�∗
ij = �∗εijk nk , (8.113)

with �∗ = �∗(�∗, β∗,T ). By inserting (8.110) and (8.113) into (8.96)2 and (8.97) there results

∂ι∗i
∂�∗ =

∂ι∗i
∂β∗ = 0, (8.114)

where ι∗i = ϕ∗
i − ξ∗

i /T . Hence, by considering (7.86) and (7.87)1 there results the representation

ι∗i = ι(1)(ni nj − δij )D<jk>nk − ι(2)H ∗
ij nj , (8.115)

where both coefficients ι(1) and ι(2) are functions only of the temperature. Finally, (8.98) and (8.112)–(8.115)
lead to

�∗(�∗,T ) = �∗2 ∂ψ
∗

∂�∗ − T ι(2). (8.116)

This exhausts the consequences of the conditions (8.92)–(8.98). Notice that Λ∗s remains undetermined.
This is in fact a natural consequence of the constraint (5.40).
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9 Analysis of equilibrium

The thermodynamic equilibrium will be defined here as the state of maximum entropy attained by the medium
when it moves in a rigid-body motion, with an uniform temperature field and in absence of internal interactions,
i.e.

Dij |E = H ∗
ij |E =

∂T
∂xi

∣∣∣∣
E

= δ∗|E = κ∗
i |E = ν∗

i |E = ε∗|E = 0, (9.117)

where |E denotes the equilibrium value of the respective quantity.
An immediate consequence of (9.117) is

ε∗I = 0, and thence, ε∗ = ε∗(1)Dkk + ε∗(2)D<ij>ni nj . (9.118)

Moreover, from (9.118) and the results obtained in the last section, the inequality (8.99) reduces to

ς∗P =
[
3T ι(1) + σ∗ + �∗ (ε∗(2) − Tδ∗(2)

)]
D<ij>ni nj +

+

[
�∗2 ∂ψ

∗

∂�∗ − p∗ + �∗ (ε∗(1) − Tδ∗(1)
)]

Dkk − q∗I
ij

T
∂T
∂xj

∂T
∂xi

+

+ σ∗I
<ij>kl Dkl D<ij> + σ∗II

<ij>kl H
∗
kl D<ij> − p∗I

kl Dkl Dii +

+ 2t∗(1)ni H
∗
ij Djk nk + 2t∗(2)ni H

∗
ij H ∗

jk nk + t∗(3)H ∗
ij H ∗

ij − �∗Tδ∗NL ≥ 0, (9.119)

where the deviation δ∗ was decomposed in linear and non-linear parts, viz.,

δ∗ = δ∗(1)Dkk + δ∗(2)D<ij>ni nj + δ∗NL, (9.120)

with δ∗(1) and δ∗(2) being functions only of �∗, β∗ and T , while δ∗NL is non-linear in Dij , H ∗
ij and ∂T/∂xi . Of

course, δ∗NL|E = 0 due to (9.117), and the requirement of fore-aft symmetry was already taken into account
in (9.118) and (9.120).

An important consequence of the definition of equilibrium stated above is that the inequality (9.119)
achieves its minimum value, namely zero, at this state. In other words,

ς∗P |E

(
nl , �

∗,T , β∗,H ∗
mn ,T,q ,Drs

)
= ς∗P

(
nl , �

∗,T , β∗, 0, 0, 0
)

= 0. (9.121)

Necessary conditions for the occurrence of this minimum follow from the theory of extrema:

∂ς∗P

∂T,i

∣∣∣∣
E

= 0,
∂ς∗P

∂H ∗
ij

∣∣∣∣
E

= 0,
∂ς∗P

∂Dij

∣∣∣∣
E

= 0, (9.122)

and also the Hessian matrix

∂2ς∗P

∂XA∂XB

∣∣∣∣
E

is positive semi-definite, (9.123)

where XA = {T,i ,H ∗
jk ,Dpq} and A = 1, 2, 3, . . . , 12. While (9.122)1,2 are automatically satisfied, (9.122)3

implies the relations

p∗ = �∗2 ∂ψ
∗

∂�∗ + �∗ (ε∗(1) − Tδ∗(1)
)
, (9.124)

σ∗ = −3T ι(1) − �∗ (ε∗(2) − Tδ∗(2)
)
. (9.125)

The first of them has a particular significance. Indeed, recalling that C ∗
i |E = 0, one immediately concludes

from (6.54)3 that

p =
∮
S 2

p∗ d2n, (9.126)
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with p(xi , t) denoting the usual thermodynamic pressure. In addition, Eq. (6.60) together with (7.85) and
(9.118) lead to ∮

S 2

�∗ε∗(1) d2n = 0. (9.127)

On the other hand, from (3.27), (3.30) and (9.120) follows∮
S 2

�∗δ∗(1) d2n = 0. (9.128)

The reason for this last result is that the entropy production of the whole ”mixture”, as given by (3.27),
must be a positive semi-definite quadratic form in the (linearized) dissipative variables Dij , Hij and ∂T/∂xi .
A non-vanishing value for the integral (9.128) could thus violate the inequality (3.27), especially for small
deviations from equilibrium. Finally, rephrasing the arguments of the last section, once the whole ”mixture”
is assumed to be a usual polar fluid, for which the Gibbs equation in its customary form applies, there holds
the well-known relation

p = �2 ∂ψ

∂�
, (9.129)

where (due to (6.57), (6.64)1 and (8.111))

ψ(xi , t) =
∮
S 2

f ∗ψ∗ d2n, (9.130)

is the Helmholtz free energy of the ”mixture”. Notice that the kinetic part of (6.57) was not taken into account
in (9.130) since it is non-linear in S ∗

ij , and therefore, negligible. Gathering the results (9.126)–(9.130) together,
one obtains the identity

�2 ∂ψ

∂�
=
∮
S 2

�∗2 ∂ψ
∗

∂�∗ d2n, (9.131)

which imposes additional restrictions on the form of ψ∗. In particular, (9.131) suggests the introduction of
another useful quantity, namely the chemical potential µ∗(xi , t , nj ), defined by

µ∗ =
∂(�∗ψ∗)
∂�∗ , with p + �ψ =

∮
S 2

�∗µ∗ d2n, (9.132)

the last result being inferred from (9.130) and (9.131). Finally, from (8.116), (9.124) and (9.132) one derives
the identities

�∗ (µ∗ − ψ∗) = p∗ − �∗ (ε∗(1) − Tδ∗(1)
)

= �∗ + T ι(2). (9.133)

The residual inequality then reads

ς∗P = σ∗I
<ij>kl Dkl D<ij> + σ∗II

<ij>kl H
∗
kl D<ij> − p∗I

kl Dkl Dii + 2t∗(1)ni H
∗
ij Djk nk +

+ 2t∗(2)ni H
∗
ij H ∗

jk nk + t∗(3)H ∗
ij H ∗

ij − q∗I
ij

T
∂T
∂xj

∂T
∂xi

− �∗Tδ∗NL ≥ 0. (9.134)

Due to the presence of δ∗NL, no further results can be extracted from (9.134) via (9.123). As commented
before, this is the price to be paid by the inclusion of the deviation function δ∗ in the theory. The analysis of
the consequences of (9.123) on (9.134) will be therefore postponed to the particular cases considered in the
next section.
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10 On the microstructure evolution

The results (8.92)3 and (8.113) suffice to rewrite the balance equation of partial spin (6.61) as

2t∗
[ij ]nj − �∗εijk njν

∗
k = ∂i�

∗ + �∗∂i U
∗ − �∗εijk nj

(
I ∗
kl s

∗
l

)
` , (10.135)

where the extrinsic couple c∗
i was related to an external potential U ∗(xi , t , nj ) through the relation εijk nj c∗

k =
∂i U ∗. Accordingly, recalling (7.85), (7.89), (9.132), (9.133) and (10.135), one can straightforwardly obtain
the transition rate

u∗
i = S ∗

ij nj = h∗
i − D ∗(µ)

�∗
[
∂i
(
µ∗ + U ∗)− εijk nj

(
I ∗
kl s

∗
l

)
`
]
, (10.136)

where

h∗
i = Wij nj + B∗ (Dij nj − nj Djk nk ni

)
, (10.137)

and

D ∗(µ) =
1
2

(
ν∗(1)

�∗ +
t∗(3) − t∗(2)

�∗2

)−1

, B∗ = D ∗(µ)

(
ν∗(2)

�∗ + 2
t∗(1)

�∗2

)
. (10.138)

Moreover, the usual requirement of stability of the isotropic orientational distribution of the suspended
molecules at equilibrium implies that D ∗(µ) ≥ 0.

Finally, the insertion of (10.136) into (5.42) leads, with the help of (9.132), to the microstructure evolution
equation

∂�∗

∂t
= ∂i

(
D ∗(�)∂i�

∗ + D ∗(µ)∂i U
∗)− ∂i

(
�∗h∗

i

)− ∂

∂xi

(
�∗vi

)− ∂i
[
D ∗(µ)εijk nj

(
I ∗
kl s

∗
l

) ]̀
, (10.139)

which is, apart from the last term on the right-hand side, an equation of the Fokker-Planck type for the partial
density [101], h∗

i and vi playing the role of drift vectors, while the Fickian diffusion coefficient D ∗(�) is
given by

D ∗(�) = D ∗(µ) ∂
2 (�∗ψ∗)
∂2�∗ . (10.140)

The similarity between (10.136) and the contemporary generalizations of the empirical law of Fick, as
found in the literature on diffusion [2, 10, 18, 24, 25], is striking. In particular, the inertial contribution
in the last term on the right hand side of (10.136) is precisely responsible for the hyperbolic features of
the evolution equation (10.139), which avoid a rotatory equivalent to the so-called “diffusion paradox” of
the classical theory of mixtures, according to which small disturbances in concentration can propagate with
infinite speed. By keeping this last term in (10.139), no rotatory diffusion paradox arises. Of course, this
small inertial correction manifests itself only in the high-frequency range, tending to be unperceivable in the
large time-scales of common rheological processes.

It should be remarked that (10.139) is also valid in the case of non-uniform and time-dependent ther-
modynamic fields. In fact, it is a continuum generalization of the usual evolution equations utilized in the
framework of statistical rheology and molecular theory for dilute and semidilute solutions, as will become
clear below. To facilitate the comparison with prior works, the common restriction to incompressible flows
will be assumed from now on.
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a) (Pseudo) non-ideal solutions According to the literature on chemical thermodynamics [102]–[104], the
chemical potential µα of the αth constituent of a mixture can be generally expressed by the formula

µα = K αT ln (f αγα) + µ0, K α =
NAkB

M α
, (10.141)

where kB is the Boltzmann constant, NA the Avogadro number, M α the molecular weight of the respective
constituent, while f α expresses its mass fraction, defined in (2.1). In addition, µ0(�,T ) is a function only of
the mixture variables and γα(�β ,T ) denotes the so-called activity coefficient. If γα is just a unit constant, then
the behavior of the respective component is said ideal, otherwise it is called non-ideal. In most common cases,
a non-unitary activity coefficient is ultimately related to microscopic interactions among the constituents of
the mixture in such a manner that usually only dilute solutions can manifest ideal behavior.

Accepting that the notions just introduced remain valid for the case at hand, the definition (10.141) can
be rewritten as

µ∗ = KT ln
(
f ∗γ∗) + µ0, K =

NAkB

M
, (10.142)

with µ∗, f ∗, γ∗ and µ0 having the same meaning of their standard counterparts presented above, while M is
related to the molecular weight of the polymer in solution.

Therefore, after neglect of inertial effects by setting R → 0 in (6.52), there follows from (3.21)2, (9.132),
(10.139), (10.140) and (10.142) the evolution equation

∂f ∗

∂t
= ∂i

(
D ∗(�)∂i f

∗ +
f ∗D ∗

KT
∂i U

∗
)

− ∂i
(
f ∗h∗

i

)− ∂

∂xi

(
f ∗vi

)
, (10.143)

where

D ∗(�) = D ∗
(

1 +
�∗

γ∗
∂γ∗

∂�∗

)
, D ∗ = D ∗(µ) KT

�∗ . (10.144)

Additionally, according to statistical theories [70, 72, 74], the diffusion coefficient D ∗ can be defined through

D ∗ = β∗−2
D , (10.145)

where D (�,T ) is the diffusion coefficient for an isotropic distribution of rods, while the structure parameter
β∗ is given explicitly by (cf. (7.69) and (7.70))

β∗ (xi , t , nj
)

=
4
π

∮
S 2

f ∗ (xr , t , ps )
√
εijk εipq nj nppk pq d2p, (10.146)

an expression derived from considerations about the topological interactions (entanglements) of the rodlike
molecules.

Worthy of note is the fact that, due to (8.107), (8.111) and (9.132), the activity coefficient γ∗ does not
depend on the structure parameter β∗, i.e., it is insensitive to microstructural changes which maintain �∗

and T constant. On the other hand, the activity coefficient in semidilute suspensions of rigid rods should
be fundamentally related to hydrodynamic as well as entanglement interactions, which hinder the rotatory
Brownian motion of the polymer molecules in solution [70, 71]. Once these interactions necessarily depend
on the microstructure configuration, it becomes evident that an independence of the activity coefficient on
β∗ can only occur if γ∗ remains always very close to unity (consequently inferring an ideal behavior),
except eventually for strongly aligned nematic configurations (e.g., promoted by an intense external field). In
other words, a pseudo non-ideal behavior of the solution, induced by strong alignment, is allowed. A simple
interpretation of this conjecture is afforded by the “mixture” representation: due to the large number of species
and the relatively high dilution of the solution, the concentration of each “constituent” tends to remain low
sufficient to uphold ideal behavior. Nonetheless, supposing that one of the “constituents” of the suspension
achieves an overwhelming concentration, it can eventually exhibit some sensible deviation from ideality,
manifested for instance in an abnormal increase of the diffusion coefficient. Notwithstanding, as discussed by
Doi & Edwards [70, 74], the experimental corroboration of this hypothesis (e.g., through measurements of
birefringence relaxation from the highly ordered state) is hindered by various factors, like chain flexibility,
dipole-dipole interactions and other effects.
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b) Ideal solutions In ideal solutions, interactions among the suspended molecules are negligible and the
activity coefficient, introduced in (10.142), reduces simply to unity. Evidently, dilute solutions are classical
examples of them. Moreover, the absence of microstructural interactions implicates a number of suitable
simplifications on the whole theory, since

δ∗ = κ∗
i = ν∗

i = ε∗ = 0 (10.147)

become valid. Concisely, some of the most important consequences are the reduction of the expressions
(9.124), (9.133), (10.138) and (10.144) to

p∗ = �∗2 ∂ψ
∗

∂�∗ = �∗ + T ι(2) = �∗ (µ∗ − ψ∗) (10.148)

and

D ∗(�) = D ∗(µ) KT
�∗ =

�∗KT
ζ∗ = D ∗

0 , ζ∗ = 2
(
t∗(3) − t∗(2)

)
. (10.149)

The residual inequality (9.134) can now be exploited in the usual manner to get information about the positive-
ness of some transport coefficients, like the shear viscosity and heat conductivity, in different orientations. In
particular, one can find that ζ∗ ≥ 0. Moreover, according to an old result of Jeffery [65] (see also [77, 105]),
the relation

B∗ = B =
r2 − 1
r2 + 1

(10.150)

holds for (semi-)dilute suspensions of non-interacting rigid prolate ellipsoids of aspect ratio r > 1, with B
being called the shape factor.

Hence, restricting attention only to incompressible flows with spatially-independent fields of partial density
and negligible inertial effects of the microstructure, one can derive from (3.21)2, (9.132), (10.139), (10.140),
(10.142), (10.148), (10.149) and (10.150) the evolution equation

∂f ∗

∂t
= ∂i

(
D ∗

0 ∂i f
∗ +

f ∗D ∗
0

KT
∂i U

∗
)

− ∂i
(
f ∗h∗

i

)
, (10.151)

which resembles well the kinetic equation adopted by Doi & Edwards [70] and Dahler et al. [72] for the
dynamics of semidilute suspensions of rigid rodlike polymers, provided that the diffusion coefficient D ∗

0 is
(again) given by

D ∗
0 = β∗−2

D0, D0 = D0(�,T ), (10.152)

with β∗ defined as in (10.146).
A further simplification of (10.149) can also be obtained by assuming

ζ∗ = f ∗ζ, ζ = ζ(�,T ), (10.153)

which seems to be reasonable in the dilute regime. This assumption allows one to rewrite (10.151) as

∂f ∗

∂t
= D0 ∂i

(
∂i f

∗ +
f ∗

KT
∂i U

∗
)

− ∂i
(
f ∗h∗

i

)
, (10.154)

which is readily recognized as the Smoluchowski equation proposed by Kirkwood and co-workers [62]–[64]
for the rheology of dilute suspensions of rigid rodlike polymers, with the diffusion coefficient obeying the
Stokes-Einstein relation

D0 =
�KT
ζ

. (10.155)
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11 Conclusion

Dry granular media (discussed in Sect. 1) and suspensions of slender rigid-bodies (studied in Sects. 5–10) are
only two examples of thermodynamic systems for which the concept of mixture with continuous diversity
can be fruitful.

For instance, the constitutive theory for suspensions of rigid rod-shaped macromolecules presented in
this work was capable not only to reproduce the main results for the microstructural evolution of polymeric
solutions usually derived by statistical methods, but also to predict possible effects due to rotatory inertia
of the molecules and deviations from ideal behavior in a thermodynamically consistent manner. Evidently,
still more realistic descriptions should also account for translational diffusion processes, inhomogeneities in
concentration and polydispersity, which were for simplicity excluded in this first approach (although the
technique to account for them was sketched along the text).

Natural extensions of the constitutive theory presented in Sects. 7–9 include, of course, liquid crystalline
media and polycrystals. The thermodynamic description of such materials does not involve major conceptual
difficulties, though a much more complex and exhaustive analysis, due to the account of elastic effects
and long-range interactions. With respect to polycrystals, a particular virtue of the theory of mixtures with
continuous diversity is that it yields an inherent framework for the study of recrystallization phenomena,
by simply accounting for the mass production Γ ∗ (cf. (3.20)) in a similar way as done in usual theories of
chemically reacting mixtures.

As a concluding remark (concerning multidisciplinary applications), while the classical theory of mixtures
furnishes very prolific results in the population dynamics of a discrete number of interacting species [31]–
[33], the fundamentals of the theory of mixtures with continuous diversity seems to be of great value in
studies of biodiversity dynamics, particularly in tropical environments. For instance, Stork [106] reported
2800 species of arthropod collected from only ten trees belonging to five species in a rain forest of Borneo.
Such a kind of data, which seem to be customary (see, e.g, [107, 108]), has led biologists to estimate about
27 million arthropod species living in the tropics today. This huge variety of species is a clear evidence
of how effective the use of the formalism of mixtures with continuous diversity could be to study also the
biodiversity dynamics in tropical rain forests.

Appendices

A Some consequences of the Stokes theorem

Intending to prove the compatibility between the completeness assumption (4.35) and the condition (6.50), one
starts with the usual expression of the Stokes theorem on an unit spherical surface for an arbitrary (smooth)
vector field A∗

i = A∗
i (xj , t , nk ), viz., ∮

S 2

εijk ni
∂A∗

k

∂nj
d2n = 0. (A.1)

Evidently, A∗
i can be decomposed in orthogonal and parallel parts to ni as

A∗
i = εijk nj B

∗
k + C∗ ni , (A.2)

where B∗
i and C∗ denote two arbitrary fields. With the help of (5.38), the insertion of (A.2) into (A.1) leads

straightforward to ∮
S 2

(
∂i B

∗
i − 2ni B

∗
i

)
d2n = 0. (A.3)

Consequently, provided that (5.39) and (6.50) hold, (A.3) implies that∮
S 2

∂i
(
Ψ∗u∗

i

)
d2n =

∮
S 2

∂iΥ
∗
i d2n = 0, (A.4)
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which is just the proper form of the completeness assumption (4.35) in the orientation space S 2.
Actually, (A.3) is a particularization of an useful identity which can be easily derived as follows. First,

consider the generalization of the Stokes theorem (A.1) for an arbitrary (smooth) tensor field A∗
ijk ...lm =

A∗
ijk ...lm (xp , t , nq ), viz.,

∮
S 2

εijk ni
∂A∗

klm...np

∂nj
d2n = 0. (A.5)

A generic decomposition, equivalent to (A.2), is not helpful in this case, due to the complexity of the
resulting expression. Therefore, to simplify the calculations, one can restrict attention only to a particular
class of tensors, given by

A∗
klm...np = B∗

lm...nεkrpnr , (A.6)

where B∗
lm...n is still an arbitrary tensor (of lower order). Further, inserting (A.6) into (A.5), there follows

from (5.38) ∮
S 2

εijk εkrpni∂j (B
∗
lm...nnr ) d2n = 0, (A.7)

which can be easily rewritten as ∮
S 2

(
∂i B

∗
jk ...l − 2ni B

∗
jk ...l

)
d2n = 0. (A.8)

This identity, named by Condiff & Brenner [46] the “specialized Green’s theorem on a spherical surface”, is
essential in many calculations involving integrals of orientational gradients.

B Representations of constitutive functions

All polynomial representations presented below are derived from the representation theorems for isotropic
functions found in the literature [109]–[111]. They are classified according to the transformation and invariance
properties of their respective constitutive quantities (defined in Sect. 7). The tensor field Q∗

ij ...pq denotes a
generic constitutive quantity and its dependence on xi and t is omitted here for brevity.

a) {e∗, η∗, ε∗} Absolute scalar, Q∗(ni ) = Q∗(−ni ) :

Q∗ = Q∗(1) + Q∗(2)Dkk + Q∗(3)ni Dij nj (B.1)

b) {q∗
i , φ

∗
i , κ

∗
i } Absolute vector, Q∗

i (nj ) = Q∗
i (−nj ) :

Q∗
i = Q∗(1) ∂T

∂xi
+ Q∗(2)ni

∂T
∂xj

nj (B.2)

c) {ν∗
i } Axial vector, Q∗

i (nj ) = Q∗
i (−nj ) :

Q∗
i = Q∗(1)εijk H ∗

jk + Q∗(2)εijk nj D<kl>nl (B.3)

d) {ξ∗
i , ϕ

∗
i } Absolute vector, Q∗

i ni = 0, Q∗
i (nj ) = −Q∗

i (−nj ) :

Q∗
i = Q∗(1)(ni nj − δij )D<jk>nk + Q∗(2)H ∗

ij nj (B.4)
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e)
{

t∗
ij

}
Absolute tensor, Q∗

ij (nk ) = Q∗
ij (−nk ) :

Q∗
ij =

(
Q∗(1) + Q∗(2)Dkk + Q∗(3)nk D<kl>nl

)
δij + Q∗(4)D<ij> +

+Q∗(5)H ∗
ij +

(
Q∗(6) + Q∗(7)Dkk + Q∗(8)nk D<kl>nl

)
n<i nj> +

+
(
Q∗(9) + Q∗(10)

)
ni D<jk>nk +

(
Q∗(9) − Q∗(10)

)
nj D<ik>nk +

+
(
Q∗(11) + Q∗(12)

)
ni H

∗
jk nk +

(
Q∗(11) − Q∗(12)

)
nj H

∗
ik nk (B.5)

f)
{

m∗
ij

}
Axial tensor, Q∗

ij (nk ) = Q∗
ij (−nk ) :

Q∗
ij = Q∗(1)εijk

∂T
∂xk

+ Q∗(2)εijk
∂T
∂xl

nl nk + Q∗(3)n(i εj )kl nk
∂T
∂xl

(B.6)

g)
{
τ∗

ij

}
Absolute tensor, Q∗

ij nj = 0, Q∗
ij (nk ) = −Q∗

ij (−nk ) :

Q∗
ij = Q∗(1)

(
ni nj − δij

) ∂T
∂xk

nk + Q∗(2) ∂T
∂xk

n[iδk ]j (B.7)

h)
{
�∗

ij

}
Axial tensor, Q∗

ij nj = 0, Q∗
ij (nk ) = −Q∗

ij (−nk ) :

Q∗
ij =

(
Q∗(1) + Q∗(2)Dkk + Q∗(3)nk D<kl>nl

)
εijk nk +

+Q∗(4)ni εjkl H
∗
kl +

1
2

(
Q∗(5) − Q∗(6)

)
εijk D<kl>nl +

+Q∗(5)Dk<i εj>kl nl + Q∗(6)nk n<i εj>kl Dlpnp (B.8)

C List of symbols

For rapid reference, some notations and symbols frequently used in the text are listed below. The reader is
assumed to be familiar with the usual notations of set theory and tensor calculus.

R Real numbers.

E = R
3 (3-dimensional) Euclidean space.

A = [αmin, αmax] ⊂ R Species assemblage (unidimensional).

M = A1 × A2 × · · · × AM M -dimensional species assemblage.

E × R Standard Newtonian space-time of the classical mechanics.

E × R × M Space-time-assemblage.

S 2 2-dimensional orientation space (unitary spherical surface embedded in R
3).

vα
i (xj , t), v∗

i (xj , t , αJ ) Translational velocity of the constituent, for a usual mixture and a mixture with continuous
diversity, respectively.

Ψα(xi , t), Ψ∗(xi , t , αI ) Density of some arbitrary additive quantity of the constituent, for a usual mixture and a mixture
with continuous diversity, respectively.

Φα
i (xj , t), Φ∗

i (xj , t , αJ ) Non-convective fluxes of the quantities Ψα(xi , t) and Ψ∗(xi , t , αI ), respectively.

Ξα(xi , t), Ξ∗(xi , t , αI ) Production densities of the quantities Ψα(xi , t) and Ψ∗(xi , t , αI ), respectively.

Σα(xi , t), Σ∗(xi , t , αI ) External supply densities of the quantities Ψα(xi , t) and Ψ∗(xi , t , αI ), respectively.

Υ ∗
I (xj , t , αJ ) (I = 1, 2, . . . , M ) (M -dimensional) interspecies flux of the quantity Ψ∗(xj , t , αJ ).

u∗
I (xj , t , αJ ) (I = 1, 2, . . . , M ) (M -dimensional) transition rate.

∂i =
∂

∂ni
− ni nj

∂

∂nj
Orientational gradient operator (5.38).

À∗ =
∂A∗

∂t
+ v∗

i

∂A∗

∂xi
+ u∗

k ∂k A∗ Co-transitional time derivative (5.41) of the arbitrary tensor field A∗.

Ȧ =
∂A

∂t
+ vj

∂A

∂xj
Material time derivative (6.47) of the arbitrary tensor field A.
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85. Ericksen JL (1960) Anisotropic fluids. Arch. Rational Mech. Anal. 4: 231–237
86. Green AE, Naghdi PM, Rivlin RS (1965) Directors and multipolar displacements in continuum mechanics. Int. J. Engng. Sci. 2:

611–620
87. Leslie FM (1992) Continuum theory of nematic liquid crystals. Continuum Mech. Thermodyn. 4: 167–175
88. Hand GL (1962) A theory of anisotropic fluids. J. Fluid Mech. 13: 33–47
89. Maugin GA, Drouot R (1983) Internal variables and the thermodynamics of macromolecule solutions. Int. J. Engng. Sci. 21:

705–724
90. MacMillan EH (1989) Slow flows of anisotropic fluids. J. Rheol. 33: 1071–1105
91. Cowin SC (1974) The theory of polar fluids. Adv. Appl. Mech. 14: 279–347
92. Leslie FM (1979) On the thermodynamics of polar fluids. Arch. Rational Mech. Anal. 70: 189–202
93. Eringen AC (2000) A unified continuum theory for electrodynamics of polymeric liquid crystals. Int. J. Engng. Sci. 38: 959–987



120 S.H. Faria

94. Grad H (1952) Statistical mechanics, thermodynamics and fluid dynamics of systems. Commun. Pure Appl. Math. 5: 455–494
95. Condiff DW, Dahler JS (1964) Fluid mechanical aspects of antisymmetric stress. Phys. Fluids 7: 842–854
96. Eringen AC, Kafadar CB (1976) Polar field theories. In: Eringen AC (Ed.) Continuum physics, IV, pp. 1–73. New York: Academic

Press
97. Gaio DC, Kremer GM (1991) Kinetic theory for polyatomic dense gases of rough spherical molecules. J. Non-Eq. Thermodyn.

16: 357–379
98. Faria SH, Kremer GM (1997) Some aspects in the thermodynamic theory of polar fluids. ARI 50: 105–109; Corrigendum ibid.

(1998) 51: 103
99. Blenk S, Ehrentraut H, Muschik W (1991) Statistical foundation of macroscopic balances for liquid crystals in alignment tensor

formulation. Physica A 174: 119–138
100. Truesdell C, Noll W (1965) The nonlinear field theories of mechanics. In: Flügge S (Ed.) Handbuch der Physik, III/3. Berlin:
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