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Non parabolic band transport in semiconductors:
closure of the moment equations
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The problem of the closure of the moment equations of the semiconductor Boltzmann equation
is studied in the framework of the Kane dispersion relation (therefore avoiding the limitations
of the parabolic band approximation). By using the maximum entropy ansatz for the closure
one obtains, in the limit of small anisotropy, explicit constitutive relations for the stress tensor
and the flux of energy flux tensor. The results obtained are in remarkable agreement with those
arising from Monte Carlo simulations.

1 Introduction

Enhanced functional integration in modern electron devices requires an accurate modeling of energy transport
in semiconductors in order to describe high-field phenomena such as hot electron propagation, impact ioniza-
tion and heat generation in the bulk material. Also the new concepts of MEMS (integrated electromechanical
sensors) require, for an efficient CAD tool, a thorough understanding of the interaction between charged car-
rier transport and mechanical, thermal and magnetic effects in a semiconductor. The standard drift-diffusion
models cannot cope with high-field and submicron phenomena, because they do not comprise energy as a
dynamical variable and furthermore they are obtained from short mean free path expansions [1]. Therefore
it is mandatory to describe these phenomena within the framework of the semiclassical Boltzmann Transport
Equation (BTE). The fundamental approach is to solve the BTE, but this is a daunting task, also from the
numerical viewpoint. Presently one of the most popular approaches is to solve the BTE in a stochastic sense
by Monte Carlo methods and use the results as a way of determining the parameters in macroscopic models
which are obtained from the BTE by suitable approximations. In the hierarchy of approximate macroscopic
models beyond the drift-diffusion equations one finds the hydrodynamical models, which are obtained from
the infinite set of moment equations of the Boltzmann transport equation (BTE) by a suitable truncation
procedure.

It is well-known that moment systems require a closure assumption in order to lead to a closed system
of evolution equation. In the case of parabolic band approximation various closure assumptions have been
made for the semiconductor transport moment systems, leading to various classes of hydrodynamical models,
e.g. [2, 3, 4]. However, these various closure assumptions are, at best, only phenomenological and lack a
consistent physical and mathematical justification. Lately a closure assumption based on the entropy prin-
ciple of extended thermodynamics [5, 6] or equivalently the method of exponential moments [7] has been
applied, in the parabolic band approximation, to the semiconductor moment equations, leading to a semicon-
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ductor hydrodynamical model free from phenomenological assumptions and enjoying important mathematical
properties like hyperbolicity [8, 9, 10, 11].

In this method the distribution function used to calculate the higher order moments and the productions
is assumed to be that which maximizes the entropy under the constraints of the given set of moments . The
resulting constitutive equations for various moments have been compared with the results obtained by Monte
Carlo (MC) simulations in [12] and are very encouraging in support of the maximum entropy ansatz.

The parabolic band approximation is however not fully adequate in order to describe high energy phe-
nomena. Short of a full band description, a widely used analytical approximation to the band structure is the
Kane dispersion relation [13].

For the Kane dispersion relation the analogy between the moment system and the gas-dynamic one is
not so close and depends on the choice of the appropriate weight functions in the definition of the moments.
Various formulations of the moment-like equations exist, with phenomenological based closure [14, 15, 16]

In this article we extend the maximum entropy approach to semiconductor moment-like systems in the
case of the Kane dispersion relation. Here we do not compute the production terms with the maximum entropy
ansatz but we concentrate on the closure for the high order fluxes. The validity of the constitutive equations
has been assessed by comparing them with those obtained in the stationary regime from the simulations of
semiconductor devices by Monte Carlo methods.

The plan of the paper is as follows. In Sect. 2 the basic concepts concerning the energy band structure
and the electron transport in semiconductors are briefly presented. In Sect. 3 macroscopic balance equations
are obtained as moment equations of the Boltzmann transport equation for electrons in semiconductors. The
appropriate formulation of the maximum entropy principle is given in Sect. 4 where the closure procedure
is shown. The results of this section are then used for getting the closure relations in the case of Kane’s
dispersion relation. The limit of parabolic band approximation is recovered in Sect. 6 and in the last section
a comparison with previous models is presented.

2 Basic concepts on the energy band structure and electron transport in semiconductors

In this section we give a brief account of the main concepts and assumptions concerning the physics
of semiconductors and the charge transport inside them, mainly in order to fix the notation and make the
reader acquainted with the basic concepts of solid state physics needed in the following (for a more accurate
description the interested reader is referred to a standard text-book , e.g. [17]).

Charge carriers in a semiconductor move under the effect of a periodic crystal potential, due to the atomic
nuclei, and under the effect of the potential due to the charges of the carriers themselves. Ideal crystals are
described in terms of Bravais lattices, which are sets of vectors of the form

L = {i a1 + j a2 + l a3 : i , j , l ∈ Z}

wherea1,a2,a3 are primitive lattice vectors,Z being the set of relative integers. The reciprocal latticêL

of the Bravais latticeL is defined by

L̂ = {i a1 + j a2 + l a3 : i , j , l ∈ Z}

with the reciprocal lattice vectorsa1,a2,a3 satisfying

ai · aj = 2πδj
i .

A connected subsetB ⊆ R3 is called aprimitive cellof the lattice if the volume ofB equals|a1·a2∧a3|
and the whole spaceR3 is covered by the union of translates ofB by the lattice vectors.

The first Brillouin zoneB is the primitive cell of the reciprocal latticeL̂ consisting of those points
which are closer to the origin than to any other point of̂L .

The quantum mechanical dynamics of an electron in the periodic potential of an ideal crystal lattice is
governed byBloch’s Theoremwhose contents we summarize below.
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Consider an electron moving under the action of the potentialVL generated by the ions located at the
points of the crystal latticeL . Since the periodicity of the potential is on scale of the order of the de Broglie
wavelength, the electron states are determined by the time independent Schrödinger equation

Hψ = E ψ

with the HamiltonianH given by

H = − ~
2

2me
4 −qVL,

~ being the Planck constant divided by 2π andme electron mass in the vacuum.
The bounded eigenstates have the form:

ψ(x) = exp (i k · x)uk(x) with x ∈ R3

and
uk(x + X) = uk(x) with X ∈ L .

One obtains a second order self-adjoint elliptic problem posed on a primitive cell of the crystal latticeL . It
is possible to prove [17] the existence of an infinite sequence of eigenpairs (energy-wave function)

El (k), uk,l (x), l ∈ N ,

N being the set of the non negative integer. From the periodicity condition

ψ(x + X) = exp (i k · X)ψ(x)

with x ∈ R3,X ∈ L , it follows that the set of eigenfunctionsψ and the energiesE (k) are identical for any
two wave vectors which differ by a reciprocal lattice vector. Therefore one can constrain the wave vectork
to the Brillouin zoneB .

The functionEl = El (k) on the Brillouin zone describes the l-th energy band of the crystal.
Semiconductors are characterized by a sizable energy gap between the valence and the conduction bands,

which are almost fully filled at thermal equilibrium. Upon thermal excitation electrons from the valence band
can jump to the conduction band leaving behind holes (in the language of quasi-particles). Therefore the
transport of charge is achieved through both negatively charged (electrons) and positively charged (holes)
carriers. In the sequel we neglect the hole motion and restrict ourselves to electrons, considering for the sake
of clarity only one conduction band.

The energy band structure of crystals for electrons can be obtained at the expenses of intensive numerical
calculations (and also semiphenomenologically) by the quantum theory of solids. However, in order to describe
electron transport, for most applications, a simplified description is adopted which is based on a simple
analytical model.

This is the so-called effective parabolic band and effective mass approximation, where the energy curve
corresponding to a given energy band is approximated by a parabola near its minimum.B is expanded to
all R3 and in the approximation of a single band (hereafter we omit the band index)

E =
|~k|2
2m∗ , (1)

with m∗ as theeffective mass(e.g. in the case of Sim∗ = 0.32me) and~k the so-calledcrystal momentum.
In the approximation of the Kane dispersion relation, which takes into account the non-parabolicity at

high energy,E still depends only onk, the modulus ofk, B = R3, but

E (k)
[
1 +αE (k)

]
=

~
2k2

2m∗ , (2)

whereα is the non parabolicity parameter ( e.g. for Siliconα=0.5 eV−1 while for GaAsα=0.64 eV−1 in the
Γ -valley, α=0.46 in theL-valley andα = 0.20 in theX-valley).
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In a semiclassical approach the velocity of the charge carriers depends on the energyε measured from
the band minimum by the relation

vi (k) =
1
~

∂

∂ki
E (k).

which comes from the expression of the group velocity and by assuming as localized the wave-packet
describing the electron state in the quantum picture [17].

In the case of parabolic band we get, apart from a normalization factor for the electron mass, the classical
relation between velocity and momentum

vi =
~ki

m∗ ,

while in the case of the Kane dispersion relation one finds

vi =
~ki

m∗ [
1 + 2αE (k)

] ,
which shows that the crystal momentum~k in general does not represent the electron momentum.

The dynamics of a an ensemble ofM electrons belonging to the same energy band is a rather compli-
cated many-body problem. For this reason a kinetic description is employed. By proceeding as in classical
gas dynamics one can write (see [18] for details) a Liouville equation for the M-electron joint probability
distribution function and then with the hierarchy BBGKY, a single particle semiclassical Vlasov equation is
obtained

∂f
∂t

+ vi (k)
∂f
∂xi

− eEi

~

∂f
∂ki

= 0, (3)

for the one particle distribution functionf (x, t , k), which gives the probability density of finding an electron,
in the positionx and at timet , with a state belonging to a small volume of the first Brillouin zone centered
at the state of wave vectork. In (3) E represents the self-consistent electric field due to the long range
electrostatic interactions.

The above description of electron motion is valid for an ideal perfectly periodic crystal. Real semiconduc-
tors cannot be considered as ideal periodic crystals for several reasons. In fact strict periodicity is destroyed
by doping with impurities and thermal vibrations of the ions off their equilibrium positions in the lattice.

These effects can be taken into account in a perturbative way, by describing the interaction of the
electrons with the lattice of ions as being only approximately periodic. The weak deviations from periodicity
are treated as small perturbations of the background periodic ions potential. In particular the effect of the
thermal vibrations of the ions on the electron dynamics can be described quantum mechanically as scattering
with quasi-particles, thephonons, representing the thermal lattice vibrations.

The perturbations from the strict periodicity (which can be interpreted as scattering effects) will obviously
affect the semiclassical Liouville equation. Formally these effects are taken into account by introducing a non
zero right hand side in the semiclassical Vlasov equation. In this way one obtains the semiclassical Boltzmann
equation for electrons in semiconductors [1, 4, 13, 18]

∂f
∂t

+ vi (k)
∂f
∂xi

− eEi

~

∂f
∂ki

= C [f ], (4)

whereC [f ] represents the effects due to scattering with phonons, impurities and with other electrons.
The electric field is calculate by solving the Poisson equation for the electric potentialφ

Ei = − ∂φ

∂xi
, (5)

ε∆φ = −e(ND − NA − n), (6)

ND and NA being the donor and acceptor density respectively (which are fixed ions implanted in the semi-
conductors and depending only on the position) andn the electron number density
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n =
∫

B

fd3k.

We do not report the expression of collision operator (the interested reader is referred to [19]). The only
important point is that the phonons, describing the energy transport in the lattice, will be assumed to remain
at the constant lattice temperatureT0 and to obey the equilibrium Bose–Einstein statistics

nq =

[
exp

(
~ωq

kBT0

)
− 1

]−1

, (7)

wherekB is the Boltzmann constant and~ωq is the phonon energy.
The equation (4) coupled with the equations (5)–(6) is usually referred to as Boltzmann–Poisson system

that constitutes the model employed in the modern analysis of submicron semiconductor device simulation.
However, the direct attempt to solve the Boltzmann–Poisson system in describing the electron transport

in semiconductors is a daunting task even from a numerical point of view and practically only solutions in
stochastic sense by Monte Carlo methods are available. In this article we will deduce a consistent continuum
model based on Extended Thermodynamics [5, 6], by employing the maximum entropy principle, under the
assumption that the energy band of electrons is given by the Kane dispersion relation (2).

3 Moment equations

The macroscopic balance equations are deduced as moment equations of the transport equations1. By
multiplying (4) by a weight functionψ(k) and integrating overB (from now on by assumption equal to
R3), one finds

∂Mψ

∂t
+

∫
B

ψ(k)vi (k)
∂f
∂xi

d3k − eEj
∫

B

ψ(k)
∂

∂kj
fd3k =

∫
B

ψ(k)C [f ]d3k, (8)

with

Mψ =
∫

B

ψ(k)fd3k,

moment off relative to the weight functionψ(k).
Since ∫

B

ψ(k)
∂f
∂kj

d3k =
∫
∂B
ψ(k)f ndσ −

∫
B

f
∂ψ(k)
∂kj

d3k,

with n as the outward unit normal field on the boundary∂B of the domainB anddσ as the surface element
of ∂B, (8) becomes

∂Mψ

∂t
+

∂

∂xi

∫
B

f ψ(k)vi (k)d3k + eEj

[∫
B

f
∂ψ(k)
∂kj

d3k −
∫
∂B
ψ(k)fnj dσ

]
=∫

B

ψ(k)C [f ]d3k. (9)

The term ∫
∂B
ψ(k)f ndσ

vanishes under the assumption thatf must tend to zero sufficiently fast ask 7→ ∞.
As in [16] we chooseψ(k) equal to 1,k, E (k) andkE (k) because this choice gives the minimum number

of constitutive equations needed to close the corresponding moment equations.
Then we obtain the following moment equations

1 Hereafter we use units such that~ = 1
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∂n
∂t

+
∂(nVi )
∂xi

= 0, (10)

∂(nPi )
∂t

+
∂(nU ij )
∂xj

+ neEi = nCi
P, (11)

∂(nW)
∂t

+
∂(nSj )
∂xj

+ neVkEk = nCW , (12)

∂(nNi )
∂t

+
∂(nRij )
∂xj

+ neEj
(
U ij + Wδij

)
= nCi

N , (13)

where

n =
∫

B

fd3k is the electron density,

V i =
1
n

∫
B

f vi d3k is the average electron velocity,

Pi =
1
n

∫
B

fki d3k is the average crystal momentum,

W =
1
n

∫
B

E (k)fd3k is the average electron energy,

U ij =
1
n

∫
B

f vi kj d3k is the flux of crystal momentum,

Si =
1
n

∫
B

f vi E (k)d3k is the flux of energy,

N i =
1
n

∫
B

fki E (k)d3k is theN-vector,

Rij =
1
n

∫
B

f vi kj E (k)d3k is theR-tensor,

while

Ci
P =

1
n

∫
B

C [f ]ki d3k,

CW =
1
n

∫
B

C [f ]E (k)d3k,

Ci
N =

1
n

∫
B

C [f ]ki E (k)d3k.

are the moments of the collision term.
The average crystal momentumPi and the flux of average crystal momentumU ij reduce to the average

electron momentum and flux of average electron momentum only in the parabolic band approximation.
Moreover we observe that for a general dispersion relation the flux of crystal momentum and the R-tensor
are not symmetric. However, ifE is an isotropic function ofk as in the parabolic band approximation and
Kane’s dispersion relation, then

U ij = U ji , Rij = Rji .

We remark that in [16] only the stationary case is considered and the N-vector is not introduced.
Of course other choices for the functionsψ(k) are possible. In analogy with gas dynamics, one can set

ψ(k) equal to 1,vi (k), E , E vi (k). However with this choice additional constitutive functions are introduced
due to the terms ∫

B

f
∂ψ(k)
∂kj

d3k.

In the following we will consider only the system (10)–(13), because our main aim is to get explicit closure
relations when the Kane dispersion relation is adopted for the energy band of the electrons, and to compare
with the results obtained by Tang et al. [16].
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4 Maximum entropy principle and closure relations

The set of moment equations (10)–(13) is not closed. If we assume as fundamental variablesn, V i , W
and Si , which have a direct physical interpretation, the closure problem consists in expressingU ij , Rij , Pi

andN i and the moments of the collision termCi
P, CW andCi

N as functions ofn, V i , W andSi .
We want to stress that the role of the mean velocityV i here is radically different from that played in

gas dynamics. In fact, for a simple gas the explicit dependence of fluxes on the velocity can be predicted
by requiring Galilean invariance of the constitutive functions. Instead (10)–(13) are not valid in an arbitrary
galilean reference frame, but they hold only in a frame where the crystal is at rest (in the applications it may
be considered as inertial and it is thus possible to neglect the inertial forces). ThereforeV i is the velocity
relative to the crystal and the dependence on it in the constitutive functions cannot be removed by a galilean
transformation.

The maximum entropy principle (hereafter MEP) leads to a systematic way for obtaining constitutive
relations on the basis of information theory (see [5, 6, 7, 20] for a review).

According to the MEP, if a given number of momentsMA are known, the distribution functionfME which
can be used to evaluate the unknown moments off , corresponds to the extremum of the entropy functional
under the constraints that it yields exactly the known momentsMA∫

B

ψAfMEd3k = MA. (14)

If we assume that the electron gas is sufficiently dilute the entropy functional can be taken as the classical
limit of the expression arising in the Fermi statistics

s = −kB

∫
B

(f log f − f ) d3k. (15)

In order to employ the entropy principle for closing the balance equations (10)–(13), if we introduce the
Lagrangian multipliersΛA, the problem to maximizes under the constraints (14) is equivalent to maximize

s′ = s − ΛAMA,

the Legendre transform ofs, without constraints,

δs′ = 0.

This gives [
log f +

ΛAψ
A

kB

]
δf = 0

Since the latter relation must hold for arbitraryδf , it follows

fME = exp

[
− 1

kB
ΛAψ

A

]
. (16)

If n, V i , W andSi are assumed as fundamental variables, then

ψA = (1, v,E ,E v)

and
Λ = (λ, kBλi , kBλ

W , kBλ
W
i )

with the components ofΛ Lagrangian multipliers relative to the densityn, to the velocityV j , to the energy
W and to the energy fluxSj respectively.

Then the maximum entropy distribution function reads

fME = exp

[
−

(
1
kB
λ + λWE + λi v

i + λW
i v

i E

)]
, (17)



314 A.M. Anile, V. Romano

with Λ function of the momentsMA.
In order to get the dependence of the Lagrangian multipliers from theMA, one has to invert the constraints

(14). Then by taking the moments offME andC [fME ] one finds the closure relations for the fluxes and the
production terms. However on account of the technical difficulties we will get only an approximate explicit
expression for the Lagrangian multipliers under a reasonable physical assumption on the distribution function.

At equilibrium the distribution function is isotropic

fEQ = exp

[
−

(
1
kB
λE +

E

kBT0

)]
, (18)

that is at equilibrium

λW
E =

1
kBT0

, λi
E = 0 λi W

E = 0.

Monte Carlo simulations for electron transport in Si show that the anisotropy off is small [12, 16, 21] even
far from equilibrium. The physical reason is that in Si the main scattering mechanisms, the interaction of
electrons with acoustic and non-polar optical phonons, are both isotropic.

Upon such a consideration we make the ansatz of small anisotropy forfME . Formally we introduce asmall
anisotropy parameterδ, assume that the multipliers are analytic inδ and expand them aroundδ = 0 up to
second order by taking into account the representation theorems for isotropic functions,

λ = λ(0) + δ2 λ(2), (19)

λW = λW(0) + δ2 λW(2), (20)

λi = δ λ(1)
i , (21)

λW
i = δ λW(1)

i . (22)

ThereforefME can be written as

fME = exp

(
−λ(0)

kB
− λW(0)E

) [
1 − δx + δ2

(
x2

2
− λ(2)

kB
− λW(2)E

)]
, (23)

with x = λ(1)
i vi + λW(1)

i vi E .
We remark thatλ(0) andλW(0) are not the equilibrium part ofλ andλW , but the part arising in casefME

is isotropic.

5 Closure relations for Kane’s dispersion relation

Now we shall look for explicit constitutive equations starting from the distribution function obtained
with the MEP when the dispersion relation is given by (2). To begin with we will give a first guess of the
constitutitve relations just on the basis of general considerations then the distribution (23) will be employed
to get the specific results.

From the definition we have

Pi =
1
n

∫
B

ki fd3k =
1
n

∫
B

f vi m∗ [
1 + 2αE (k)

]
d3k = m∗(V i + 2αSi ) (24)

and

N i = m∗(Si + 2αH i ), (25)

where

H i =
1
n

∫
B

vi E 2(k)fd3k. (26)

Moreover, if we decompose the electron velocity into the mean and random part,
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vi = V i + ci , with
∫

B

ci fd3k = 0,

and introduce a similar decomposition forki ,

ki = Pi + κi with
∫

B

κi fd3k = 0,

we have
U ij = m∗V i V j + 2αm∗V i Sj + uij ,

where

uij =
1
n

∫
B

ciκj fd
3k.

Likewise for Rij one finds

nRij = nVi Pj W + V i
∫

B

κj E fd3k + Pj
∫

B

ci E fd3k + r ij ,

with

r ij =
∫

B

ciκj E fd3k.

Therefore to find constitutive equations forN i , U ij andRij is equivalent to finding constitutive equations for
H i , uij and r ij .

5.1 Lagrangian multipliers

In order to get the expressions of theΛ’s in terms of theMA we have to invert the following equations:

n =
∫

B

fME d3k, (27)

nW =
∫

B

E fME d3k, (28)

nVi =
∫

B

vi fME d3k, (29)

nSi =
∫

B

vi E fME d3k. (30)

By retaining only the terms up to second order inδ, from the constraints (27)–(30), we get the following
algebraic system (Vi andSi are consistently considered as terms of orderδ)

n = exp

[
−

(
1
kB
λ(0)

)]∫
B

exp
[− (

λW(0)E
)]

d3k, (31)

W = exp

[
−

(
1
kB
λ(0)

)]∫
B

E exp
[− (

λW(0)E
)]

d3k, (32)

0 =
∫

B

exp
(
λW(0)E

) [
1
kB
λ(2) + λW(2)E − x2

2

]
, (33)

0 =
∫

B

E exp
(
λW(0)E

) [
1
kB
λ(2) + λW(2)E − x2

2

]
, (34)

nVi = −
∫

B

vi exp
(
λW(0)E

)
x d3k, (35)

nSi = −
∫

B

vi E exp
(
λW(0)E

)
x d3k. (36)
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SinceE is an isotropic function ofk, in order to solve the system for the multipliers it is computationally
convenient to expressd3k in terms ofE and the elementary volume of solid angledΩ,

d3k = k2 dk dΩ = m∗
√

2m∗E
(
1 +αE

) (
1 + 2αE

)
dE dΩ.

(31), (32) decouple from the other equations and explicitly read

n = 4π exp

(
−λ(0)

kB

) ∫ ∞

0
exp

(−λW(0)E
)

m∗
√

2m∗E
(
1 +αE

) ×

× (
1 + 2αE

)
dE , (37)

W =

∫ ∞
0 E

√
E

(
1 +αE

) (
1 + 2αE

)
exp

(−λW(0)E
)

dE∫ ∞
0

√
E

(
1 +αE

) (
1 + 2αE

)
exp

(−λW(0)E
)

dE

. (38)

Relation (38) shows thatλW(0) depends only onW. The analytical inversion of (38) is rather involved and
we have resorted to a numerical inversion. The results are shown in Fig. 1. Near global thermal equilibrium
the value ofλW(0) is the same for both the parabolic and Kane dispersion relation. WhenW increases, the
value ofλW(0) in the Kane case is greater.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0
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W(eV)

eV

 ... parabolic band case, − Kane dispersion relation

Fig. 1. Inverse of the Lagrangian multipliersλW(0) vs. the
energyW

The knowledge ofλW(0) allows us to get the constitutive functions for the other Lagrangian multipliers.
Relation (37) givesλ(0), which essentially plays the role of a normalization factor

λ(0)

kB
= − log

(
n

4πm∗√2m∗d0

)
,

with

d0 =
∫ ∞

0

√
E

(
1 +αE

) (
1 + 2αE

)
exp

(−λW(0)E
)

dE .

The Lagrangian multipliersλi and λW
i can be obtained by inverting the linear system represented by

(35)–(36).
By taking into account the following formula2 valid for l belonging toS2, the unit sphere ofR3,∫

S2

l i1 · · · l ik dΩ =

{
0 if k is odd
4π
k+1δ

(i1i2 · · · δik−1ik ) if k is even

one finds
2 round brackets mean symmetrization, e.g.A(ij ) = 1/2(Aij + Aji ).
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λi = b11Vi + b12Si ,

λW
i = b12Vi + b22Si .

The coefficientsbij are given by

b11 =
a22

∆
, b12 = −a12

∆
, b22 =

a11

∆

with

a11 = − 2p0

3m∗d0
, a12 = − 2p1

3m∗d0
, a22 = − 2p2

3m∗d0
,

and

∆ = a11a22 − a2
12,

dk andpk being

dk =
∫ ∞

0
E k

√
E

(
1 +αE

) (
1 + 2αE

)
exp

(−λW(0)E
)

dE ,

pk =
∫ ∞

0

[
E (1 +αE )

]3/2
E k

1 + 2αE
exp(−λW(0)E ) dE .

Finally, the second order corrections toλ andλW , are obtained by solving the linear system (33)–(34).
The following expressions are found

λ(2)

kB
= α1 V · V + 2α2 S · V + α3 S · S, (39)

λW(2) = α4 V · V + 2α5 S · V + α6 S · S, (40)

where

α1 =
3
4

m∗d2
0

[
d1p1(p2

2 − p3p1) − d2p2(p2
1 − p0p2)

]
D̂

, (41)

α2 =
3
4

m∗d2
0

[
d2p1(p2

1 − p0p2) − d1p0(p2
2 − p1p3)

]
D̂

, (42)

α3 =
3
4

m∗d2
0

[
(d1p1 + d2p0)(p0p2 − p2

1) + d1p0(p1p2 − p3p0)
]

D̂
, (43)

α4 = −3
4

m∗d2
0

[
d1p2(p2p0 − p2

1) + d0p1(p2
2 − p1p3)

]
D̂

, (44)

α5 =
3
4

m∗d2
0

[
d1p1(p2p0 − p2

1) + d0p0(p2
2 − p1p3)

]
D̂

, (45)

α6 = −3
4

m∗d2
0

[
(d1p0 + p1d0)(p2p0 − p2

1) + d0p0(p1p2 − p0p3)
]

D̂
. (46)

with

D̂ = (d0d2 − d2
1 )(p0p2 − p2

1)2. (47)
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5.2 Constitutive equations for fluxes

Once the Lagrangian multipliers are expressed as functions of the fundamental variables, the constitutive
equations for fluxes can be obtained by using the distribution function given by the maximum entropy
principle.

Up to second order terms the constitutive equations for the fluxes are of the form

H i = δH i (1), (48)

Uij = U (0)
ij + δ2U (2)

ij , (49)

Rij = R(0)
ij + δ2R(2)

ij . (50)

From the definition

H i (1) = − 1
n

∫
B

vi x E 2 exp

(
−λ(0)

kB
− λW(0)

)
d3k,

Therefore

H i = β1V i + β2Si , (51)

where
β1 = h1b11 + h2b12, β2 = h1b12 + h2b22.

with

h1 =
2p2

3m∗d0
, (52)

h2 =
2p3

3m∗d0
. (53)

Concerning the tensorU ij andRij , at the zero order we have

U ij (0) = U (0)δij , (54)

Rij (0) = R(0)δij , (55)

with

U (0) =
2

3d0

∫ ∞

0

[
E

(
1 +αE

)]3/2
exp

(−λW(0)E
)

dE ,

R(0) =
2

3d0

∫ ∞

0
E 5/2

(
1 +αE

)3/2
exp

(−λW(0)E
)

dE ,

For U ij (2) we get

U ij (2) = (δ1 V · V + 2δ2 S · V + δ3 S · S) δij + δ4 V i V j + 2δ5 V (i Sj ) + δ6 Si Sj . (56)

The coefficientsδk are given by

δ1 =
3m∗d0

20D̂

{
2(d0d2 − d2

1 )(b0p2
2 − 2b1p1p2 + b2p2

1)+

5U (0)
[
d0d2(p2p2

1 − p0p2
2) − d0d1(p1p2

2 − p3p2
1)

]
+5R(0)

[
d0d1(p0p2

2 − p2p2
1) − d2

0 (p3p2
1 − p1p2

2)
]}
, (57)

δ2 = −3m∗d0

20D̂

{
2(d0d2 − d2

1 )
[
b0p1p2 − b1(p0p2 + p2

1) + b2p0p1
]

+

5U (0)
[
d0d2(p3

1 − p0p1p2) − d0d1(p0p2
2 − p0p1p3)

]
+5R(0)

[
d0d1(p0p1p2 − p3

1) − d2
0 (p0p1p3 − p0p2

2)
]}
, (58)
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δ3 =
3m∗d0

20D̂

{
2(d0d2 − d2

1 )(b0p2
1 − 2b1p0p1 + b2p2

0)+

5U (0)
[
d0d1(p3

1 − 2p0p1p2 + p2
0p3) − d0d2(p2

0p2 − p0p2
1)

]
+5R(0)

[
d0d1(p2

0p2 − p0p2
1) − d2

0 (p2
0p3 − 2p0p1p2 + p3

1)
]}
, (59)

δ4 =
3m∗d0

5(p0p2 − p2
1)2

(
b0p2

2 − 2b1p1p2 + b2p2
1

)
, (60)

δ5 =
3m∗d0

5(p0p2 − p2
1)2

[
p0(b1p2 − b2p1) + p1(b1p1 − b0p2)

]
, (61)

δ6 =
3m∗d0

5(p0p2 − p2
1)2

(
b0p2

1 − 2b1p1p0 + b2p2
0

)
, (62)

with

bk =
∫ ∞

0

E k
[
E (1 +αE )

]5/2

(1 + 2αE )2
exp

(−λ(0)E
)

dE . (63)

Likewise for Rij (2), we find

Rij (2) = (γ1 V · V + 2γ2 S · V + γ3 S · S) δij + γ4 V i V j + 2γ5 V (i Sj ) +

γ6 Si Sj . (64)

The coefficientsγi are given by

γ1 = −3m∗d0

20D̂

{
2(d2

1 − d0d2)(b1p2
2 − 2b2p1p2 + b3p2

1)+

5R(0)
[
d0d1(p1p2

2 − p2
1p3) + d0d2(p0p2

2 − p2p2
1)

]
+

5G(0)
[
d2

0 (p3p2
1 − p1p2

2) + d0d1(p2p2
1 − p0p2

2)
]}
, (65)

γ2 =
3m∗d0

20D̂

{
2(d2

1 − d0d2)
[
b1p1p2 − b2(p0p2 + p2

1) + b3p0p1
]

+

5R(0)
[
d0d1(p0p2

2 − p0p1p3) + d0d2(p0p1p2 − p3
1)

]
+

5G(0)
[
d2

0 (p0p1p3 − p0p2
2) + d0d1(p3

1 − p0p1p2)
]}
, (66)

γ3 =
3m∗d0

20D̂

{
2(d0d2 − d2

1 )(b1p2
1 − 2b2p0p1 + b3p2

0)

5R(0)
[
d0d1(p3

1 − 2p0p1p2 + p2
0p3) + d0d2(p0p2

1 − p2
0p2)

]
+

5G(0)
[
d0d1(p2

0p2 − p0p2
1) − d2

0 (p2
0p3 − 2p0p1p2 + p3

1)
]}
, (67)

γ4 =
3m∗d0

5(p0p2 − p2
1)2

(
b1p2

2 − 2b2p1p2 + b3p2
1

)
, (68)

γ5 =
3m∗d0

5(p0p2 − p2
1)2

[
p0(b2p2 − b3p1) + p1(b2p1 − b1p2)

]
, (69)

γ6 =
3m∗d0

5(p0p2 − p2
1)2

(
b1p2

1 − 2b2p1p0 + b3p2
0

)
, (70)

whereG(0) is defined as

G(0) =
2

3d0

∫ ∞

0
E 7/2(1 +αE )3/2 exp

(−λ(0)E
)

dE .
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6 Parabolic band approximation

In this section we shall consider the limiting caseα 7→ 0. The aim is twofold. On the one hand we
will be able to get explicit formulas for the coefficients appearing in the constitutive equations, on the other
hand it will be possible to have a comparison with previous hydrodynamical models. Moreover, since the
difference of the results between the parabolic and Kane’s dispersion relation should be small, at least at low
energies, the results presented here can be useful to check the numerical evaluation of the previously obtained
constitutive equations.

In the parabolic band approximation, it is possible to calculate the termsdk , pk and bk by taking into
account that fora, ν > 0 ∫ ∞

0
xν−1 exp(−ax)dx =

1
aν
Γ (ν),

with Γ (ν) as the special Gamma function, that satisfies for positive integersp

Γ

(
p +

1
2

)
=

√
π

2p
(2p − 1)!!.

Concerning the Lagrangian multipliers one has

λ

kB
= − log

n(
4
3πm∗W

)3/2
+

9m∗

4W2
V · S− 27m∗

20W3
S · S, (71)

λW =
3

2W
+

21m∗

8W2
V · V − 9m∗

2W3
V · S+

81m∗

40W4
S · S, (72)

λi = −21m∗

4W
Vi +

9m∗

4W2
Si , (73)

λW
i =

9m∗

4W2
Vi − 27m∗

20W3
Si . (74)

The distribution function given by the maximum entropy principle in this case reads

f (P)
ME =

n exp(−λW(0)E )(
4
3πm∗W

)3/2
×

{
1 −

(
−21m∗

4W
Vi +

9m∗

4W2
Si

)
vi −

(
9m∗

4W2
Vi − 27m∗

20W3
Si

)
E vi

+
1
2

[(
−21m∗

4W
Vi +

9m∗

4W2
Si

)
vi +

(
9m∗

4W2
Vi − 27m∗

20W3
Si

)
E vi

]2

−
(

9m∗

4W2
V · S− 27m∗

20W3
S · S

)

−
(

21m∗

8W2
V · V − 9m∗

2W3
V · S+

81m∗

40W4
S · S

)
E

}
(75)

and the constitutive equations become

H (P)
i = −35

9
W2Vi +

14
3

WSi , (76)

U (P)
ij =

2
3

Wδij +

(
−7

6
m∗V · V +

7m∗

5W
S · V − 27m∗

50W2
S · S

)
δij +

7
2

m∗V i V j − 21m∗

5W
V (i Sj ) +

81m∗

50W2
Si Sj , (77)

R(P)
ij =

10
9

W2δij +

(
− 7

18
m∗WV · V +

m∗

15
S · V − 9m∗

50W
S · S

)
δij +

77
6

m∗WVi V j − 91m∗

5
V (i Sj ) +

357m∗

50W
Si Sj . (78)
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In order to compare the results with those obtained for the monatomic gas and the hydrodynamical models
of semiconductors presented in [8, 9, 10, 11], we observe that

E =
1
2

m∗v2 =
1
2

m∗(Vk + ck)(V k + ck).

Therefore, by defining the electron temperature through

3nkBT = 3p = m∗
∫

B

ckckfd3k

and introducing the heat flux

nqi =
1
2

m∗
∫

B

ci ckckfd3k,

and the shear tensor3

nσij = m∗
∫

B

c<i cj>fd3k,

we have up to second order terms

W (P) =
1
2

m∗V 2 +
3
2

kBT,

Si (P) =
5
2

kBTVi + σik Vk + qi .

Then the Lagrangian multipliers read

λ

kB
= − log

n

(2πm∗kBT)3/2
+

m∗V · V
2kBT

− m∗

(kBT)2
V · q − 2

5
m∗

(kBT)3
q · q,

λW =
1

kBT
+

2
3

m∗V · q
(kBT)3

+
2
5

m∗q · q
(kBT)4

,

λi = − m∗

kBT
Vi +

m∗

(kBT)2
qi ,

λW
i = −2

5
m∗

(kBT)3
qi ,

which are the same as those obtained for a monatomic gas in the inviscid case. This shows that according
to the results presented in [10], the explicit dependence of the multipliers on the velocity is the same as that
found for a monatomic gas by operating the decomposition of the Lagrangian multipliers into convective and
non convective parts (compare the previous expressions for theΛ′s with those reported in [22, 23]).

The constitutive equations (77), (78) become

U (P)
ij = m∗Vi Vj + kBTδij +

4m∗

5kBT
V<i qj> +

18m∗

25(kBT)2
q<i qj>, (79)

R(P)
ij =

(
1
2

m∗V 2kBT +
5
2

(kBT)2 − 8
15

m∗V · q − 3
25

m∗q2

kBT

)
δij +

7
2

m∗kBTVi Vj +
28
5

m∗V(i qj ) +
119
25

m∗qi qj

kBT
. (80)

By comparing the relation (79) with the analogous expressionU (MG)
ij in the case of a monoatomic gas [22]

U (MG)
ij = m∗Vi Vj + kBTδij + σij ,

we may make the identification

σij =
4m∗

5kBT
V<i qj> +

18m∗

25(kBT)2
q<i qj>. (81)

3 < Aij > means deviatoric part ofAij , that is< Aij >= 1
2(Aij + Aji ) − 1/3Al

l δij
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Now, if such an expression forσij is inserted into the expression forRij for the monatomic gas [22],R(MG)
ij ,

with quadratic correction we obtain (we neglect the term of higher order than the second inVk and the second
order terms involving the shear because they are of the third order inVi andqj )

R(MG)
ij =

(
1
2

m∗kBTV2 +
5
2

(kBT)2 +
36m∗q2

50kBT

)
δij

+
3
2

m∗kBTVi Vj +
7kBT

2
σij

+2m∗kBTVkV(j δki ) +
6
5

q(i δjk )V
k + 2m∗V(i qj ) +

112m∗

50kBT
qi qj .

This is the same expression (80).

7 Comparison with previous models

Other hydrodynamical models for carrier transport in semiconductors have been proposed in the case of
Kane’s dispersion relation. In particular Tang et al. [16] proposed a model by considering the same moment
equations (10)–(13) in the stationary case. The constitutive equations have been derived from the analysis
of the Monte Carlo (MC) simulations of silicon devices in the stationary regime by considering the Kane
dispersion relation for the energy bands.

In [16] the authors have simulated three n+-n-n+ silicon diodes with different doping profile and applied
voltage of 2 Volt. The physical situation is schematically represented in Fig. 2 and can be tackled as a one
dimensional problem. The semiconductor device is constituted by two regions of high doping density, the
n+ regions (with typical values of the concentration of the order of 1018 cm−3), with inside the n region, a
region of low doping density, (with a typical value of the concentration of the order of 1016 cm−3).

+n+n

V

+-

mµ0.4mµ0.1 mµ0.1

n

Fig. 2. Schematic representation of a n+ - n - n+ ballistic diode

If we plot the values ofHi , Uij and Rij obtained from the MC simulations as function ofW, or Vi or
Si , we do not in general get a single-valued function but a hysteresis loop appears. The appropriate forms of
the constitutive functions are then obtained by minimizing the area bounded by the several branches of the
multivalued function, in order to get a single-valued function.

The tensorUij has been modelled as

Uij = U δij + m∗Vi Vj + 2αm∗Vi Sj (82)

and the analysis of the MC data shows that the isotropic partU of U ij can be considered with good
approximation as a single-valued function of the energyW

U =
2
3

W + g(W)
4∑

k=0

ukWk .
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where

u0 = −1.01× 10−4, u1 = 0.004, u2 = −0.415,

u3 = 0.399, u4 = −0.175

and

g(W) =

{
0 if W ≤ W0 = 3/2kBT0

1 − exp
[
−

(
W
W0

− 1
)]
, otherwise
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... parabolic band case, − Kane dispersion relation, o MC fitting

Fig. 3. U (0) obtained with the maximum entropy principle
in the parabolic case (dotted line), with the Kane dispersion
relation (continuous line) and with the MC simulation [16]
vs. the energyW

In Fig. 3 we compare the values of the isotropic part of the tensorUij obtained in [16], by the fitting of
the MC data, and by the maximum entropy principle in the case of parabolic band approximation and in the
case of the Kane dispersion relation.

The agreement between the fitting of the MC data and the results given by the ME is highly satisfactory.
Moreover it is clear that the higher the energy is the less accurate the parabolic band approximation becomes.

Concerning the anisotropic part, we observe that although the definition implies thatUij must be symmetric
for Kane’s dispersion relation, the expression proposed in [16] is not symmetric. Moreover in the approach
of Tang et al. [16] there is thea priori assumption that the coefficients of the termsSi Vj are zero and the
isotropic part does not contain second order corrections.

The tensorRij was modelled in [16] as

Rij = Rδij + (Si − 3.8WVi )(Vj + 2αm∗Sj )

and forR a fitting formula similar to that forU was used

R =
10
9

W2 + g(W)
4∑

k=0

rkWk , (83)

where

r0 = −5.3 × 10−3, r1 = 0.129, r2 = −0.259,

r3 = −0.539, r4 = 0.326.

Again there is the problem that the last expression forRij is not symmetric and the second order terms
in the isotropic part are missing. At variance withU the comparison betweenR and R(0) (Fig. 4) shows
that the agreement, although acceptable, does not present the same accuracy. The qualitative behaviour is
good in the case of the Kane dispersion relation, but there is a certain quantitative discrepancy. Instead the
parabolic approximation presents a little different profile, but the agreement is better. This seems to be a mere
coincidence.
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Fig. 4. R(0) obtained with the maximum entropy principle
in the parabolic case (dotted line), with the Kane dispersion
relation (continuous line) and with the MC simulation [16]
vs. the energyW

We note that MC closure relations have been determined from one dimensional results and the inferred
tridimensional constitutive equations cannot be fully appropriate. Therefore a comparison between the ex-
pressions forUij andRij proposed in [16] and those obtained by using the ME principle cannot be performed
by a direct comparison of the coefficientsδk andγk . Probably only an analysis of the results of numerical
simulations of electron devices in one and two dimensions can assess the validity of the models.

At last the MC constitutive equation forH i is not reported in [16] because the stationary case was
considered. Since at the present time the relative MC data are not available to us we do not comment on the
results obtained forH i .

Conclusions

In this article we have presented a consistent closure for an hydrodynamical model for carrier transport in
silicon consisting of the moment equations for electron number density, momentum, energy and energy flux,
based on the maximum entropy principle. The explicit form of the maximum entropy distribution function
has been obtained by expanding in terms of a small anisotropy parameter up to second order and solving
the resulting algebraic equations. In this way we have avoided resorting to the elusive concept of local
thermal equilibrium (which, although physically appealing, is difficult to define rigorously in the case of
a non parabolic band because of the lack of an unambiguous definition of internal energy) and expansion
around it. The nonparabolicity of the energy band has been included by assuming the Kane dispersion relation,
improving on other hydrodynamical models based on the approximation of parabolic band which consider
the electrons as a gas of classical particles up to a normalization factor in the electron mass.

The closures we have obtained for the fluxes (constitutive functions) have been compared, where mean-
ingful, with the results of Monte Carlo simulations and the agreement is remarkable. What remains to be
done in order to build a consistent hydrodynamical model is to evaluate the production terms (which are the
moments of the collision operator) with the maximum entropy distribution function. Work along these lines
is in progress and will be published elsewhere.
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