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Application of High Moment Theory to the Plane Couette Flow
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In this paper we make use of 26 field equations derived by the moment method to describe
the stationary plane Couette flow for dense and rarefied gases. In such high moment theories
one needs more boundary conditions than can be controlled experimentally. We employ a new
minimax principle for the entropy production to determine the remaining boundary conditions.
There results a heat flux in the direction of the flow, proportional to the curvature of the velocity
field. Such a heat flux confirms results from molecular dynamics, it vanishes in a dense gas.

1 Introduction

The stationary plane Couette flow is one of the standard problems in the kinetic theory of gases. It has been
dealt with by many investigators [1]–[7]. Here we choose this problem to test a new minimax principle for
the entropy production. With the help of this new principle it is possible to apply high moment theories to
boundary value problems like the plane Couette flow.

We consider a steady flow of a monatomic ideal gas, generated by the relative motion of two infinite
parallel plates shown in Fig. 1.

1

2

Fig. 1. The plane Couette flow.

The left plate moves with velocity−V in its own plane at the space coordinatex2 = −L, while the
right plate atx2 = L moves parallel to the left plate with velocity +V . The flow is assumed to be laminar
and no external forces are taken into account. In addition the temperatures of the plates are prescribed in
the experiment. Furthermore we assume that all quantities depend only on thex2 component of the space
coordinate. The main objective is the determination of the fields mass density%, velocity vi , and temperature
T. The results depend strongly on the density of the gas or more precisely on the Knudsen numberKn which
is given by the ratio of the mean free path of the particles to a characteristic macroscopic length. We can
roughly distinguish two regimes:
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Hydrodynamic regime: For a dense gas the Navier-Stokes-Fourier theory is sufficient to describe this problem
satisfactorily. In this case the pressure deviatorp<ij > and the heat fluxqi are given by

p<ij > = −2µ
∂v<i

∂xj >
, (1)

qi = −κ
∂T
∂xi

. (2)

The coefficientsµ andκ are the viscosity and the heat conductivity, respectively. The angular brackets denote
the symmetric and traceless part. In the linearized case, whenµ andκ are constant, the velocity is a linear
function connecting the values−V0 and +V0 at the left and the right plate.
Kinetic regime: For a rarefied gas the Navier-Stokes-Fourier theory fails. The velocity is not a linear function
even in the linear case [1], and - one of the most interesting facts - the heat fluxq1 in the flow direction is
not zero even though there is no temperature gradient in the flow direction! Therefore, Fourier’s law is not
valid in the kinetic regime. This result is obtained by the application of different kinetic theories [2],[5]-[8].
From the theory described below it follows for the plane Couette flow withv2 = v3 = 0, for the heat flux
perpendicular to the plates

q2 = −κ
dT
dx2

− 39
14

µ

%

dp<22>

dx2
, (3)

and for the heat flux parallel to the plates

q1 = −909
266

µ2

%

d2v1

dx2
2

. (4)

q1 may be said to be induced by the shear flow and it can be observed in computer experiments. Figure 2
shows the heat fluxesq1 andq2, obtained by a molecular dynamic simulation1 for hard disks made by Risso
and Cordero [2]. This simulation refers to the large2 Knudsen numberKn = 0.1141. Therefore, the gas is
quite dilute andq1 is different from zero, except in the center of the channel.
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Fig. 2. Heat flux q2 perpendicular to the plates
andq1 parallel to the plates from MD calculations
[2].

2 Moment method

The moment method is based on the Boltzmann equation

∂f
∂t

+ ci
∂f
∂xi

= S (f , f ) , (5)

1 In the original paper by Risso and Cordero the heat fluxq1 is plotted forv1(−L) = V andv1(L) = −V .
2 For instance, for argon at 300K , 1bar and a macroscopic length of 1m we haveKn = 3.6 · 10−8.
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for the distribution functionf (x, c, t) of atoms. Here,ci denotes the velocity of the atoms,t is the time and
S (f , f ) is an abbreviation of the collision integral. It is possible to calculate all thermodynamic quantities of
interest by the so calledmomentsof the distribution function. The mass density% and the momentum density
%vi are given by

% = m
∫

fdc and %vi = m
∫

ci fdc, (6)

wherem denotes the mass of an atom. With the peculiar velocityCi = ci − vi it is possible to calculate the
internal energy density as

%ε =
m
2

∫
C2fdC, (7)

the pressure deviator and the heat flux as

p<ij > = m
∫

C<i Cj >fdC and qi =
m
2

∫
Ci C

2fdC. (8)

This exhausts the moments with a physical meaning. But it is possible to proceee: We may define more
quantities -higher moments- which have no immediate plausible physical interpretation. Thus

%<ijk > = m
∫

C<i Cj Ck>fdC, (9)

∆ = m
∫

C4 (f − fM ) fdC, (10)

%kk<ij > = m
∫

C2C<i Cj >fdC. (11)

The distribution function in thermal equilibrium is the Maxwell distribution functionfM . From the Boltzmann
equation (5) one may derive transfer equations for the moments. Such a set of transfer equations is not closed.
The closure problem may be solved by the moment method of Grad [9] or by the entropy maximum method
[10]. Thus it is possible to derive a specific system of field equations for the set of 26 moments given by
(6)-(11).

In this work we are interested in the higher moment effects, not in the nonlinear effects. Therefore, we use
the linearized system which has the advantage that we get analytical solutions and in addition no problems
occur with non-unique solutions.

We linearize the system around an equilibrium state given by

% = %0, vi = 0, T = T0, p<ij > = 0, qi = 0, %<ijk > = 0, ∆ = 0, %kk<ij > = 0, (12)

and obtain the following set of 26 equations

∂%̃

∂t
+ %0

∂ṽk

∂xk
= 0, (13)

∂ṽi

∂t
+

k
m

T0

(
1
%0

∂%̃

∂xi
+

1
T0

∂T̃
∂xi

)
+

1
%0

∂p̃<ik>

∂xk
= 0, (14)

∂T̃
∂t

+
2
3

T0
∂ṽk

∂xk
+

2
3

1
k
m%0

∂q̃k

∂xk
= 0, (15)

∂p̃<ij >

∂t
+

4
5

∂q̃<i

∂xj >
+

∂%̃<ijk >

∂xk
+ 2%0

k
m

T0
∂ṽ<i

∂xj >
= −α%0p̃<ij >, (16)

∂q̃i

∂t
− 5

2
k
m

T0
∂p̃<ik>

∂xk
+

1
6

∂∆̃

∂xi
+

1
2

∂%̃nn<ik>

∂xk
+

5
2

k2

m2
%0T0

∂T̃
∂xi

= −2
3
α%0q̃i , (17)
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∂%̃<ijk >

∂t
+

1
7

{
∂%̃rr <ij >

∂xk
+

∂%̃rr <jk>

∂xi
+

∂%̃rr <ik>

∂xj
− 2

5

(
∂%̃rr <in>

∂xn
δjk +

∂%̃rr <jn>

∂xn
δik +

∂%̃rr <kn>

∂xn
δij

)}
= −3

2
α%0%̃<ijk >

(18)

∂∆̃

∂t
+ 8

k
m

T0
∂q̃k

∂xk
= −2

3
α%0∆̃, (19)

∂%̃rr <ij >

∂t
+ 14%0

(
k
m

T0

)2
∂ṽ<i

∂xj >
+

56
5

k
m

T0
∂q̃<i

∂xj >
+ 9

k
m

∂%̃<ijk >

∂xk
= −7

6
α%0

(
%̃rr <ij > − k

m
T0p̃<ij >

)
, (20)

for the 26 unknowns

%̃, ṽi , T̃, p̃<ij >, q̃i , %̃<ijk >, ∆̃, %̃rr <ij >. (21)

The quantities with the tilde denote deviations from the equilibrium state given by (12).k denotes the
Boltzmann constant. The parameterα is a number and follows from the interaction potential of the Maxwell
molecules for which the right hand side of the system is calculated [11].

In addition we need the entropy productionΣ for the 26 moment case. The entropy production contains
no linear parts, rather it is quadratic in the nonequilibrium quantities. Thus we obtain the following expression

Σ̃ =
α

k
mT2

0

(
1
2

p̃<ij >p̃<ij > +
1

24
(

k
mT0

)2

(
%̃kk<ij > − 7

k
m

T0p̃<ij >

)(
%̃ll <ij > − 7

k
m

T0p̃<ij >

)
+

1

4 k
mT0

%̃<ijk >%̃<ijk > +
4

15k
mT0

q̃i q̃i +
1

180
(

k
mT0

)2 ∆̃2

)
.

(22)

For details concerning the explicit derivation of such systems and of the entropy production see [11].
The underlined terms in (16) and (17) represent the Navier-Stokes law

p<ij > = −2µ
∂v<i

∂xj >
, with µ =

k
mT0

α
, (23)

and the Fourier law

qi = −κ
∂T
∂xi

with κ =
15
4

k2

m2 T0

α
. (24)

Therefore, we may interpret (16) and (17) as generalizations of the laws of Navier-Stokes and Fourier,
respectively. Furthermore we obtain explicit expressions for the viscosityµ and the heat conductivityκ for
the Maxwell molecules considered.

It is possible to derive systems with differently many moments, for instance Grad’s well-known 13 moment
system [9], or systems with 14, 20, 26, 35 and more moments [11]. Here we consider the 26 moment case
because this is the system with a minimal number of moments which differs in the linear case and for the
plane Couette flow from the Navier-Stokes-Fourier system.

The high moment theories were applied to several physical phenomena like plane harmonic waves [11],
light scattering [11, 12], the shock structure problem [11, 13] and the thermodynamics of radiation [11, 14].
From all these applications one may conclude that the moment method is capable of describing the phenomena
satisfactorily, if the number of moments is sufficiently high. For the circumstances in this paper this means: if
the gas becomes more and more dilute, systems with more and more moments must be considered in order to
obtain satisfactory results. Therefore, we may expect the 26 moment system to be good in the hydrodynamic
regime. In the kinetic regime, at least up to a certain Knudsen number.
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3 Application to the plane Couette flow

The following dimensionless quantities are introduced

ŷ =
x2

L
, B =

√
k
mT0

α%0L
, %̂ =

%̃

%0
, v̂i =

ṽi√
k
mT0

, T̂ =
T̃
T0

, p̂<ij > =
p̃<ij >

%0
k
mT0

, (25)

q̂i =
q̃i

%0
(

k
mT0

) 3
2

, ∆̂ =
∆̃

%0
(

k
mT0

)2 , %̂<ijk > =
%̃<ijk >

%0
(

k
mT0

) 3
2

, %̂rr <ij > =
%̃rr <ij >

%0
(

k
mT0

)2 . (26)

We assume that all quantities depend only on the space coordinatex2. With this ansatz some equations of the
system (13) up to (20) become trivial3 and we obtain at last eleven equations for the eleven unknowns

%̂, v̂1, T̂, p̂<11>, p̂<12>, p̂<22>, q̂1, q̂2, %̂<112>, %̂<222>, %̂kk<12>. (27)

The eleven equations split into two systems. For ˆv1, p̂<12>, q̂1, %̂kk<12> we obtain the four equations

dp̂<12>

dŷ
= 0,

38
63

dq̂1

dŷ
+

dv̂1

dŷ
= − 1

B
p̂<12>, (28)

d%̂kk<12>

dŷ
= −4

3
1
B

q̂1, 7
dv̂1

dŷ
+

52
7

dq̂1

dŷ
= −7

6
1
B

(%̂kk<12> − p̂<12>) , (29)

and for %̂, T̂, p̂<11>, p̂<22>, q̂2, %̂<112>, %̂<222> we obtain the seven equations

d%̂

dŷ
+

dT̂
dŷ

+
dp̂<22>

dŷ
= 0,

dq̂2

dŷ
= 0,

d%̂<222>

dŷ
= − 1

B
p̂<22>, (30)

26
7

dp̂<22>

dŷ
+ 5

dT̂
dŷ

= −4
3

1
B

q̂2,
366
245

dp̂<22>

dŷ
= − 1

B
%̂<222> (31)

d%̂<112>

dŷ
= − 1

B
p̂<11>,

61
49

dp̂<11>

dŷ
− 122

245
dp̂<22>

dŷ
= −3

2
1
B

%̂<112>. (32)

We may say that the equations (28) and (29) describe the shear flow problem and that the equations (30),
(31) and (32) are relevant to the heat flow problem. This is a result of the linearization.

From the equations (28) and (29) follows a simple expression for the heat flux ˆq1. By use of (23)2 its
dimensional form is given by (4). Also from (31)1 follows an expression forq2 which is given by (3).

In this work we are not interested in the details of accommodation of the particles at the walls. Therefore,
we forbid velocity slip and temperature jump at the boundaries.

In order to solve the complete system (28) through (32) of 11 equations for the 11 unknowns (27), we need
11 boundary conditions to determine the 11 constants that arise from integration. However, in an experiment
we can control only 4 boundary conditions! Here we prescribe the velocity ˜v1(−L) = −V , ṽ1(+L) = +V and
the temperaturẽT(−L) = T̃(+L) = 0 at the plates. For the dimensionless quantities we obtain

v̂1 (ŷ = −1) =
−V√

k
mT0

= −V̂ , v̂1 (ŷ = +1) =
+V√

k
mT0

= +V̂ , (33)

T̂ (ŷ = −1) = 0, T̂ (ŷ = +1) = 0. (34)

It is impossible in an experiment to control more quantities. For instance, if we prescribe the temperature at
the plate we cannot also prescribe the heat flux. Further, if we prescribe the velocity at the wall we cannot
also prescribe the pressure deviator. Of course, it is possible to use boundary conditions different from (33)
and (34). For instance, we may prescribe the heat flux at the plate, but then we cannot also control the
temperature.

3 For instance from (13) we getv2 = const and then the no-slip boundary condition impliesv2 = 0.
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Sometimes one has additional conditions which are not boundary conditions. For instance, in an experiment
it is possible to fix the mass in the channel. Then the deviation ˆ% must satisfy the condition

1∫
−1

%̂dŷ = 0. (35)

However, even with this additional condition it is impossible to determine all integration constants. This
problem gets worse in high moment theories where the number of integration constants becomes much
greater than the number of the physical controllable boundary conditions. Therefore, we need additional
physical information to determine the remaining boundary conditions.

Here we use the new minimax principle proposed by Struchtrup and Weiss [15]. This principle states:
In a stationary process the boundary values which are not controlled in the experiment assume values such

that the global maximum of the local entropy production becomes minimal.
Therefore, we have to adjust the remaining boundary values so that max(Σ(x2)) becomes minimal. Due

to the fact that we have a linear system we can do this analytically.
It is clear that the part of the entropy production depending on the variables of the system (30), (31) and

(32) is minimal for

%̂ = 0, T̂ = 0, p̂<11> = 0, p̂<22> = 0, q̂2 = 0, %̂<112> = 0, %̂<222> = 0. (36)

And indeed this is a solution of the system which satisfies the boundary conditions (34) and the integral
condition (35).

Now we consider the system (28) and (29). Here we have four equations and the two boundary conditions
(33). The solution is given by

v̂1 = C1 − BC2ŷ − 38
63

(
C3 sinh

(√
49

101
ŷ
B

)
+ C4 cosh

(√
49
101

ŷ
B

))
, (37)

p<12> = C2, (38)

q̂1 = C3 sinh

(√
49

101
ŷ
B

)
+ C4 cosh

(√
49
101

ŷ
B

)
, (39)

%̂kk<12> = 7C2 − 4
3

√
101
49

(
C3 cosh

(√
49
101

ŷ
B

)
+ C4 sinh

(√
49
101

ŷ
B

))
. (40)

We have to determine the four integration constantsC1, C2, C3 and C4. For the velocity we have the two
boundary conditions (33). Further we assume4 a skewsymmetric velocity profile ˆv1(ŷ) = −v̂1(−ŷ). From these
three conditions we obtain

C1 = 0, C3 =
−V̂ − 1

B C2

38
63 sinh

(√
49

101
1
B

) , C4 = 0. (41)

Therefore, onlyC2 has to be determined by the minimax principle. From (22) and the above results the
following expression results for the dimensionless entropy productionΣ̂

Σ̂ (ŷ, C2, B) =
Σ (ŷ, C2)

%2
0

k
mα

= C2
2 +

303
361

(
V̂ +

1
B

C2

)2 1 + 2 sinh2
(√

49
101

ŷ
B

)
sinh2

(√
49

101
1
B

) . (42)

Now we are able to evaluate the minimax principle. For a given velocityV̂ of the plates and a fixed parameter
B we look for the value ofC2, for which max(Σ̂(ŷ),−1 ≤ ŷ ≤ +1) becomes minimal. This may be done
analytically or numerically.

4 This assumption is not necessary. The minimax principle leads to the same result, irrespective of whether symmetry is assumed or
not. However, without the symmetry assumption we have to determine two constants.
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The parameterB is related to the Knudsen number. Between the viscosityµ and the mean free pathλ of
the particles we have [8]

µ = 0.499%0

√
8
π

k
m

T0 λ. (43)

As the characteristic macroscopic length of the problem the distance between the plates is chosen. Therefore,
with the viscosity given by (23) and the definition ofB given by (25)2 we obtain the relation

Kn =
λ

2L
= 0.628B. (44)

Since we are dealing with a linear system we choose a small valueV viz. V = 0.1 for the velocity of the
plates. The following figures show the results for several Knudsen numbers. The dependence of the integration
constantC2 as a function ofKn is shown in Fig. 4a. In Fig. 3a the velocity ˆv1 is shown as a function of
the space coordinate ˆy. It seems to be a straight line for every Knudsen number, but it is not: In Fig. 3b the
deviation of the velocity profile from the straight line is plotted. For small Knudsen numbersKn ≤ 0.001 the
velocity v̂1 is a straight line as it should be. For a moderately rarefied gas ˆv1 is not a straight line, even though
we are considering a linear system. The curve has an s-shape (Fig. 3b) which is in qualitative agreement with
other kinetic calculations [1]. The maximal deviation from the straight line is reached forKn = 0.266. For
Kn > 0.266 the s-shape behavior becomes smaller, see Fig. 3b,Kn = 0.4 andKn = 0.5. In a very rarefied
gas the result for the velocity profile is again a straight line. This is also in agreement with another kinetic
theory [3].
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Fig. 4. Pressure deviator as a function of the Knudsen number (a) and the profile of the heat flux parallel to the plates (b).

We conclude from (38) that the pressure deviatorp<12> is equal toC2. Therefore,p<12> is constant with
respect to ˆy and its dependence of the Knudsen number may be read off from Fig. 4a. The heat fluxq1 parallel
to the plates is shown in Fig. 4b. In the rarefied gasq1 is not zero except in the center of the channel. For
small Knudsen numbers ˆq1 vanishes except in a small boundary layer near the plates. This boundary layer
vanishes in the limitKn → 0 as may be expected. In order to show the boundary layer for small Knudsen
numbers,q1 is plotted in Fig. 5a, normalized by its value on the left boundary. The qualitative behavior is
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the same as in Fig 2 which was obtained by molecular-dynamics. The value ofq1 at the left boundary as a
function of the Knudsen number is shown in Fig. 5b. The dependence ofq1 (−1) for Kn → 0 is quadratic
in Kn, while for Kn → ∞ we getq1 (−1) → 0.061. The quantity ˆ%kk<12> is shown in Fig. 6a, but only for
completeness, because we have no physical interpretation for it. More interesting is the entropy production
Σ̂, represented in Fig. 6b. We see that the maximum ofΣ̂ is always at the boundary.

From the results for the velocity ˆv1 and the heat flux ˆq1 we may conclude that the linearized 26 moment
system together with the minimax principle is able to describe the plane Couette flow qualitatively correctly for
dense and rarefied gases. However, for better results which deserve direct comparison with MD calculations
the nonlinear system must be solved. This remains to be done in a future work.

4 Conclusion about the minimax principle

We want to point out an additional interesting fact concerning the minimax principle. In order to solve the
whole system (13) up to (20) we have assumed that all quantities depend only on the space coordinatex2, -
nothing more. In addition it is possible to assume ˆq1 = 0. If we do that, we obtain a much simpler system
than (28) through (32) which is identical with the linearized Navier-Stokes-Fourier system. There are enough
boundary conditions to solve that system and no minimax principle is necessary. It is remarkable that the
system (13) through (18) together with the minimax principle does not lead to this solution, although it is
a possible one. Instead it leads to the solution we have presented above in which ˆq1 is different from zero
for the dilute gas and which is supported by molecular dynamics. Therefore, the plane Couette flow is an
example in which the minimax principle shows its relevance in the hydrodynamicand the kinetic regime.
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