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Maximum wave velocity in the moments system of a relativistic gas
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We consider the system of moments associated with the relativistic Boltzmann-Chernikov
equation. Using the particular symmetric form obtained by the closure procedure of Extended
Thermodynamics we deduce a lower bound for the maximum velocity of wave propagation
in terms of the number of moments for a non-degenerate gas. When the number of moments
increases this velocity tends to the speed of light. We also give the lower bound estimate in
the limit cases of ultrarelativistic fluids and in the non relativistic approximation.

In the relativistic kinetic theory of a rarefied gas the phase deffigky,p®) (o = 0, 1,2, 3) satisfies the
Boltzmann-Chernikov equation

P 0af =Q, 9o =0/0x" @

in which x* andp® are the space-time coordinates and the four-momentum of an atom respectively. We have
Pap® = (p%)? — p? = m?c?, p? = (pY)? + (p?)? + (p3)?, wherem is the atomic rest mass amdthe speed of
light. The right-hand side of (1) is due to collision between the atoms.
Upon multiplication byp®+-p*, (k = 1,...) and integration the Boltzmann-Chernikov equation provides
an infinite system of balance equations

Do Fh=¢gA A=0,... (2)

for the moments$ A and productiong” given by
Fo) = [prptar. )= [ Qe . ©)

where the inde)X is a multindex. Specifically we have

A _ 1 Fa/.\_ Fo A _ 0 forA=0
p-= poélpaz - pOtA ’ - { Faor..oa - gotoa for A> 1.

We recall that the first five equations of (2) are the conservation laws of mass, momentum and energy;
according by the first five productions vanish. The volume element of momentum space is gidén=by
v/—gdptdp?dp®/p° and the integrals - supposed convergent - are taken over the whqlespdce. We
consider a finite number of moments equations with the tensorial iAdex, .. ., n.

In a previous paper [1] the closure procedureEoftended Thermodynami¢®] was applied and, in
particular, it was proved thdt depends on the single variable
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v =3 ua?)p, @)

A=0

if the truncated system (2) is compatible with the entropy principle, i.e. any solution of (2) is also solution
of the entropy equation

0,h®=¢g<0
where—h® and —g are the entropy four vector and the entropy production respectively. The fields
u’ forA=0
-
Ua = { U\apan TOFr1<A<n )

represent the components of thmain fieldfor which the truncated original system (2) may be written in the
symmetric hyperbolic form as follows

n

D HB(U) datg = gA(ug),  A=0,....n. (6)
B=0

The four matriceH “*8(a = 0, 1, 2, 3) are Hessian matrices. Indeed we have

o2h'° . .
Mg = S = [F/ Pt phet dP, with ()= [ Fop* dP,
A~Y~B

andF (y) is an antiderivative of (x) with dF /dx =f > 0, d?F /dx? > 0. Moreoverh® must be equal to
[ p* (XF’(X) — F(x))dP. Comparing with the expression of the entropy four-vector for a non degenerate
gash* =k [ pf logfdP provides

f =ex/k-1, 7)

In [1] it was proved that this closure procedure is equivalent to the one obtained Mattimum Entropy
Principle by which the entropy density is a maximum under the constraint that the moments are assigned
functions [3]. Also in [1] it was shown that the maximum characteristic velocity of (6) does not exceed the
speed of light. However, according to the arguments of [1] the maximum speed might still be smaller than
This gap is closed in the present paper. Indeed here we show that a lower bound for the maximum velocity
tends toc when the number of moments increases.

In the observer frame the characteristic polynomial which determines the wave speédse system

(6) is given by
82h/i A 62h/0 0
det(au;\aué A c@u@ué) -

wheren; are the spatial components of the normal of the wave frort 1, 2, 3). The system is symmetric
hyperbolic sinceh’® is a convex function ofi,. Therefore a theorem of linear algebra provides the result that

azh/i . )\max azh/o

n — is negative semi-definite 8
durou; "~ ¢ ougou ©° Y ®

where\max is the largest characteristic velocity. Since we must consider only the independent components of
the main fieldu/,, ., which are symmetric tensors, we may choage< a, < ... < ax. All of the indices

may assume the valuesX2, 3 and therefore, - following [1], - the components _,, may be mapped into
the variablesy), s with p+q +r +s=k (k = 1,...,n), wherep,q,r,s are the numbers of indices among
a1 ... Which are equal to @, 2 or 3 respectively. With this notation we have

n
=3 s (007 (0 (0% (1°)°,  pHa+r+s=k
k=0

and becausepf)? is equal tom?c? + p?, the first indexp can take only two values: 0 and 1. Now, since the
number of elements with the sum of three integetsr +s =k with k =0,...,mis (m+1)(m+2)(m+3)/6,
the numbem (n) of independent components of, - and equations - up to orderis N(n) = (n + 1)(n +
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2)(n+3)/6+n(n+1)(n+2)/6 = (n+1)(n+2)(2n+3)/6 so thatN (n+1) =N(n) +(n+2)°. Hence the previous
condition (8) may be written in the form

azh/i B )\max azh/o B
aut/uvw c aup/)qrsal'lt/uvw -

N
8u,gqrS

(1/k)/e’</k‘1 (pi N — AmaxDO/C) (po)p+t (pl)qm (p2)l‘+v (p3)5+w dp

and this matrix must be negative semi-definite. The elemaptsf such a matrix satisfy the inequality
ajj a > aﬂ-2 and therefore we have the inequalities

[ & /) (07 (01 (57)7 () P

/ &% (p'm — Ama®/) () (P)* (p2)% (p%)%" dP > (©)
2

</ e/ (' — Amap®/) (p9)7" ()™ (P (p°)°" dP) .

Now we consider a wave propagating into an equilibrium state. In this case the first five components of
the main field arev’ = G/T, u), = —u, /T, whereG, T andu,, are respectively the chemical potential, the
absolute temperature and the four-velocity [4]. The remaining main fields are zero [2]. Therefore we have
Ye/K = (G — u,p®)/(KT). In the rest framep' = 0, u® = ¢, p® = \/m2c2 + p2, the previous expression

becomes
Xe .G . P - me*
kK kT mec2’ T kT

Inserting this into (7) we obtain the well knowiitther equilibrium distribution function.
With the special choice of indices valupsst=r =v=s=w=0,g=n,u=n -1, andn; = (1,0,0)
the inequality (9) reduces to
2

() [/ @) % [ et (o)™ Vatp > (([evk o) ap0) o)

since the integrals of the odd functions vanist’g = dp'dp®dp?). With the polar representatiop® =
mcrsind cosyp, p? = mersindsing, p3 = mcrcosd the inequality (10) becomes

2 2w pm ptoo
Amax / / / exp (—7\/ 1+ r2) r2"*2(sinf)?"*(cosp)?" drdfdy -
0 0 JO

C2

27 pm ptoo
/ // exp(—7v1+r2)rZ“(sinG)Z“‘l(cosw)Z“‘zdrdedap2
0 0 Jo
2

27 pm o ptoo
[/ / / exp(—m/l +r2) r2*2(sing)**(cosy)® drdddp/V'1 +r2] .
0 0 JO
Let us denote the integrals as
In:/ exp(—7v1+r2>r2”dr, Jn:/ exp(—7v1+r2>r2”dr/\/1+r2. (11)
0 0

Integration by part provides
In =7Jnsr/ (20 +1). (12)

On the other hand we have

An /07r (sinf)*™dg = /xI" <n+;> /T (n+1),

2w 2
Bn / (cos)?'dg = 22172 /" (2n + 1) [F @ - nﬂ .
0
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I is the classical Euler’s function. Therefore we arrive at
Moy o @0+ 17 1A By

. 13
c2 ~ ’72|n+1An_%Bn—l ( )
Now |, may be written in terms of the Bessel function of the second kind
1 /2\" 1
In = ﬁ (’y> Kns1 (7) I <n + 2)
while Ay /An-1 =B,/Bn_1 =1—1/2n and (13) gives
Mo 2n—1
? > m¢n+la (14)
with )
@n+1Y Ih _ (2n+1)Kns1 ()
= = . 15
i 72 In+1 Y Kn+2 (7) (13)
Thus finally we obtain the lower bound
)‘rznax > (2n — 1) Kns1 () (16)

¢ = 7 Kuz()
Therefore we concludefFor any truncated moment system - with tensorial index n - compatible with an
entropy principle, the maximum velocity of a disturbance propagating into an equilibrium state satisfies the
lower-bound(16).
Now our goal is to prove that this lower-bound increases witto the light velocityc: In fact it is
obvious from the definitions (11) thdt < I, so that we get from (12)

V¥
o1 <1 a7

From the recurrence relation for Bessel functits, — Kn = 2 (n + 1)K+1/~ we obtain finally

1 yn  y _2(+1)
Yper 20n—12n+1  2n+1°

With this and (17) we conclude thatn+1 — 1 for n — oo and therefore by (14) the limit value Ofnax is
¢, since it has already been proved that it cannot be larger.

Thuswhen the number of moments tends to infinity the maximum velocity in equilibrium tends to the light
velocity.

This last result improves a previous one [5] in which it was shown that the maximum velocity does
not decrease when the number of moments increases and it is in agreement with the one (e.g. [6]) obtained
directly from the linear Boltzmann-Chernikov equation in which the maximum phase velocity in equilibrium
is c. We observe that in contrast to [6] our proof is completely independent of the interactioi@terfml).

In the ultrarelativistic casecorresponding to smalj, taking the properties of the Bessel functions into
account wheny — 0: Kpt1/(vKn+2) — 1/(2(1 +n)), we obtain for the inequality (16)

A2 o S 2n-1)
c2 T 2(n+1)
On the other hand whef — oo in the non relativistic limit K /K,+1 — 1, and (16) yields:
Ao 2n—1 _2n—1kT
> = —.
2~ v c2 m

In vy
e 20+ 1

and from (15) 0<

In this classic case we introduce the sound velociy g'%, and obtain

@(>§ n_}
c2 ~ 5 2)’

which coincides with the inequality already obtained in [1].
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