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Maximum wave velocity in the moments system of a relativistic gas
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We consider the system of moments associated with the relativistic Boltzmann-Chernikov
equation. Using the particular symmetric form obtained by the closure procedure of Extended
Thermodynamics we deduce a lower bound for the maximum velocity of wave propagation
in terms of the number of moments for a non-degenerate gas. When the number of moments
increases this velocity tends to the speed of light. We also give the lower bound estimate in
the limit cases of ultrarelativistic fluids and in the non relativistic approximation.

In the relativistic kinetic theory of a rarefied gas the phase densityf (xα,pα) (α = 0,1,2,3) satisfies the
Boltzmann-Chernikov equation

pα∂αf = Q, ∂α = ∂/∂xα (1)

in which xα andpα are the space-time coordinates and the four-momentum of an atom respectively. We have
pαpα = (p0)2 − p2 = m2c2, p2 = (p1)2 + (p2)2 + (p3)2, wherem is the atomic rest mass andc the speed of
light. The right-hand side of (1) is due to collision between the atoms.

Upon multiplication bypα1..pαk , (k = 1, . . .) and integration the Boltzmann-Chernikov equation provides
an infinite system of balance equations

∂αFαA = gA, A = 0, . . . (2)

for the momentsFαA and productionsgA given by

FαA(xβ) =
∫

pαpA f dP, gA(xβ) =
∫

QpA f dP, (3)

where the indexA is a multindex. Specifically we have

pA =

{
1
pα1pα2 · · · pαA

, FαA =
{

Fα

Fαα1...αA
, gA =

{
0 for A = 0
gα1...αA for A ≥ 1.

We recall that the first five equations of (2) are the conservation laws of mass, momentum and energy;
according by the first five productions vanish. The volume element of momentum space is given bydP =√−g dp1dp2dp3/p0 and the integrals - supposed convergent - are taken over the whole ofp-space. We
consider a finite number of moments equations with the tensorial indexA = 0, . . . ,n.

In a previous paper [1] the closure procedure ofExtended Thermodynamics[2] was applied and, in
particular, it was proved thatf depends on the single variable
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χ =
n∑

A=0

u′
A(xβ)pA, (4)

if the truncated system (2) is compatible with the entropy principle, i.e. any solution of (2) is also solution
of the entropy equation

∂αhα = g ≤ 0

where−hα and−g are the entropy four vector and the entropy production respectively. The fields

u′
A =

{
u′ for A = 0
u′

α1α2···αA
for 1 ≤ A ≤ n

(5)

represent the components of themain fieldfor which the truncated original system (2) may be written in the
symmetric hyperbolic form as follows

n∑
B=0

H αAB(u′
C ) ∂αu′

B = gA(u′
C ), A = 0, . . . ,n. (6)

The four matricesH αAB(α = 0,1,2,3) are Hessian matrices. Indeed we have

H αAB(u′
C ) =

∂2h′α

∂u′
A∂u′

B

=
∫

F ′′(χ) pαpApB dP, with h′α(u′
C ) =

∫
F (χ)pα dP,

and F (χ) is an antiderivative off (χ) with dF/dχ = f > 0, d2F/dχ2 > 0. Moreoverhα must be equal to∫
pα

(
χF ′(χ) − F (χ)

)
dP. Comparing with the expression of the entropy four-vector for a non degenerate

gashα = k
∫

pαf log f dP provides
f = eχ/k−1. (7)

In [1] it was proved that this closure procedure is equivalent to the one obtained by theMaximum Entropy
Principle by which the entropy density is a maximum under the constraint that the moments are assigned
functions [3]. Also in [1] it was shown that the maximum characteristic velocity of (6) does not exceed the
speed of light. However, according to the arguments of [1] the maximum speed might still be smaller thanc.
This gap is closed in the present paper. Indeed here we show that a lower bound for the maximum velocity
tends toc when the number of moments increases.

In the observer frame the characteristic polynomial which determines the wave speedsλ of the system
(6) is given by

det

(
∂2h′i

∂u′
A∂u′

B

ni − λ

c
∂2h′0

∂u′
A∂u′

B

)
= 0,

whereni are the spatial components of the normal of the wave front (i = 1,2,3). The system is symmetric
hyperbolic sinceh′0 is a convex function ofu′

A. Therefore a theorem of linear algebra provides the result that

∂2h′i

∂u′
A∂u′

B

ni − λmax

c
∂2h′0

∂u′
A∂u′

B

is negative semi-definite (8)

whereλmax is the largest characteristic velocity. Since we must consider only the independent components of
the main fieldu′

α1...αk
, which are symmetric tensors, we may chooseα1 ≤ α2 ≤ . . . ≤ αk . All of the indices

may assume the values 0,1,2,3 and therefore, - following [1], - the componentsu′
α1...αk

may be mapped into
the variablesu′

pqrs with p + q + r + s = k (k = 1, . . . ,n), wherep,q, r , s are the numbers of indices among
α1 . . . αk which are equal to 0,1,2 or 3 respectively. With this notation we have

χ =
n∑

k=0

u′
pqrs

(
p0

)p (
p1

)q (
p2

)r (
p3

)s
, p + q + r + s = k

and because (p0)2 is equal tom2c2 + p2, the first indexp can take only two values: 0 and 1. Now, since the
number of elements with the sum of three integersq + r + s = k with k = 0, . . . ,m is (m+ 1)(m+ 2)(m+ 3)/6,
the numberN (n) of independent components ofu′

pqrs - and equations - up to ordern is N (n) = (n + 1)(n +
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2)(n + 3)/6 +n(n + 1)(n + 2)/6 = (n + 1)(n + 2)(2n + 3)/6 so thatN (n + 1) = N (n) + (n + 2)2. Hence the previous
condition (8) may be written in the form

ni
∂2h′i

∂u′
pqrs∂u′

tuvw

− λmax

c
∂2h′0

∂u′
pqrs∂u′

tuvw

=

(1/k)
∫

eχ/k−1
(
pi ni − λmaxp

0/c
) (

p0
)p+t (

p1
)q+u (

p2
)r +v (

p3
)s+w

dP

and this matrix must be negative semi-definite. The elementsaij of such a matrix satisfy the inequality
aii ajj ≥ a2

ij and therefore we have the inequalities∫
eχ/k

(
pi ni − λmaxp

0/c
) (

p0
)2p (

p1
)2q (

p2
)2r (

p3
)2s

dP ·

·
∫

eχ/k
(
pi ni − λmaxp

0/c
) (

p0
)2t (

p1
)2u (

p2
)2v (

p3
)2w

dP ≥ (9)

(∫
eχ/k

(
pi ni − λmaxp

0/c
) (

p0
)p+t (

p1
)q+u (

p2
)r +v (

p3
)s+w

dP

)2

.

Now we consider a wave propagating into an equilibrium state. In this case the first five components of
the main field are:u′ = G/T, u′

α = −uα/T, whereG,T and uα are respectively the chemical potential, the
absolute temperature and the four-velocity [4]. The remaining main fields are zero [2]. Therefore we have
χe/k = (G − uαpα)/(kT). In the rest frame,ui = 0, u0 = c, p0 =

√
m2c2 + p2, the previous expression

becomes
χe

k
=

G
kT

− γ

√
1 +

p2

m2c2
, γ =

mc2

kT
.

Inserting this into (7) we obtain the well known Jüttner equilibrium distribution function.
With the special choice of indices valuesp = t = r = v = s = w = 0, q = n, u = n − 1, andni ≡ (1,0,0)

the inequality (9) reduces to

(
λ2

max/c2
) ∫

eχe/k
(
p1

)2n
d3p

∫
eχe/k

(
p1

)2(n−1)
d3p ≥

(∫
eχe/k

(
p1

)2n
d3p/p0

)2

(10)

since the integrals of the odd functions vanish (d3p = dp1dp2dp3). With the polar representationp1 =
mcr sinθ cosϕ, p2 = mcr sinθ sinϕ, p3 = mcr cosθ the inequality (10) becomes

λ2
max

c2

∫ 2π

0

∫ π

0

∫ +∞

0
exp

(
−γ

√
1 + r 2

)
r 2n+2(sinθ)2n+1(cosϕ)2n drdθdϕ ·

·
∫ 2π

0

∫ π

0

∫ +∞

0
exp

(
−γ

√
1 + r 2

)
r 2n(sinθ)2n−1(cosϕ)2n−2 drdθdϕ ≥

[∫ 2π

0

∫ π

0

∫ +∞

0
exp

(
−γ

√
1 + r 2

)
r 2n+2(sinθ)2n+1(cosϕ)2n drdθdϕ/

√
1 + r 2

]2

.

Let us denote the integrals as

In =
∫ ∞

0
exp

(
−γ

√
1 + r 2

)
r 2ndr , Jn =

∫ ∞

0
exp

(
−γ

√
1 + r 2

)
r 2ndr/

√
1 + r 2. (11)

Integration by part provides
In = γJn+1/ (2n + 1) . (12)

On the other hand we have

An =
∫ π

0
(sinθ)2ndθ =

√
πΓ

(
n +

1
2

)
/Γ (n + 1) ,

Bn =
∫ 2π

0
(cosθ)2ndθ = 22n+1π2/Γ (2n + 1)

[
Γ

(
1
2

− n

)]2

.
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Γ is the classical Euler’s function. Therefore we arrive at

λ2
max

c2
≥

(2n + 1)2 InAn+ 1
2
Bn

γ2In+1An− 1
2
Bn−1

. (13)

Now In may be written in terms of the Bessel function of the second kind

In =
1√
π

(
2
γ

)n

Kn+1 (γ)Γ

(
n +

1
2

)

while An/An−1 = Bn/Bn−1 = 1 − 1/2n and (13) gives

λ2
max

c2
≥ 2n − 1

2n + 1
ψn+1, (14)

with

ψn+1 =
(2n + 1)2

γ2

In

In+1
=

(2n + 1)
γ

Kn+1 (γ)
Kn+2 (γ)

. (15)

Thus finally we obtain the lower bound

λ2
max

c2
≥ (2n − 1)

γ

Kn+1 (γ)
Kn+2 (γ)

. (16)

Therefore we conclude:For any truncated moment system - with tensorial index n - compatible with an
entropy principle, the maximum velocity of a disturbance propagating into an equilibrium state satisfies the
lower-bound(16).

Now our goal is to prove that this lower-bound increases withn to the light velocityc: In fact it is
obvious from the definitions (11) thatJn < In so that we get from (12)

In

In+1
<

γ

2n + 1
, and from (15), 0<

γψn

2n − 1
< 1. (17)

From the recurrence relation for Bessel functionsKn+2 − Kn = 2 (n + 1)Kn+1/γ we obtain finally

1
ψn+1

− γψn

2n − 1
γ

2n + 1
=

2 (n + 1)
2n + 1

.

With this and (17)2 we conclude thatψn+1 → 1 for n → ∞ and therefore by (14) the limit value ofλmax is
c, since it has already been proved that it cannot be larger.

Thuswhen the number of moments tends to infinity the maximum velocity in equilibrium tends to the light
velocity.

This last result improves a previous one [5] in which it was shown that the maximum velocity does
not decrease when the number of moments increases and it is in agreement with the one (e.g. [6]) obtained
directly from the linear Boltzmann-Chernikov equation in which the maximum phase velocity in equilibrium
is c. We observe that in contrast to [6] our proof is completely independent of the interaction termQ of (1).

In the ultrarelativistic casecorresponding to smallγ, taking the properties of the Bessel functions into
account whenγ → 0: Kn+1/(γKn+2) → 1/(2(1 +n)), we obtain for the inequality (16)

λ2
max

c2
≥ (2n − 1)

2(n + 1)
.

On the other hand whenγ → ∞ in the non relativistic limit Kn/Kn+1 → 1, and (16) yields:

λ2
max

c2
≥ 2n − 1

γ
=

2n − 1
c2

kT
m
.

In this classic case we introduce the sound velocitycS =
√

5
3

kT
m , and obtain

λ2
max

c2
S

≥ 6
5

(
n − 1

2

)
,

which coincides with the inequality already obtained in [1].
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