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A kinetic theory is developed for rarefied polyatomic gases of spherical and rough molecules
with rotational energy in the presence of an external constant magnetic field. A method of
solution of Boltzmann equation that combines features of the methods of Chapman-Enskog
and Grad is used to determine transport coefficients that depend on the external magnetic field
(Senftleben-Beenakker effect).

1 Introduction

In this work we develop a kinetic theory of rarefied polyatomic gases consisting of spherical molecules with
internal rotational energy in an external constant magnetic field. We assume that the energy of the internal
rotational variable can be treated classically [1] but a similar procedure could also be applied if the energy
of the internal variable were treated quantum-mechanically [2].

The standard methods used in kinetic theory of transport processes are the Chapman-Enskog [3] and the
Grad method [4]. In the Chapman-Enskog method the deviation from equilibrium is found as a solution of
an integral equation that follows from the Boltzmann equation. In the Grad’'s method the deviation from
equilibrium of the distribution function is written in terms of moments of the distribution function. The
transport coefficients of the latter are then obtained from the field equations of the moments through an
iteration scheme.

An alternative method was proposed by Bezerra, Reinecke and Kremer [5] that combines the features of
the Chapman-Enskog and Grad methods. It requires neither a solution of the integral equation nor the use
of the field equations for the moments. As in Grad’s method the deviation of equilibrium of the distribution
function is written in terms of the moments of the distribution function whereas the constitutive equations
follow directly from the Boltzmann equation. The combined Chapman-Enskog and Grad method was applied
to a monatomic gas and mixtures [5] and to ionized gases [6].

The aim of this work is to apply the combined Chapman-Enskog and Grad method to polyatomic gases
and to determine the changes of thermal conductivity and shear viscosity coefficients in a presence of a
constant magnetic field (Senftleben-Beenakker effect) [7]. The model of the rough spheres of Bryan [3] is
used for molecular collisions; the principal feature of this model is the reversing of the relative velocity of
the points which come into contact in a binary collision. The theory is based on thirty-seven scalar fields that
are the moments of the distribution function. The influence of dominant polarizatigng - Cx andw;jw;>
[7] are considered and the thermal conductivity tensor and the shear viscosity tensor are obtained as functions
of the external magnetic field. The inversion of a fourth-order tensor is used to determine the shear viscosity
tensor. The results obtained agree with those that follow from the Chapman-Enskog method [8, 9].
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2 Dynamics of a binary collision and Boltzmann equation

We consider a rarefied polyatomic gas of perfectly rough, perfectly elastic and spherical molecules with mass
m, diametera and moment of inertid. We denote byd, ¢;) and (v, w;) the linear and the angular velocities

of two molecules before collision while'( c;) and (', w}) are these velocities after collisiok.is the unit

vector in the direction of the line that joins the two molecular centers at collision, pointing from the center
of the molecule labelled 1 to the other. If we apply the conservations laws of linear and angular momentum
to the molecules we obtain the impact equations

mc¢ =mc —J, mc; =mc; +J,
2.1)
Iw’:Iw+2k><J, Iw’1=lw1+2k><J,

whereJ is the impulse exerted on the molecule 1 by the molecule without label. In a binary collision of
rough spheres the relative velocity of the points of contact is reversed after collision and the impulse is given
by

Iz M g Bk x wtw)+ Lk gk, 2.2)

k+1 2 K

whereg = ¢; — c is the relative linear velocity between the centers of the moIecuIestanq;‘;z is the
dimensionless moment of inertia which may range from 0/® &rresponding respectively to a concentration
of mass at the center of the molecule and to a uniform distribution of the mass at the surface of the spherical
molecule.

Unlike the case of smooth spheres, no inverse collision exists for rough spheres, i.e., collision in which
molecules with initial velocitiesd, w’) and €}, w1’) result molecules with final velocities,(w) and €, w1).

Hence we denote byc(,w*) and €;,w:*) the initial velocities of molecules that correspond to the final
velocities €, w) and €1, w1).

The state of a polyatomic rarefied gas of spherically symmetrical and rough spheres is characterized by
the one-patrticle distribution functiofi(x, ¢, w,t) such thatf (x,c,w,t) dxdcdw represents the number of
molecules in the volume element betweerand x + dx, with linear velocities between andc + dc and
angular velocities between andw +dw, at timet. The distribution function obeys the Boltzmann equation

of of noof _of of

+ ¢ + + ¢ +v (w x H), o _
ot "% T ow ot Gox T ' Ow

0%

:/(fl*f* —ff)a?(g-k)dk dc; dw;. (2.3)

In Eqg. (2.3) we have neglected external body forces but considered the external torguex H exerted
by a magnetic fieldH upon the magnetic moment of a molecyle= ~l w, wherey = 2rguy /h is the
molecular gyromagnetic ratio related to the rotational leapdactor, uy the nuclear magneton arid the
Planck constant. Moreovedk is an element of solid angle and the following abbreviations were introduced

f*=f(X,C*,w*,t), f=f(X,C,w,t),
(2.4)
fl* =f (X7 C?Ii7w;7t) 5 fl :fl (X7 Cj_,(.d]_,t) .

3 Basic fields and Grad distribution function

The macroscopic state of a polyatomic gas will be described by thirty-seven basic scalar fields defined by

g(x,t):/mfdcdw, oV (x,t):/mqfdcdw, (3.1)

_ m 1 - 15
T(x,t) = 3kg)/(zmc +olw )fdcdw, (3.2)
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aq’ (x,t):/;mCZCifdcdw, qiR(x,t):/;IwZCifdcdw, (3.3)

1 (/1 ., 1 ,
P<ij> (X, 1) :/mC<iCj>dedw, II (x,t) = 3/ 2mC - lw fdcdw, (3.4)
q<ij>(x7t):/|w<iwj>fd0dw, hij >k (x,t)=/|w<iwj>Ckfdcdw, (3.5)

wherek is the Boltzmann constant ar@] = ¢; —v; is the peculiar linear velocity. In Egs. (3.1)—(3.5) we have
denoted byp the mass densityyv; the linear momentun density, the temperatureg’ the translational heat
flux, qiR the rotational heat fluxy<ij > = pj — éprr i the pressure deviator ardd = gp” — gr‘;T the dynamic
pressure. The basic fieldg;~ andh.j -k, which are related to the polarizations;wj~ andw.jw;s C,
are the dominant fields in the calculations of the coefficients of shear viscosity and thermal conductivity,
respectively.

We get the distribution function close to equilibrium by seeking the extremum of the entropy density [10],
given by

gs:—k/f Inf dedw, (3.6)

under the constraints (3.1)—(3.5). This problem is equivalent to finding the extremum of the following func-
tional without constraints

2
F :_/ {klnf +Am+A'mG + A (;m02+ ;Iw2> +/\iTm§ C
rlW? (1 2 105
+/\i > Ci +Aiij<iCj> + A\ 2mC — 2|w
+>\ij | WeiWwj> + Aijk | W<jWwj >Ck] fdcdw s (3.7)

whereA, A, A, /\iT, )\iR, Ay, N, Aij and Ay are Lagrange multipliers which do not depend on the distribution
function f. By setting gf = 0 in Eq.(3.7) we obtain the distribution function that maximizes the entropy
density under the constraints (3.1)—(3.5). The determination of the Lagrange multipliers follows from the use
of the Egs. (3.1)—(3.5) and by considering processes close to equilibrium:

1 /m\2 1 /m\2 | w?
= 0 " . C. 2
=t {14_ 20 (kT) P<i>Ci G+ 20 (kT) = <C m )

I /m\2 1 ,/m\2/mC? T
" omp (kT) Gai>wiw + (kT) (SkT 1) o G

1,/,m\2/lw? I m 3
+Q (kT> (3kT a 1) %G+ 2mp (kT) heij > kwiwj Ck} =fO@1+9), (3.8)
where
3/2 2 2
= memme P Lkt o (3.9)

is the Maxwellian distribution function. Eq. (3.8) is the Grad distribution function for the basic fields (3.1)—
(3.5).
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4 Combined Chapman-Enskog and Grad method

By using the Chapman-Enskog method [3] we insert the distribution function (3.8) into the Boltzmann
equation (2.3) and get
of @ of© J¢
+ 3

ot TG 0% +7(w x H); D =7"[¢] , (4.1)
where we have introduced the notation
T*[¢] = / £OF O (p7 +¢* — ¢1 — ¢) @ (g - k) dk dey dws . (4.2)

In Eq. (4.1) we have retained the term proportionalgic@ since this term gives the coupling between the
magnetic fieloH and the fields defined by Eqs.§3: ».
The multiplication of Eq. (4.1) by an arbitrary functigsn(x, ¢, w, t) and the integration over all values of

velocitiesc andw leads to
(0) (0)
/w[af w007 by (@ X H), gﬂdcdw

ot 0% wi
= /cp.7* [¢]dcdw = /¢>.7 [¢]l dcdw, (4.3)
where
T [¢] = / 11O (3] + ¢ — ¢1 — ¢) a2(g- k) dk dcy dws (4.4)

with ¢} = ¢(x, ¢}, w’,t) and so on. The term on the right-hand side of Eq. (4.3) follows by the use of the
symmetry properties of the collision integral.

If we identify in Eq. (4.3) the arbitrary functiop with the summational invariants, mg and (’“2C2 + '“2’2)
and by performing the integrations over all values of velocitieend w, we obtain the field equations for
the mass density, linear momentum densityv; and temperature for a Euler fluid, in whigh;~ = 0,
g’ =gR = 0. These field equations are used to eliminate the time derivativeswfand T in Eq. (4.3), and
we have

/‘pf {kTC'C’ ox- TekT\S T m ) ax
W1 mC? 5 .\ lw? 3 C_aT
T\ 2kT 2 kT 2 )

I Q<ps> (M2 I hepssk ¢ my\3
it {m 0 (kT) w3+m 0 (kT) wsCk | (wx H)p

= /(;5.7 [p]ldcdw. (4.5)

In the next sections we shall use the Eq. (4.5) to determine the constitutive equations for the heat flux vector
g =g +qR and for the pressure deviator tengos; ~ that depend on the magnetic fiettl

5 Heat flux and coefficients of thermal conductivity

If we identify in Eq. (4.5) the arbitrary functiop(x, ¢, w, t) with '“2’2 G, mZCZCi andl w.jwjCy and integrate
over all values oft andw, we obtain the following system of equations:

oT

AH s +AQT +AQR = A %

(5.1)
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oT
BiH<ii>1 +BQ +BsQf = B4 % (5.2)
[D16ij 6pk — D2 (6ikSpj + 6cbip ) | Hepi>1 — DaHij sk — Da (Heiksj + Hejesi)
2 . 2 o
—Ds | 0k Opj + Sk 6ip — 35ij okp | Qp + De | bikjs + i bis — 3(5ij Oks | Qs
=Dy (Siepyr + &jiepir ) T4 Hepisk (5.3)
where we have introduced the reduced quantities
o VT rmy3/2 o r_ VT (m\3/2 g
Qr=""" () s QR="""" () o
o (5.4)
_ /ma?T (KT __Am g m Y2
Hojj>k = m m haij >k, T, = ga2 (wkT) Hi
and the coefficients
A1 =302k +1), A, = —10k, As=10(2k*+ 2k +1),
45 2
A== g (k+D)7, Br=15, By = 6(17x +4),
225
Bz = —50k, Bs=— g (k+1)?, D; =42k +1), (5.5)
Dy =115 +3, D3 =2(20s% + 165 +11), Dy=rk+3,
15 )
Ds = 4, De = —4(2x+1), Dr= " (k+ 1)

The solution of this system of equations for the reduced heat flux v&g{o#?) = QT (#) + QR(.77) leads
to the generalized Fourier law

Q) =X () 56)

where \; (77) is the thermal conductivity tensor.

The procedure used to solve the system of equations (5.1)—(5.3) is the following: first we solve the system
for 7 = 0 and then we subtract from the original system the field-free equations and solve the set of
equations that are field-dependent [11]. For this purpose we introduce the decompositions:

Haij>k () = Hg)ij')>k + Hilij)>k (7).
QT (7#)=Q"?+Q™" (), 5.7)
QR (,76) = QiR(O) + QiR(l) (.7@”) ,

where

HY , @=0. QP©@=0 and QrY(0=0. (5.8)
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5.1 Field-free system of equations

When.7% = 0 the system of equations (5.1)—(5.3) reduces to

0 0 aT
AlHioil)>l + AZQiT( )+ ASQiR( ) = A48xi ' (5.9)
0 0 ot
BIHG)., + BZQiT( )+ B3QiR( )= B, ox (5.10)
[D16ij 6pk — D2 (6ik Gpj + Gk bip) | Hgbl — D3Hg)ij)>k (5.11)

2 0 2 0
—Da4 (Hion)oj * Hgfoi) —Ds (5ik5pj * ikdip — 58 5kp> 5 +De (5ik5is *0jdis — 40 5ks> 59 =o0.
From Egs. (5.9)—(5.10) it follows that

oT
(9Xi ’

QRO=EHO_, +5 )T (5.12)

0) _ 0
Q' = EHG., +Es <il > x

<il >l

where we have introduced the coefficients

E - —15k (k + 1)2
17 (10243 + 10162 + 75k + 12)
3 (127:2+ 756 + 12)
E2 = — )
10 (1023 + 10162 + 75 + 12)
(5.13)
£.__ 225 (k + 17326 + 1)
377 16 (10243 + 1012 + 75x + 12)”
9 k+1P219% +3
- (v + 1P(19 + 3)

© 4(10263 + 10162 + 75k + 12)

We consider that in a linearized theory the vedthy; -, is proportional to the gradient of temperature [see
Egs. (5.24)—(5.25)], hence we write

10 oT
0 _
H£i|)>| - 3 laXi 9 (514)
whereg; is a parameter to be determined. From Egs. (5.11)—(5.14), we get
3 (k+1)(50x3+227% + 125: + 12)
B = 4 3 ) . (5.15)
4 (136% +2266:% + 17072 + 853 + 116)
The Fourier law follows from Eqgs. (5.12), (5.13) and (5.15)
07O, RO . +10E+E 8T:_ oT 1
Q=Q Q 3+Ey 3 (E1 +E2) 51 P Ao % (5.16)
where )\ is the dimensionless coefficient of thermal conductivity
3 (r +1)* (2000¢* + 9490:% + 134492 + 73365 + 1121)
Ao = (5.17)

T 16 (l360§5 +3626:* + 3973: + 2560+ + 969 + 116)

Eq. (5.17) agrees with that obtained in ref. [12]. The Pidduck approximation [13] follows from Egs. (5.1)—(5.2)
whenH_j+; =0
_ 9 (k+1)*(50x% + 151k + 37)

- : 5.18
16 (10243 + 10162 + 75 + 12) (>18)

0
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5.2 Field-dependent equations

By subtracting the field-free equations (5.9)—(5.11) from Egs. (5.1)—(5.3) lead to

1 1

AHE., + AQTY + AQRY =0, (5.19)
1 1

BHY., +BQ ™ +B:QF™ = 0, (5.20)

1 1 1 1
[D16ij 6k — Dz (6ik Opj + b)) Hiém - D3Hiij)>k —Dq (Hii?(>j + Hijzm)
2

3

—Ds <(5ik6pj + 5jk(5ip — 3

1 2 1
0 5kp> QJ( ) De <5ik5js + 6k Ois — b 5ks> SR( )

= Dy (6 epjr + &1 epir ) T (Hiogbk + HilS|>k) . (5.21)
From Egs. (5.19)—(5.20) it follows that the reduced heat flux vector is given by
1 1
QW =qQ W +Qf" = (B +E)HY), . (5.22)

To determine the constitutive equation for the heat flux veQor —\; g;j, we must know the tensor

Hjj >k which is solution, through Egs. (5.19)—(5.21), of the following expression

[D16ij 6pk — D2 (6ik 8pj + 6 bip ) + (E2Ds — E1Ds) (6ik Sjp + S Sip
2 1 1 1 1
~30000 )| M — DG - D (L 1)

= Dy (8 epyr + b1 €pir ) T (H © 4+ H®D

<pl>k <p|>k> : (5.23)

This is a tensorial equation for the components of the tens@j(5
We consider the tensdt -, = HS)_, +HE) | that is linear in the temperature gradiefft and that
depends on the antisymmetric ten&yr= ;‘Z/Eijk'ygk. We write it as a function of a fourth-order tensor:

_ oT /.0 1 oT
Hij >k = taij >kmaxm = ( (<a ~km +t(<i}>km) O’ (5.24)
where
© - 2
€ sk = 01 { Gikim + Smbix — 50 km (5.25)
andt®) _, (0) = 0.

By multiplying (5.23) byd; and inserting Eq. (5.24) in the resulting equation, we get
2 2
1 1 1 1 1 1 1
E <5ikt(<j)">rm + 6jkt(<i)r >m 36ij t(<I1r>rm> - D3t(<i3>km — Dy (t(<i)k>jm +t(<j)k>im - 36ij t(<I1r>rm)
=D7 [(19 o+ Do) 67 + (1D i+ ) 2074 (5.26)

In the above expression we have introduced

B (5310+* + 4961° + 3678 + 1191« + 108)

E =
5(102:3 + 101x2 + 75 + 12)

(5.27)

We can reduce the order of the above tensorial equation by multiplying it successivély, B =

yEkTb, 0 76.76 and 5, 7.7 Thus follows the system of equations

Dim = W1Cim — Byi Cim + 561Bim , (5.28)

315
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1
Eim = Cim + WoByi Cim + WaDim — Byi Drm + 261(20im — o2 T Tm) (5.29)
2E 2D
Fim = —WeCin + 1, 2767 Com — D: Eim , (5.30)

1

_D7ﬂl'7gBim =0. (531)

In the above equations we have introduced the notation

DsFim + (D3 + D4)Eim +D7.72Bri Erm — ECGm —

T Ttk
Cim = t(<li)l>lm ) Eim = %6’2 t(<li}>km7
(5.32)
T T,
- 1 _ K. (L
Dim = Bjkt(<i}>km7 Fim = %gz t(<j)k>im
and the coefficients

We = 45(k + 1)3(1360:* + 226643 + 17072 + 853« + 116) (5.33)

1 2.97(102:3 + 10162 + 75 + 12) ’ '
_ 2(1838: + 1925:3 + 1478:2 + 5554 + 60) (5.34)

27 T 1B (k + 12(10263 + 10162 + 756 + 12) '

2(40s% + 31k + 19)

Wh = — .

3 159 (ks + 12 (5:35)
4(485:* + 5832 + 464:2 + 198« + 24)
Wy = — y (536)
5(2062 + 16 + 11)(102:3 + 10152 + 75k + 12)
(1430* + 297x3 — 34k2 — 393 — 84)
W5 = — 37
> 5(102:3 + 1012 + 75 + 12) (5:37)
The representation of a second-order tensor that is a function of an axial w&€tisr given by

Cin = 016m + e+ 05 " (5.38)

¥4

whereoy, o, andoz are parameters to be determined.
If we insert Eq. (5.38) in the system (5.28)—(5.31) and solve it weoget, and o3 and therefore the
vectorH_j > = Cim, g;. Hence follows from Eq. (5.22) the generalized Fourier law

T2

oT

1) — 1) ( o

Qi( ) — _)‘i(j ) (76) ox (5.39)

where the dimensionless thermal conductivity tensor is given by

TG T
F62

To illustrate this procedure we choose, without loss of generality, the applied magnetic field to lie along
the x-axis of a coordinate system fixed in some point of the gas. We introduce as usual the coefficients of

thermal conductivity paraIIeQAH) , perpendiculaf) ) and transversé\y ) defined as the components of the
matrix of the thermal conductivity tensor:

)\i(jl) (75) =N (%) - )\05”‘ =—(E1 + Ez)((Tl(Sij + ';Zgé‘ijt Tt + 03 ). (5.40)

Moo
(A®) =] o QD AP (5.41)

j
0 P AP
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where
)‘?Il) =\ = — (B +E) (01 + 03), (5.42)
AP =2 =D = — (B, +E) o1, (5.43)
AP =AW =20 = — (E; +E) oz (5.44)
The relative changes in the parallel and perpendicular thermal conductivity coefficients are given by
AN ’\T\l) 2 2
= = [6(E1 + E2) (D3 + 2Dy4) D7 51.727]
Ao Ao
1
X ) ‘ (5.45)
Ao [(Dg + 2D4) (D3 — D4) (3D3 — 10E + D4) + D7 (3D3 +4D, — 4E) .76/2}
and
Axg AP 3D2p
= =_ E,+E 5.46
Y o 5o (E1+Ep) (5.46)
x [3(D4 — D3) (D3 + 2D4)* (9D — 7D4 — 5E) — 4D (3D3 + D4) (3D3 + D4 — E) . #7] 772,
where

6 = (D3 + 2D4)* (D4 — D3)* (10E — 3D3 — Dy)?
+DZ [45D4 + 102D3D, — 19DZDZ — 100D3D7 + 72D
—E (138D3 + 274D5D4 + 163D — 72D7)
+E2 (185D + 26(D3D4 + 18(D7)] .72 + 4D7 (E — 3D3 — D). 72", (5.47)
The relative change in the transversal thermal conductivity coefficient is:
M _ MY _ 3078

= E,+E,)(3D3+Ds— 1 D4 — D3)?
Yo o A 5}\0(1 2) (3D3 + D4y — 10E) [5(D4 — D3)

x (D +2D4)? + 4D? (2D3 + 2D3D4 + DZ) .9%2| 7. (5.48)

In Figs.1, 2 and 3 the three independent components of the thermal conductivity tensor are plotted for
some values of the dimensionless moment of ine:rtian‘}'az. The field parameter is the dimensionless quantity

T = ga”; (7r“k“T)l/2 H. These curves reproduce the universal behaviour observed for polyatomic gases in the
presence of external magnetic fields [7] and they agree with the results obtained through the Chapman-Enskog
method [8]. We note, however, that the saturation values shown in Figs.1 and 2 and the maximal values
shown in Figs.3 are much larger than those obtained experimentally [7]. This fact is due mainly to the

molecular model used, since for collisions between rough spherical molecules even the slightest of grazing

collisions leads to a large deflection.

0.06
—— x=2/3
—————— x=0.4 .
- =02 PR me—i s
— :: 0.1 e
0.04{ | =0 77—
< “‘,"//’/
\t ""’///
3 [
0.02 7
0
0.1 1 10 100 1000

Dimensionless Magnetic Field Fig. 1. Decrease of the parallel thermal conductivity
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6 Pressure tensor deviator and the coefficients of the shear viscosity

If we identify in Eq. (4.5) the arbitrary functiop(x, ¢, w,t) with C_xCj~ andw_xw,~ and integrate over all
values ofc andw, we obtain the following system of equations

Ovei 4a2 / 1 \1/2 1 ” ”
d%- 15 (ka) (5 + 1)2 (135 + 6) peij > + 510> ] (6.1)

3 u, 8t (10k +3) _
q<jk>€kiq'7’gq + Q<ik>5qu'76q + 150 + 1)2 [5p<ij S+ - Qeij> | = 0 6.2)

for the components of the tensaps;j~ and <. Our aim is to obtain from this system the deviatoric
pressure tensor in a form of a Navier-Stokes law

OV<k

P<ij > (F0) = —2n<ij> <> (F) 9 (6.3)
X >
wherenj > <> (F) is the shear viscosity tensor.
6.1 Field-free equations
When.7% = 0 Egs. (6.1)—(6.2), yields
8V<i _ 4a.2 ™ 1/2 1 - .
o = 15 (k) (e g2 (4304 OP<i> + 5] (6.4)
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8k (10 + 3)
. + - = .
15(x + 1)2 [5p<u > p O<ij>| =0 (6.5)
Ov<i

and it follows thatp.j~.(0) = —2n9 , with the shear viscosity coefficient given by

0% >

(6.6)

5 (ka) Y2 (4 + 1)2 (10x + 3)
Tlo

" 8a? (35+2+ 334 +6)

™

Eq. (6.6) agrees with the result obtained in ref. [12]. The Pidduck approximation [13] follows from Eq. (6.4)
wheng.j~ =0

_ 15 (mKkT\Y? (s +1)? 6.7)
M= ga2 \ (13« +6) '
6.2 Field-dependent equations
We consider the fourth-order tensor
A<ij S<ki> — a1 (6jk5liq-7gq + 6ik€|jq.76/q + 5j| 5kiqv76/q + 6y €qu.76/q)
2
+hy <5ik5j| + 61 O — 35ij 5k|) , (6.8)

traceless in the indiceig andkl wherea; andb; are coefficients that do not depend on the magnetic field.
Hence, Egs. (6.1)—(6.2) can be rewritten as

OV
8)(,-<>| = a1 P<ij> + @2 0<ij > (6.9)
a3 P<ij> + Acij><ki>0<ki> = 0 (6.10)
where
N __4a2( 77 )1/2(13/1+6) N 16w
Y7715 \mkT) (412 T 3 (k+ 1?2’
(6.11)
N __4a2( 77 )1/2 K oy = _ 8 (10k+3)
277 3 \mk1/) e+ 12 T T5 (e 1y
anda; = 1. From Egs. (6.8)—(6.10) it follows that
OV
8)(,-<>| = AI<ij > <ki>O<ki> (6.12)
where the fourth-order tensér_;; . .. is given by
, 1 2
<i><k> T o (a2a3 — 20i1004) | Ok G + it ik — 35ij o ) —
2001 (6jk Eliq 76(1 + 6ik5Ijq-7)/q + (5j| Ekiq.ggq + 6i| Equ.ygq)} . (6.13)
The inverse tensor from (6.13) is found from identity
_ 1 2
(A/ 1)  Aljscns = o | Smikdni + Omibnk —  6mnbii (6.14)
<mn><ij > 2 3

and from the representation of a fourth-order tensor that is a function of an axial v&€tdt is given by

[6]
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_ 1 2
AT = by ( i + 61 6 — =66
( )<kl><ij > 4 (b% + a22‘76’2) { 2 ( e Ak 30 kl)
+ay (Sikey T + Sieiin T + Gievie Tt + & exin- Ty )
3aZb / / 4
bg + azzz;(fz ((5"(76] T + (Sjkyﬁ T + 6 761 Tl + 6j| b, Tt — 35” TGt T,
3

4 4
—35k|»7gio75j + 9-7525“ 5ij> + b2 + azzzygz (ewir- 78,567 + e - 76,747,

[® & [® [® & [® 12a§
+ei TG T T + ey TG T Tl ) + by (b2 + 2277
X (?6. T, T 76 — ;.,%”26”- Tt T4 — ;.,762(5“.7& T + ;l%"‘éi,- 5k|)}. (6.15)
In Eqg. (6.15) we have
a2/ 1 \1/2(13x+6) 2a% / 7 \1/2 (35x%+ 335 +6)
= = 6.16
%= 50 (rokr) and bz = 5 (er) (1 + 1)° (6.16)
From Egs. (6.12) and (6.15) it follows that
- OV
= (A1 < 6.17
A<i> ( )<kl><ij > 3)(j> ( )

Now with Egs. (6.8), (6.15) and (6.17) we can write Eg. (6.10) in the form of Navier-Stokes law (6.3)
with the shear viscosity tensor given by

1 ) 2
N<ij ><kl> = Aoy (b3 + 403.572) {(b2a4 +4a2ﬂ62) (6ik61| + 6ji Ojk — 3611 5k|>

1 )
+2 (bz — a2a4) (6” 5qu‘v76q + §ik6|jq.7ﬂq + 5j| 5kiq~%q + 5jk5qu-V7/gq)
—3ay ((5” 7271 7gk + (5|k761 7& + (5j| 7& ygk + 6Jk70ﬂl % — 26” 7&(%&
4 4
—TOTG + T2, 5k|>

3a2b2 ) ) ) ) , 4 ‘
+b§ + ;22(%’2 |:044 (5” 7’5] Tt + (5”(.7’5] T + (5j| TG T + 5jk'7’gi 6 — 3(5“‘ Tt 76,

— 4614.761.76/]' + 4.76/26“ 5k|>
3 9
+ (ewia- 767074 + ciiq-76. H Hq + x4q-760.70.-Tq + €0 T 7674

3
+ 3a22 (o4 (ciir TEG.T0c T + i TG TO T + i T T6.Tt; + ey TG T )
bz + a2.7772

+ 6281 . 9. Tty + T2 5. 4.6, + T8 T4 Tt + TE26.T6,.56, — 4I6. 76T T4

12&30(4

o (03 + 22.72) T T >.%<k.%>} . (6.18)

Without loss of generality we put the magnetic field in thaxis of a coordinate system in the gas. By
neglecting the terms related to the divergence of the velocity we obtain the scheme of de Groot and Mazur
[14] for the viscosity coefficients, which is shown in Table 1. The coefficienthroughns are given by
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Table 1. Shear viscosity coefficients

Ovex Ovey Ov<z Ovey Ov<z Ovex
OXx > Xy > OXz> OXz> Xy > Oxy>
P<xx>  —2m 0 0 0 0 0
P<yy> 0 =212 =201 — m2) —2m4 0 0
P<zz> 0 =201 —nm2) —2n2 2n4 0 0
P<yz> 0 N4 —n4 2m — 42 0 0
P<zx> 0 0 0 0 —2n3  —2ns
P<xy> 0 0 0 0 25 —2n3
5 /mkT\Y? (x + 1)%(10x + 3)
=m0 = 6.19
= 8a2< m ) (35k2+ 33 +6) (©.19)
1 a2b2a4 > 2 28.30&4 4
= by +2a, [ 1+ GO+ Va4 6.20
"7 204 (02 + 402.902) [ P ( b + a2.7%2 by (b2 +a2522)” |’ (6.20)
1 3a2b2a4 333 )
= broag+ap (1+ 2 T + e 6.21
B 205 (b2 + 402.507) [ 2o T ( b? + a22.%2> b2 + a2.7%2 (621)
(aag —p)
= 7, 6.22
n oz (b2 + 4a2.722) : (6:22)
(b — axaua) 3aZ ,
= + I . 6.23
757 s (b3 +4a2w?) ' b3 +a2 w2 (6:23)

Therefore, from the twenty-five components of the tensor (6.18) only five are indepengdeptandns are
longitudinal components related to the direction of the gas flux whjland s are transversal components
related to the directions mutually perpendicular both to the gas flux and magnetic field [7]. We observe that
in this model the coefficien}; does not depend on the magnetic field. Besides, for the field-free condition we
have for the longitudinal coefficients = 1, = n3 = 19 and for the transversal coefficients= ns = 0. In Fig. 4

we have plotted the relative changes of shear viscosity coefficients for thewalel of the dimensionless

moment of inertia. The parameter of the field is the dimensionless quarity: ;a”; (W”QT)l/ZH. These
results agree with those of ref. [9].

0.010

A(n, - 2n ),

0.005

-0.005+

-0.010 T T T
0.01 0.1 1 10 100
Dimensionless Magnetic Field Fig. 4. Relative changes of the shear viscosity coefficients
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