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A kinetic theory is developed for rarefied polyatomic gases of spherical and rough molecules
with rotational energy in the presence of an external constant magnetic field. A method of
solution of Boltzmann equation that combines features of the methods of Chapman-Enskog
and Grad is used to determine transport coefficients that depend on the external magnetic field
(Senftleben-Beenakker effect).

1 Introduction

In this work we develop a kinetic theory of rarefied polyatomic gases consisting of spherical molecules with
internal rotational energy in an external constant magnetic field. We assume that the energy of the internal
rotational variable can be treated classically [1] but a similar procedure could also be applied if the energy
of the internal variable were treated quantum-mechanically [2].

The standard methods used in kinetic theory of transport processes are the Chapman-Enskog [3] and the
Grad method [4]. In the Chapman-Enskog method the deviation from equilibrium is found as a solution of
an integral equation that follows from the Boltzmann equation. In the Grad’s method the deviation from
equilibrium of the distribution function is written in terms of moments of the distribution function. The
transport coefficients of the latter are then obtained from the field equations of the moments through an
iteration scheme.

An alternative method was proposed by Bezerra, Reinecke and Kremer [5] that combines the features of
the Chapman-Enskog and Grad methods. It requires neither a solution of the integral equation nor the use
of the field equations for the moments. As in Grad’s method the deviation of equilibrium of the distribution
function is written in terms of the moments of the distribution function whereas the constitutive equations
follow directly from the Boltzmann equation. The combined Chapman-Enskog and Grad method was applied
to a monatomic gas and mixtures [5] and to ionized gases [6].

The aim of this work is to apply the combined Chapman-Enskog and Grad method to polyatomic gases
and to determine the changes of thermal conductivity and shear viscosity coefficients in a presence of a
constant magnetic field (Senftleben-Beenakker effect) [7]. The model of the rough spheres of Bryan [3] is
used for molecular collisions; the principal feature of this model is the reversing of the relative velocity of
the points which come into contact in a binary collision. The theory is based on thirty-seven scalar fields that
are the moments of the distribution function. The influence of dominant polarizationsω<iωj>Ck andω<iωj>

[7] are considered and the thermal conductivity tensor and the shear viscosity tensor are obtained as functions
of the external magnetic field. The inversion of a fourth-order tensor is used to determine the shear viscosity
tensor. The results obtained agree with those that follow from the Chapman-Enskog method [8, 9].
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2 Dynamics of a binary collision and Boltzmann equation

We consider a rarefied polyatomic gas of perfectly rough, perfectly elastic and spherical molecules with mass
m, diametera and moment of inertiaI . We denote by (c, c1) and (ω,ω1) the linear and the angular velocities
of two molecules before collision while (c′, c′1) and (ω′,ω′

1) are these velocities after collision.k is the unit
vector in the direction of the line that joins the two molecular centers at collision, pointing from the center
of the molecule labelled 1 to the other. If we apply the conservations laws of linear and angular momentum
to the molecules we obtain the impact equations

mc′ = mc− J , mc′1 = mc1 + J ,

Iω′ = Iω +
a
2

k × J , Iω′
1 = Iω1 +

a
2

k × J,
(2.1)

where J is the impulse exerted on the molecule 1 by the molecule without label. In a binary collision of
rough spheres the relative velocity of the points of contact is reversed after collision and the impulse is given
by

J = − mκ

κ + 1

[
g− a

2
k × (ω +ω1) +

1
κ

(k · g) k
]
, (2.2)

where g = c1 − c is the relative linear velocity between the centers of the molecules andκ = 4I
ma2 is the

dimensionless moment of inertia which may range from 0 to 2/3 corresponding respectively to a concentration
of mass at the center of the molecule and to a uniform distribution of the mass at the surface of the spherical
molecule.

Unlike the case of smooth spheres, no inverse collision exists for rough spheres, i.e., collision in which
molecules with initial velocities (c′,ω′) and (c′1,ω1

′) result molecules with final velocities (c,ω) and (c1,ω1).
Hence we denote by (c∗,ω∗) and (c∗1,ω1

∗) the initial velocities of molecules that correspond to the final
velocities (c,ω) and (c1,ω1).

The state of a polyatomic rarefied gas of spherically symmetrical and rough spheres is characterized by
the one-particle distribution functionf (x, c,ω, t) such thatf (x, c,ω, t) dx dcdω represents the number of
molecules in the volume element betweenx and x + dx, with linear velocities betweenc and c + dc and
angular velocities betweenω andω + dω, at timet . The distribution function obeys the Boltzmann equation

∂f
∂t

+ ci
∂f
∂xi

+
τi

I
∂f
∂ωi

=
∂f
∂t

+ ci
∂f
∂xi

+ γ (ω × H)i
∂f
∂ωi

=

=
∫ (

f ∗1 f ∗ − f1f
)

a2 (g · k) dk dc1 dω1. (2.3)

In Eq. (2.3) we have neglected external body forces but considered the external torqueτ = µ × H exerted
by a magnetic fieldH upon the magnetic moment of a moleculeµ = γIω, whereγ = 2πgµN/h is the
molecular gyromagnetic ratio related to the rotational Landé g-factor, µN the nuclear magneton andh the
Planck constant. Moreover,dk is an element of solid angle and the following abbreviations were introduced

f ∗ = f (x, c∗,ω∗, t) , f = f (x, c,ω, t) ,

f ∗1 = f
(
x, c∗1,ω

∗
1, t
)
, f1 = f1 (x, c1,ω1, t) .

(2.4)

3 Basic fields and Grad distribution function

The macroscopic state of a polyatomic gas will be described by thirty-seven basic scalar fields defined by

% (x, t) =
∫

mfdcdω , %vi (x, t) =
∫

mci fdcdω , (3.1)

T (x, t) =
m

3k%

∫ (
1
2

mC2 +
1
2

I ω2

)
fdcdω , (3.2)
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qT
i (x, t) =

∫
1
2

mC2Ci fdcdω , qR
i (x, t) =

∫
1
2

I ω2Ci fdcdω , (3.3)

p<ij > (x, t) =
∫

mC<i Cj>fdcdω, Π (x, t) =
1
3

∫ (
1
2

mC2 − 1
2

I ω2

)
fdcdω, (3.4)

q<ij > (x, t) =
∫

I ω<iωj>fdcdω , h<ij >k (x, t) =
∫

I ω<iωj>Ckfdcdω , (3.5)

wherek is the Boltzmann constant andCi = ci −vi is the peculiar linear velocity. In Eqs. (3.1)–(3.5) we have
denoted by% the mass density,%vi the linear momentun density,T the temperature,qT

i the translational heat
flux, qR

i the rotational heat flux,p<ij > = pij − 1
3prr δij the pressure deviator andΠ = 1

3prr − % k
mT the dynamic

pressure. The basic fieldsq<ij > and h<ij >k , which are related to the polarizationsω<iωj> andω<iωj>Ck ,
are the dominant fields in the calculations of the coefficients of shear viscosity and thermal conductivity,
respectively.

We get the distribution function close to equilibrium by seeking the extremum of the entropy density [10],
given by

%s = −k
∫

f ln f dcdω, (3.6)

under the constraints (3.1)–(3.5). This problem is equivalent to finding the extremum of the following func-
tional without constraints

F = −
∫ [

k ln f + Λm + Λv
i mCi + λ

(
1
2

mC2 +
1
2

I ω2

)
+ λT

i
mC2

2
Ci

+λR
i

I ω2

2
Ci + Λij mC<i Cj> + λ′

(
1
2

mC2 − 1
2

I ω2

)

+λij I ω<iωj> + Λijk I ω<iωj>Ck
]

fdcdω , (3.7)

whereΛ, Λvi , λ, λT
i , λR

i , Λij , λ′, λij andΛijk are Lagrange multipliers which do not depend on the distribution
function f . By setting ∂F

∂f = 0 in Eq. (3.7) we obtain the distribution function that maximizes the entropy
density under the constraints (3.1)–(3.5). The determination of the Lagrange multipliers follows from the use
of the Eqs. (3.1)–(3.5) and by considering processes close to equilibrium:

f = f (0)

[
1 +

1
2%

( m
kT

)2
p<ij >Ci Cj +

1
2%

( m
kT

)2
Π

(
C2 − I ω2

m

)
+

I
2m%

( m
kT

)2
q<ij >ωiωj +

1
%

( m
kT

)2
(

mC2

5kT
− 1

)
qT

i Ci

+
1
%

( m
kT

)2
(

I ω2

3kT
− 1

)
qR

i Ci +
I

2m%

( m
kT

)3
h<ij >kωiωj Ck

]
= f (0) (1 +φ) , (3.8)

where

f (0) =
%

m
(mI )3/2

(2πkT)3 exp

{
−
(

mC2

2kT
+

I ω2

2kT

)}
(3.9)

is the Maxwellian distribution function. Eq. (3.8) is the Grad distribution function for the basic fields (3.1)–
(3.5).
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4 Combined Chapman-Enskog and Grad method

By using the Chapman-Enskog method [3] we insert the distribution function (3.8) into the Boltzmann
equation (2.3) and get

∂f (0)

∂t
+ ci

∂f (0)

∂xi
+ γ (ω × H)i

∂φ

∂ωi
= I ∗ [φ] , (4.1)

where we have introduced the notation

I ∗ [φ] =
∫

f (0)
1 f (0)

(
φ∗1 + φ∗ − φ1 − φ

)
a2 (g · k) dk dc1 dω1 . (4.2)

In Eq. (4.1) we have retained the term proportional to∂φ∂ωi
since this term gives the coupling between the

magnetic fieldH and the fields defined by Eqs.(3.5)1,2.
The multiplication of Eq. (4.1) by an arbitrary functionϕ(x, c,ω, t) and the integration over all values of

velocitiesc andω leads to ∫
ϕ

[
∂f (0)

∂t
+ ci

∂f (0)

∂xi
+ γ (ω × H)i

∂φ

∂ωi

]
dcdω

=
∫

ϕI ∗ [φ] dcdω =
∫

φI [ϕ] dcdω , (4.3)

where

I [φ] =
∫

f (0)
1 f (0)

(
φ′1 + φ′ − φ1 − φ

)
a2 (g · k) dk dc1 dω1 , (4.4)

with φ′1 = φ(x, c′1,ω
′
1, t) and so on. The term on the right-hand side of Eq. (4.3) follows by the use of the

symmetry properties of the collision integral.
If we identify in Eq. (4.3) the arbitrary functionϕ with the summational invariantsm, mci and (mC2

2 + Iω2

2 )
and by performing the integrations over all values of velocitiesc andω, we obtain the field equations for
the mass density%, linear momentum density%vi and temperature for a Euler fluid, in whichp<ij > = 0,
qT

i = qR
i = 0. These field equations are used to eliminate the time derivatives of%, vi andT in Eq. (4.3), and

we have

∫
ϕf (0)

{
m
kT

Ci Cj
∂v<i

∂xj>
+

m
6kT

(
C2 − I ω2

m

)
∂vr

∂xr

+
1
T

[(
mC2

2kT
− 5

2

)
+

(
I ω2

2kT
− 3

2

)]
Ci

∂T
∂xi

+γ

[
I
m

q<ps>

%

( m
kT

)2
ωs +

I
m

h<ps>k

%

( m
kT

)3
ωsCk

]
(ω × H)p

}
=
∫

φI [ϕ] dcdω . (4.5)

In the next sections we shall use the Eq. (4.5) to determine the constitutive equations for the heat flux vector
qi = qT

i + qR
i and for the pressure deviator tensorp<ij > that depend on the magnetic fieldH.

5 Heat flux and coefficients of thermal conductivity

If we identify in Eq. (4.5) the arbitrary functionϕ(x, c,ω, t) with Iω2

2 Ci , mC2

2 Ci andI ω<iωj>Ck and integrate
over all values ofc andω, we obtain the following system of equations:

A1H<il>l + A2QT
i + A3QR

i = A4
∂T
∂xi

, (5.1)
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B1H<il>l + B2QT
i + B3QR

i = B4
∂T
∂xi

, (5.2)

[
D1δij δpk − D2

(
δikδpj + δjkδip

)]
H<pl>l − D3H<ij >k − D4

(
H<ik>j + H<jk>i

)
−D5

(
δikδpj + δjkδip − 2

3
δij δkp

)
QT

p + D6

(
δikδjs + δjkδis − 2

3
δij δks

)
QR

s

= D7
(
δil εpjr + δjl εpir

)
Hr H<pl>k , (5.3)

where we have introduced the reduced quantities

QT
i =

√
πa2T
m

( m
kT

)3/2
qT

i , QR
i =

√
πa2T
m

( m
kT

)3/2
qR

i ,

H<ij >k =

√
πa2T
m

(
kT
m

)3/2

h<ij >k , Hi =
γm
%a2

( m
πkT

)1/2
Hi

(5.4)

and the coefficients

A1 = 3(2κ + 1) , A2 = −10κ, A3 = 10
(
2κ2 + 2κ + 1

)
,

A4 = −45
8

(κ + 1)2 , B1 = 15κ, B2 = 6(17κ + 4) ,

B3 = −50κ, B4 = −225
8

(κ + 1)2 , D1 = 4(2κ + 1) ,

D2 = 11κ + 3, D3 = 2
(
20κ2 + 16κ + 11

)
, D4 = κ + 3,

D5 = 4κ, D6 = −4(2κ + 1) , D7 =
15
2

(κ + 1)2 .

(5.5)

The solution of this system of equations for the reduced heat flux vectorQi (H ) = QT
i (H ) + QR

i (H ) leads
to the generalized Fourier law

Qi (H ) = −λij (H )
∂T
∂xj

(5.6)

whereλij (H ) is the thermal conductivity tensor.
The procedure used to solve the system of equations (5.1)–(5.3) is the following: first we solve the system

for H = 0 and then we subtract from the original system the field-free equations and solve the set of
equations that are field-dependent [11]. For this purpose we introduce the decompositions:

H<ij >k
(
H

)
= H (0)

<ij >k + H (1)
<ij >k

(
H

)
,

QT
i

(
H

)
= QT

i
(0)

+ QT
i

(1) (H )
,

QR
i

(
H

)
= QR

i
(0)

+ QR
i

(1) (H )
,

(5.7)

where

H (1)
<ij >k (0) = 0 , QT

i
(1)

(0) = 0 and QR
i

(1)
(0) = 0 . (5.8)
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5.1 Field-free system of equations

WhenH = 0 the system of equations (5.1)–(5.3) reduces to

A1H (0)
<il>l + A2QT

i
(0)

+ A3QR
i

(0)
= A4

∂T
∂xi

, (5.9)

B1H (0)
<il>l + B2QT

i
(0)

+ B3QR
i

(0)
= B4

∂T
∂xi

, (5.10)

[
D1δij δpk − D2

(
δikδpj + δjkδip

)]
H (0)
<pl>l − D3H (0)

<ij >k (5.11)

−D4

(
H (0)
<ik>j + H (0)

<jk>i

)
− D5

(
δikδpj + δjkδip − 2

3
δij δkp

)
QT

p
(0)

+ D6

(
δikδjs + δjkδis − 2

3
δij δks

)
QR

s
(0)

= 0 .

From Eqs. (5.9)–(5.10) it follows that

QT
i

(0)
= E1H (0)

<il>l + E3
∂T
∂xi

, QR
i

(0)
= E2H (0)

<il>l + E4
∂T
∂xi

(5.12)

where we have introduced the coefficients

E1 =
−15κ (κ + 1)2

(102κ3 + 101κ2 + 75κ + 12)
,

E2 = − 3
10

(127κ2 + 75κ + 12)(
102κ3 + 101κ2 + 75κ + 12

) ,
E3 = −225

16
(κ + 1)3(2κ + 1)

(102κ3 + 101κ2 + 75κ + 12)
,

E4 = −9
4

(κ + 1)2(19κ + 3)
(102κ3 + 101κ2 + 75κ + 12)

.

(5.13)

We consider that in a linearized theory the vectorH<il>l is proportional to the gradient of temperature [see
Eqs. (5.24)–(5.25)], hence we write

H (0)
<il>l =

10
3
β1

∂T
∂xi

, (5.14)

whereβ1 is a parameter to be determined. From Eqs. (5.11)–(5.14), we get

β1 =
3
4

(κ + 1)
(
50κ3 + 227κ2 + 125κ + 12

)(
1360κ4 + 2266κ3 + 1707κ2 + 853κ + 116

) . (5.15)

The Fourier law follows from Eqs. (5.12), (5.13) and (5.15)

Qi = QT
i

(0)
+ QR

i
(0)

=

[
E3 + E4 +

10
3

(E1 + E2)β1

]
∂T
∂xi

= −λ0
∂T
∂xi

(5.16)

whereλ0 is the dimensionless coefficient of thermal conductivity

λ0 =
3

16

(κ + 1)2 (2000κ4 + 9490κ3 + 13449κ2 + 7336κ + 1121
)(

1360κ5 + 3626κ4 + 3973κ3 + 2560κ2 + 969κ + 116
) . (5.17)

Eq. (5.17) agrees with that obtained in ref. [12]. The Pidduck approximation [13] follows from Eqs. (5.1)–(5.2)
whenH<il>l = 0

λ0 =
9

16

(κ + 1)2 (50κ2 + 151κ + 37
)(

102κ3 + 101κ2 + 75κ + 12
) . (5.18)
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5.2 Field-dependent equations

By subtracting the field-free equations (5.9)–(5.11) from Eqs. (5.1)–(5.3) lead to

A1H (1)
<il>l + A2QT

i
(1)

+ A3QR
i

(1)
= 0 , (5.19)

B1H (1)
<il>l + B2QT

i
(1)

+ B3QR
i

(1)
= 0 , (5.20)

[
D1δij δpk − D2

(
δikδpj + δjkδip

)]
H (1)
<pl>l − D3H (1)

<ij >k − D4

(
H (1)
<ik>j + H (1)

<jk>i

)
−D5

(
δikδpj + δjkδip − 2

3
δij δkp

)
QT

p
(1)

+ D6

(
δikδjs + δjkδis − 2

3
δij δks

)
QR

s
(1)

= D7
(
δil εpjr + δjl εpir

)
Hr

(
H (0)
<pl>k + H (1)

<pl>k

)
. (5.21)

From Eqs. (5.19)–(5.20) it follows that the reduced heat flux vector is given by

Q(1)
i = QT

i
(1)

+ QR
i

(1)
= (E1 + E2) H (1)

<il>l . (5.22)

To determine the constitutive equation for the heat flux vectorQi =−λij
∂T
∂xj

, we must know the tensor
H<ij >k which is solution, through Eqs. (5.19)–(5.21), of the following expression

[
D1δij δpk − D2

(
δikδpj + δjkδip

)
+ (E2D6 − E1D5)

(
δikδjp + δjkδip

−2
3
δij δkp

)]
H (1)
<pl>l − D3H (1)

<ij >k − D4

(
H (1)
<ik>j + H (1)

<jk>i

)
= D7

(
δil εpjr + δjl εpir

)
Hr

(
H (0)
<pl>k + H (1)

<pl>k

)
. (5.23)

This is a tensorial equation for the components of the tensor (5.7)1.
We consider the tensorH<ij >k = H (0)

<ij >k + H (1)
<ij >k that is linear in the temperature gradient∂T

∂xi
and that

depends on the antisymmetric tensorBij = 1
H εijk Hk . We write it as a function of a fourth-order tensor:

H<ij >k = t<ij >km
∂T
∂xm

=
(

t (0)
<ij >km + t (1)

<ij >km

) ∂T
∂xm

, (5.24)

where

t (0)
<ij >km = β1

(
δikδjm + δimδjk − 2

3
δij δkm

)
(5.25)

and t (1)
<ij >km(0) = 0.

By multiplying (5.23) byδij and inserting Eq. (5.24) in the resulting equation, we get

E

(
δik t (1)

<jr>rm + δjk t (1)
<ir>rm −

2
3
δij t (1)

<kr>rm

)
− D3t (1)

<ij >km− D4

(
t (1)
<ik>jm + t (1)

<jk>im −
2
3
δij t (1)

<kr>rm

)
= D7

[(
t (0)
<ir>km + t (1)

<ir>km

)
εrjt Ht +

(
t (0)
<jr>km + t (1)

<jr>km

)
εrit Ht

]
. (5.26)

In the above expression we have introduced

E = − (5310κ4 + 4961κ3 + 3678κ2 + 1191κ + 108)
5(102κ3 + 101κ2 + 75κ + 12)

. (5.27)

We can reduce the order of the above tensorial equation by multiplying it successively byδjk , Bjk =
1

H εjkt Ht , 1
H 2 Hi Hj and 1

H 2 Hj Hk . Thus follows the system of equations

Dim = W1Cim − Bri Crm + 5β1Bim , (5.28)



316 A.S. Fernandes et al.

Eim = Cim + W2Bri Crm + W3Dim − Bri Drm + 2β1(2δim − 1
H 2

Hi Hm) , (5.29)

Fim = −W4Cim +
2E

D3H 2
Hi Hr Crm − 2D4

D3
Eim , (5.30)

D4Fim + (D3 + D4)Eim + D7H Bri Erm − ECim − 1
H 2

W5Hi Hr Crm

−D7β1H Bim = 0 . (5.31)

In the above equations we have introduced the notation

Cim = t (1)
<il>lm , Eim =

Hj Hk

H 2
t (1)
<ij >km ,

Dim = Bjk t (1)
<ij >km , Fim =

Hj Hk

H 2
t (1)
<jk>im

(5.32)

and the coefficients

W1 = −45(κ + 1)3(1360κ4 + 2266κ3 + 1707κ2 + 853κ + 116)
2H (102κ3 + 101κ2 + 75κ + 12)

, (5.33)

W2 = −2(1838κ4 + 1925κ3 + 1478κ2 + 555κ + 60)
15H (κ + 1)2(102κ3 + 101κ2 + 75κ + 12)

, (5.34)

W3 = −2(40κ2 + 31κ + 19)
15H (κ + 1)2

, (5.35)

W4 = − 4(485κ4 + 583κ3 + 464κ2 + 198κ + 24)
5(20κ2 + 16κ + 11)(102κ3 + 101κ2 + 75κ + 12)

, (5.36)

W5 = − (1430κ4 + 297κ3 − 34κ2 − 393κ− 84)
5(102κ3 + 101κ2 + 75κ + 12)

. (5.37)

The representation of a second-order tensor that is a function of an axial vectorH is given by

Cim = σ1δim +
σ2

H
εimtHt + σ3

Hi Hm

H 2
(5.38)

whereσ1, σ2 andσ3 are parameters to be determined.
If we insert Eq. (5.38) in the system (5.28)–(5.31) and solve it we getσ1, σ2 andσ3 and therefore the

vectorH<il>l = Cim
∂T
∂xm

. Hence follows from Eq. (5.22) the generalized Fourier law

Q(1)
i = −λ(1)

ij

(
H

) ∂T
∂xj

(5.39)

where the dimensionless thermal conductivity tensor is given by

λ(1)
ij

(
H

)
= λij

(
H

)− λ0δij = −(E1 + E2)(σ1δij +
σ2

H
εijt Ht + σ3

Hi Hj

H 2
) . (5.40)

To illustrate this procedure we choose, without loss of generality, the applied magnetic field to lie along
the x-axis of a coordinate system fixed in some point of the gas. We introduce as usual the coefficients of
thermal conductivity parallel

(
λ‖
)

, perpendicular(λ⊥) and transverse(λtr ) defined as the components of the
matrix of the thermal conductivity tensor:

(
λ(1)

)
ij

=

 λ(1)
‖ 0 0

0 λ(1)
⊥ λ(1)

tr

0 −λ(1)
tr λ(1)

⊥

 (5.41)
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where
λ(1)
‖ = λ(1)

xx = − (E1 + E2) (σ1 + σ3) , (5.42)

λ(1)
⊥ = λ(1)

yy = λ(1)
zz = − (E1 + E2)σ1 , (5.43)

λ(1)
tr = λ(1)

yz = −λ(1)
zy = − (E1 + E2)σ2 . (5.44)

The relative changes in the parallel and perpendicular thermal conductivity coefficients are given by

∆λ‖
λ0

=
λ(1)
‖
λ0

= [6 (E1 + E2) (D3 + 2D4) D2
7β1H 2]

× 1

λ0
[
(D3 + 2D4) (D3 − D4) (3D3 − 10E + D4) + D2

7 (3D3 + 4D4 − 4E) H 2
] (5.45)

and

∆λ⊥
λ0

=
λ(1)
⊥
λ0

= −3D2
7β1

δ λ0
(E1 + E2) (5.46)

× [3(D4 − D3) (D3 + 2D4)2 (9D3 − 7D4 − 5E)− 4D2
7 (3D3 + D4) (3D3 + D4 − E) H 2

]
H 2,

where
δ = (D3 + 2D4)2 (D4 − D3)2 (10E − 3D3 − D4)2

+D2
7

[
45D4

3 + 102D3
3D4 − 19D2

3D2
4 − 100D3D3

4 + 72D4
4

−E
(
138D3

3 + 274D2
3D4 + 160D3D2

4 − 72D3
4

)
+E2

(
185D2

3 + 260D3D4 + 180D2
4

)]
H 2 + 4D4

7 (E − 3D3 − D4)2 H 4. (5.47)

The relative change in the transversal thermal conductivity coefficient is:

λtr

λ0
=
λ(1)

tr

λ0
= −3D7β1

δ λ0
(E1 + E2) (3D3 + D4 − 10E)

[
5(D4 − D3)2

× (D3 + 2D4)2 + 4D2
7

(
2D2

3 + 2D3D4 + D2
4

)
H 2

]
H . (5.48)

In Figs. 1, 2 and 3 the three independent components of the thermal conductivity tensor are plotted for
some values of the dimensionless moment of inertiaκ = 4I

ma2 . The field parameter is the dimensionless quantity

H = γm
%a2

(
m
πkT

)1/2
H . These curves reproduce the universal behaviour observed for polyatomic gases in the

presence of external magnetic fields [7] and they agree with the results obtained through the Chapman-Enskog
method [8]. We note, however, that the saturation values shown in Figs. 1 and 2 and the maximal values
shown in Figs. 3 are much larger than those obtained experimentally [7]. This fact is due mainly to the
molecular model used, since for collisions between rough spherical molecules even the slightest of grazing
collisions leads to a large deflection.

Fig. 1. Decrease of the parallel thermal conductivity
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Fig. 2. Decrease of the perpendicular thermal con-
ductivity

Fig. 3. Relative changes of the transverse thermal
coonductivity

6 Pressure tensor deviator and the coefficients of the shear viscosity

If we identify in Eq. (4.5) the arbitrary functionϕ(x, c,ω, t) with C<kCl> andω<kωl> and integrate over all
values ofc andω, we obtain the following system of equations

∂ν<i

∂xj>
= −4a2

15

( π

mkT

)1/2 1

(κ + 1)2

[
(13κ + 6) p<ij > + 5κq<ij >

]
, (6.1)

q<jk>εkiqHq + q<ik>εkjqHq +
8κ

15(κ + 1)2

[
5p<ij > +

(10κ + 3)
κ

q<ij >

]
= 0 (6.2)

for the components of the tensorsp<ij > and q<ij >. Our aim is to obtain from this system the deviatoric
pressure tensor in a form of a Navier-Stokes law

p<ij >(H ) = −2η<ij ><kl>(H )
∂v<k

∂xl>
(6.3)

whereη<ij ><kl>(H ) is the shear viscosity tensor.

6.1 Field-free equations

WhenH = 0 Eqs. (6.1)–(6.2), yields

∂ν<i

∂xj>
= −4a2

15

( π

mkT

)1/2 1

(κ + 1)2

[
(13κ + 6) p<ij > + 5κq<ij >

]
, (6.4)
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8κ

15(κ + 1)2

[
5p<ij > +

(10κ + 3)
κ

q<ij >

]
= 0 (6.5)

and it follows thatp<ij >(0) =−2η0
∂v<i

∂xj>
, with the shear viscosity coefficient given by

η0 =
5

8a2

(
mkT
π

)1/2 (κ + 1)2 (10κ + 3)(
35κ2 + 33κ + 6

) . (6.6)

Eq. (6.6) agrees with the result obtained in ref. [12]. The Pidduck approximation [13] follows from Eq. (6.4)
whenq<ij > = 0

η0 =
15
8a2

(
mkT
π

)1/2 (κ + 1)2

(13κ + 6)
. (6.7)

6.2 Field-dependent equations

We consider the fourth-order tensor

A<ij ><kl> = a1
(
δjkεliq Hq + δikεljq Hq + δjl εkiqHq + δil εkjqHq

)
+b1

(
δikδjl + δil δjk − 2

3
δij δkl

)
, (6.8)

traceless in the indicesij and kl wherea1 and b1 are coefficients that do not depend on the magnetic field.
Hence, Eqs. (6.1)–(6.2) can be rewritten as

∂v<i

∂xj>
= α1 p<ij > + α2 q<ij > , (6.9)

α3 p<ij > + A<ij ><kl>q<kl> = 0 (6.10)

where

α1 = −4a2

15

( π

mkT

)1/2 (13κ + 6)

(κ + 1)2 , α3 =
16
3

κ

(κ + 1)2 ,

α2 = −4a2

3

( π

mkT

)1/2 κ

(κ + 1)2 , α4 = b1 =
8

15
(10κ + 3)

(κ + 1)2

(6.11)

anda1 = 1. From Eqs. (6.8)–(6.10) it follows that

∂v<i

∂xj>
= A′<ij ><kl>q<kl> (6.12)

where the fourth-order tensorA′<ij ><kl> is given by

A′<ij ><kl> =
1

2α3

[
(α2α3 − 2α1α4)

(
δikδjl + δil δjk − 2

3
δij δkl

)
−

2α1
(
δjkεliq Hq + δikεljq Hq + δjl εkiqHq + δil εkjqHq

)]
. (6.13)

The inverse tensor from (6.13) is found from identity(
A′−1

)
<mn><ij >

A′<ij ><kl> =
1
2

(
δmkδnl + δmlδnk − 2

3
δmnδkl

)
(6.14)

and from the representation of a fourth-order tensor that is a function of an axial vectorH . It is given by
[6]
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(
A′−1

)
<kl><ij >

=
1

4
(
b2

2 + a2
2H 2

) {b2

(
δikδjl + δil δjk − 2

3
δij δkl

)
+a2

(
δikεljr Hr + δjkεlir Hr + δil εkjr Hr + δjl εkir Hr

)
+

3a2
2b2

b2
2 + a2

2H 2

(
δik Hj Hl + δjk Hi Hl + δil Hj Hk + δjl Hi Hk − 4

3
δij HkHl

−4
3
δkl Hi Hj +

4
9

H 2δklδij

)
+

3a3
2

b2
2 + a2

2H 2

(
εkir Hj Hl Hr + εkjr Hi Hl Hr

+εlir Hj HkHr + εljr Hi HkHr
)

+
12a4

2

b2
(
b2

2 + a2
2H 2

)
×
(

Hi Hj HkHl − 1
3

H 2δij HkHl − 1
3

H 2δkl Hi Hj +
1
9

H 4δij δkl

)}
. (6.15)

In Eq. (6.15) we have

a2 =
a2

20

( π

mkT

)1/2 (13κ + 6)
κ

and b2 =
2a2

25

( π

mkT

)1/2
(
35κ2 + 33κ + 6

)
κ (κ + 1)2 . (6.16)

From Eqs. (6.12) and (6.15) it follows that

q<kl> =
(

A′−1
)
<kl><ij >

∂v<i

∂xj>
. (6.17)

Now with Eqs. (6.8), (6.15) and (6.17) we can write Eq. (6.10) in the form of Navier-Stokes law (6.3)
with the shear viscosity tensor given by

η<ij ><kl> =
1

4α3
(
b2

2 + 4a2
2H 2

) {(b2α4 + 4a2H 2
)(

δikδjl + δil δjk − 2
3
δij δkl

)

+
1
2

(b2 − a2α4)
(
δil εkjqHq + δikεljq Hq + δjl εkiqHq + δjkεliq Hq

)
−3a2

(
δil Hj Hk + δik Hj Hl + δjl Hi Hk + δjk Hi Hl − 4

3
δij HkHl

−4
3
δkl Hi Hj +

4
9

H 2δij δkl

)
+

3a2
2b2

b2
2 + a2

2H 2

[
α4

(
δil Hj Hk + δik Hj Hl + δjl Hi Hk + δjk Hi Hl − 4

3
δij HkHl

−4
3
δkl Hi Hj +

4
9

H 2δij δkl

)
+
(
εkiqHj Hl Hq + εliq Hj HkHq + εkjqHi Hl Hq + εljq HkHi Hq

)]
+

3a3
2

b2
2 + a2

2H 2

[
α4
(
εilr Hj HkHr + εikr Hj Hl Hr + εjlr HkHi Hr + εjkr Hl Hi Hr

)
+H 2δil Hj Hk + H 2δik Hl Hj + H 2δjl Hi Hk + H 2δjk Hi Hl − 4Hi Hj HkHl

]
+

12a4
2α4

b2
(
b2

2 + a2
2H 2

)H<i Hj>H<kHl>

}
. (6.18)

Without loss of generality we put the magnetic field in thex-axis of a coordinate system in the gas. By
neglecting the terms related to the divergence of the velocity we obtain the scheme of de Groot and Mazur
[14] for the viscosity coefficients, which is shown in Table 1. The coefficientsη1 throughη5 are given by
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Table 1. Shear viscosity coefficients

∂v<x
∂xx>

∂v<y
∂xy>

∂v<z
∂xz>

∂v<y
∂xz>

∂v<z
∂xx>

∂v<x
∂xy>

p<xx> −2η1 0 0 0 0 0
p<yy> 0 −2η2 −2(η1 − η2) −2η4 0 0
p<zz> 0 −2(η1 − η2) −2η2 2η4 0 0
p<yz> 0 η4 −η4 2η1 − 4η2 0 0
p<zx> 0 0 0 0 −2η3 −2η5
p<xy> 0 0 0 0 2η5 −2η3

η1 = η0 =
5

8a2

(
mkT
π

)1/2 (κ + 1)2 (10κ + 3)(
35κ2 + 33κ + 6

) , (6.19)

η2 =
1

2α3
(
b2

2 + 4a2
2H 2

)[b2α4 + 2a2

(
1 +

a2b2α4

b2
2 + a2

2H 2

)
H 2 +

2a4
2α4

b2
(
b2

2 + a2
2H 2

)H 4

]
, (6.20)

η3 =
1

2α3
(
b2

2 + 4a2
2H 2

) [b2α4 + a2

(
1 +

3a2
2b2α4

b2
2 + a2

2H 2

)
H 2 +

3a3
2

b2
2 + a2

2H 2
H 4

]
, (6.21)

η4 =
(a2α4 − b2)

α3
(
b2

2 + 4a2
2H 2

)H , (6.22)

η5 =
(b2 − a2α4)

2α3
(
b2

2 + 4a2
2H 2

) (1 +
3a2

2

b2
2 + a2

2H 2

)
H . (6.23)

Therefore, from the twenty-five components of the tensor (6.18) only five are independent.η1, η2 andη3 are
longitudinal components related to the direction of the gas flux whileη4 andη5 are transversal components
related to the directions mutually perpendicular both to the gas flux and magnetic field [7]. We observe that
in this model the coefficientη1 does not depend on the magnetic field. Besides, for the field-free condition we
have for the longitudinal coefficientsη1 = η2 = η3 = η0 and for the transversal coefficientsη4 = η5 = 0. In Fig. 4
we have plotted the relative changes of shear viscosity coefficients for the valueκ = 0.1 of the dimensionless

moment of inertia. The parameter of the field is the dimensionless quantityH = γm
%a2

(
m
πkT

)1/2
H . These

results agree with those of ref. [9].

Fig. 4. Relative changes of the shear viscosity coefficients
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