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The synthesis of glucose requires an increase of enthalpy and a decrease of entropy such that
the Gibbs free energy increases. This is impossible by the laws of thermodynamics unless there
is an accompanying, compensating process that decreases the Gibbs free energy. Schrödinger
[1] has suggested that the accompanying process should be the absorption and reemission of
radiation. This process supplies the heat of reaction and the entropy increase of radiation is
more than enough to offset the chemical decrease of entropy. And yet we are not satisfied with
Schr̈odingers proposition, because we see no connection between the entropy increase of radi-
ation and the physiology of the plant. Therefore we propose an alternative: The accompanying
process consists of the transpiration of water and the mixing of water vapour with air; in this
view radiation only furnishes the heat of reaction.

1 Introduction

1.1 A thermodynamicist’s view

Sometimes the equations of balance of thermodynamics – in particular the first and second law – enable
the thermodynamicist to reach conclusions about the performance of an engine without knowing its internal
structure. Thus from the heating of the boiler and the temperature of the condenser he will know how much
power to expect from a steam engine – or at least there will be an upper bound for the power. This knowledge
will be irrespective of the number of pistons, or turbines, or the arrangement of the steam valves and the like.

It is the same with a plant: If we know how much air, water, heat and entropy enters and leaves the plant
we can tell how fast it grows, – at least the thermodynamicist can. For his conclusions it is not necessary to
know the details of the photosynthetic process, or the physiology of the leaves.

In this paper we propose to prove that the global view of the thermodynamicist may be a useful tool for
an improvement of our knowledge of plant growth.

1.2 A dilemma with glucose synthesis

The synthesis of glucoseC6H12O6 may be viewed as a prototype of the formation of organic material which
the plants produce by photosynthesis. It is described by the stoichiometric formulae

CO2 + H2O −→ 1
6

C6H12O6 + O2 . (1)

The plant usesCO2 from the air andH2O in liquid form from the soil.O2 is set free through the leaves.
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The enthalpy change in the reaction and the entropies of the constituents may be read off from chemical
handbooks (e.g. see [2]). We obtain

∆hR = 466, 3 · 103 J
mol

(2)

sR
CO2

= 214 J
molK sR

H2O = 66, 6 J
molK

sR
C6H12O6

= 213 J
molK sR

O2
= 205 J

molK

(3)

hence

∆sR = −40, 1
J

molK
. (4)

The heat of reaction may be calculated by the first an second laws and we obtain by (2) and (4)

1st law: q = ∆hR = 466, 3 · 103 J
mol

2st law: q ≤ TR∆sR = 298K
(−40, 1 J

molK

)
= − 11, 9 · 103 J

mol .
(5)

Thus according to the first law the reaction is endothermic while the second law requires that it is exothermic.
These conflicting results constitute the dilemma of photosynthesis; they cannot both be true. The values with
the indexR refer to the reference state which – by common consent – ispR = 1atm andTR = 298K .

Another aspect of the dilemma results from the elimination ofq between the two laws (5) which leads
to an inequality for the Gibbs free energyg, viz.

∆gR = ∆hR − TR∆sR ≤ 0 , (6)

while the numbers give

∆gR = +478, 2 · 103 J
mol

(!) . (7)

We have to conclude that the reaction cannot proceed with heating only. Indeed, there must be an accom-
panying process which increases the entropy far enough that the decrease in enthalpy may be compensated
for.

1.3 Three propositions

Two propositions have been made to resolve the dilemma and a third one is offered in this paper.
The first proposal is due to Schrödinger who remarked in passing – in his booklet ”What is life?” [1] –

that ”the plants clearly possess their strongest store of ”negative entropy” in the sunlight”. It is not easy to
understand what exactly Schrödinger meant with this remark1. However, it is true that between the absorption
of solar radiation in the plant – or in any other absorbing material – and the reemission of radiation there is
a large entropy production of radiation due to the matter. This entropy production is more than enough, by
far, to compensate for the decrease of entropy in the chemical reaction. We shall discuss this in Chapter 2.

Another remedy for the dilemma was proposed by Tsuchida & Murota [4]. These authors realized that
a plant transpires a lot of water and, – since the entropy grows between the liquid and the vapour phase –
they concluded that the necessary entropy increase was to be found in the evaporation. This proposition can
be discounted. It is true that the plant transpires water, but during the transpiration the enthalpy grows along
with the entropy and the two increases are such that the Gibbs free energy stays constant. In fact, the constant

1 Schr̈odingers remark was not specific, let alone quantitative. But it was noted and is known to plant physiologists to this day, see
[3].

Actually Schr̈odinger adds a note in which he says that the remark was criticized by his peers; this note, however, does not help
much. In retrospect one must say that the choice of words ”negative entropy” was most unfortunate. It was grabbed by pseudo-scientists
who made it into a new quantity, the ”Negentropy”, which is an unhelpful and confusing concept.
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value of g is the thermodynamic condition for a phase equilibrium. Therefore, evaporation alone does not
help; the dilemma in the form of (7) remains.

And yet our own proposition for an escape from the dilemma is closely related to the one by Tsuchida
& Murota. We accept that indeed the plant consumes much more water than it needs for the reaction (1) -
several hundred times more in fact, e.g. see [5]2 – and we maintain that this water is evaporated in order to
serve as a coolant, i.e. in order to keep the temperature of the plant down. The necessary increase of entropy
comes from mixing the transpired water with the surrounding air. We shall demonstrate that the entropy of
mixing of vapour and air provides enough entropy to pull the Gibbs free energy down below zero, so that
the 1st and 2nd laws are satisfied. It is true though that for this purpose we need to supply the plant with a
surplus of air. In other words, the plants must not only bewatered, they must also beventilated.

2 Entropy production by radiation. The Schrödinger proposition

2.1 Radiation fluxes of energy and entropy

As we have remarked already, Schrödingers proposition is not specific. In order to make it quantitative we
have to consider the in- and effluxes of radiation; and this is what we do in this section. We think that this
is the treatment which Schrödinger must have had in mind.

The flux densities of energy and entropy that reach the earth from the sun are given by

(S)
FE= c

4σT4
S

r 2

R2 = 1330W
m2 and

(S)
FS= c

4
4
3σT3

S
r 2

R2 = 0, 31 W
m2K . (8)

c is the speed of light andσ = 7, 63 · 10−16 J
m3K 4 is the Stefan-Boltzmann constant.r and R are the radii of

the sun and of the earth’s orbit respectively.TS = 5700K is the temperature of the sun.
The values (8) are called the solar energy and entropy constants. Parts of these fluxes are reflected by

either the atmosphere – the blue part - , or theplant surface – the green part, and we may estimate that half
of the fluxes penetrate into the plant, e.g. see [5] or [6]. Thus we assume that the incoming fluxes of energy
and entropy relevant to the plant have the values

F in
E = 650W

m2 and F in
S = 0, 15 W

m2K .

In later parts of the paper we shall also consider the case that only the fractionstr of these influxes is available
to the plant. In that case we set

F in
E = str · 650W

m2 and F in
S = str · 0, 15 W

m2K . (9)

The parameterstr will be called theradiation intensity.
The plant also radiates off energy and entropy according to its temperatureT and the outgoing flux

densities are given by

F out
E = c

4σT4 and F out
S = c

4
4
3σT3 . (10)

2.2 Photosynthesis

In the briefest possible description of photosynthesis some photons from the red and orange part of the
spectrum split water molecules which – upon reuniting – provide the energy for the glucose formation. Plant
physiologists have long studied the details of the process, e.g. see [5] or [6]; and their studies are not finished.

While all of the energy flux of 650Wm2 is absorbed and active in heating the plant, only about1
4 of this

flux lies in the red and orange parts of the spectrum and can be photosynthetically active. This amounts to

2 Larcher’s book [5] is also available in an English translation [6].
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Fig. 1. Controlled stationary plant growth

160W
m2 approximately. By (2) this flux would be able to synthesize glucose to the extent of 0, 9 kg

m2d = 75 gr
m2h .

3

In reality, – again by [5] – the ”unit leaf rate” or ”net assimilation rate” is given by4

ṁG = 1, 6gr
h = 0, 053mol

h = 1, 48 · 10−5 mol
s for 1m2 leaf surface. (11)

Thus only about 2 % of the low frequency radiation is involved in the reaction. The remaining 98 % heat the
plant along with all the other radiation that reaches it and is not reflected.

2.3 Balance of masses

We consider an open system of volume V in which the plant leaf grows, while air and liquid water are
entering and leavingV so as to satisfy the stoichiometric reaction, see Fig. 1. In this chapter we assume that
the chemical reaction consumesall the liquid waterandall of the CO2 supplied with the air. In other words,
for now, there is no transpiration of water nor surplus of air. After all we are investigating the Schrödinger
proposition. Also we assume – for now – that the incoming air is dry. In order to ensure stationarity the plant
growth is removed from V as indicated in the figure.

The mass balance equations for the open volume indicated by the dashed line in Fig. 1 and for the
constituentsα read in the stationary case∫

∂V
ραw

α
i ni dA =

∫
V
γαMαµ0ΛdV . (12)

Λ is the reaction rate density of the reaction (1) andγα and Mαµ0 are the stoichiometric coefficients and
molecular masses of the constituents.Mα are their relative molecular masses andwα

i their velocities. We may
write these equations in terms of the mass fluxes ˙mα and, withλ =

∫
ΛdV as the reaction rate, we obtain

ṁout
α − ṁin

α = γαMαµ0λ . (13)

We have 5 constituents going in and/or out, namely the ideal gasesN2, O2 andCO2, liquid waterL and solid
glucoseG. Under the conditions considered – with no efflux ofCO2 and water and no influx of glucose –
we may write the equations (13) more explicity in the form

ṁout
N2

− ṁin
N2

= 0
ṁout

O2
− ṁin

O2
= MO2µ0λ

− ṁin
CO2

= − MCO2µ0λ
− ṁin

L = − MH2Oµ0λ
ṁout

G = 1
6 MGµ0λ .

(14)

3 with 1day = 12h with enough sunlight to make photosynthesis possible
4 mol here as in (2) etc. refers to a reaction with the stoichiometric formula (1), i.e. to the consumption of 1mol CO2 or the production

of 1
6mol glucose, which is 30gr .
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For the ideal gases withpαV̇ = ṁα
R

Mα
T we may calculate the influxes ˙min

α in terms of the natural partial
pressures and the volume influẋV of air5

pin
N2
p = 0, 7897

ṁin
N2

MN2
= 0, 7897 · pV̇

RT

pin
O2
p = 0, 21 hence

ṁin
O2

MO2
= 0, 21 · pV̇

RT

pin
CO2
p = 0, 0003

ṁin
CO2

MCO2
= 0, 0003 · pV̇

RT = µ0λ .

(15)

From (14) we thus obtain

ṁout
N2

MN2
= 0, 7897· pV̇

RT

pout
N2
p = 0, 7897

ṁout
O2

MO2
= (0, 21 + 0, 0003) pV̇

RT hence
pout

O2
p = 0, 21 + 0, 0003

ṁout
CO2

MCO2
= 0

pout
CO2
p = 0 .

(16)

If as stated, the unit leaf rate amounts to 1, 6gr
h or 1, 48 · 10−5 mol

s , the necessary volume fluẋV of air is
given by, eq. (14)5 and (15)6 6

pV̇
RT

= 1, 64 · 10−3 mol
s

. (17)

2.4 Balance equations of energy

We continue to consider the case shown in Fig. 1 and described sofar. If we ignore the kinetic energies of the
constituents and all heat fluxes the stationary balance equations for energies of matter and radiation read∫

∂V

∑
αραhαwα

i ni dA =
∫

V rdV∫
∂V F i

Eni dA = − ∫ V rdV .
(18)

hα is the specific enthalpy of constituentα and F i
E is the radiative energy flux density.r is the production

density of energy of matter due to absorption of radiation; the total energy of matter and radiation is conserved
so that the sum of the R.H.S. of the equations (18) is equal to zero.

We may write the energy flux in terms of the mass fluxes and, of course, the radiative energy flux is the
balance of the in- and effluxesFE given in (9), (10). Thus the equations (18) may be written in the form∑

αhout
α ṁout

α − ∑
αhin

α ṁin
α =

∫
V rdV

F out
E − F in

E = − ∫ V rdV .
(19)

2.5 Balance equations of entropy

The stationary balance equations of entropy read∫
∂V

∑
αραsαwα

i ni dA =
∫

V (σMS + σMM ) dV

=
∫

V

(
r
T + σMM

)
dV∫

∂V F i
Sni dA =

∫
VσSMdV

(20)

sα is the specific entropy of constituentα and F i
S is the radiative entropy flux density.σMS and σSM are

the densities of production of entropy of matter due to radiation and of radiation due to matter respectively,

5 The argon is lumped together with the nitrogen, whose 4 digit concentration is chosen so that all partial pressures add up to p.
6 We remark in passing that the synthesis of 1gr glucose requires an air influx of 2, 8m3 , – if p = 1atm, T = 300K , and if all CO2

from the air is consumed.
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while σMM is the ordinary entropy production density of matter due to heat conduction, viscosity, diffusion
and chemical reactions. We know from ordinary thermodynamics thatσMS = r

T holds.σSM is less clear-cut,
it will depend on the way radiation and matter interact by absorption, emission and scattering (see [7] for a
simple case). Whatever else happens, the total entropy production must be non-negative so that we must have∫

V

( r
T

+ σSM + σMM

)
dV ≥ 0 . (21)

In terms of the mass fluxes ˙mα and in- and effluxes (9) and (10) of radiative entropy we may thus write∑
αsout

α ṁout
α − ∑

αsin
α ṁin

α =
∫

V

(
r
T + σMM

)
dV

F out
S − F in

S =
∫

VσSMdV .
(22)

2.6 Equations of state

The specific enthalpies and entropies of the constituents are given by

hN2 = hR
N2

+ 7
2

R
MN2

(T − TR)

hO2 = hR
O2

+ 7
2

R
MO2

(T − TR)

hCO2 = hR
CO2

+ 4 R
MCO2

(T − TR)

hL = hR
L + cL (T − TR) with cL = 4, 18 kJ

kgK

hG = hR
G + cG (T − TR) with cG = 1, 22 kJ

kgK

(23)

∆hR ≡ MO2hR
O2

+
1
6

MGhR
G −MCO2hR

CO2
−MH2OhR

L = 466, 3 · 103 J
mol

. (24)

and

sN2 = sR
N2

+ 7
2

R
MN2

ln T
TR
− R

MN2
ln

pN2
pR

sO2 = sR
O2

+ 7
2

R
MO2

ln T
TR
− R

MO2
ln

pO2
pR

sCO2 = sR
CO2

+ 4 R
MCO2

ln T
TR
− R

MCO2
ln

pCO2
pR

sL = sR
L + cL ln T

TR

sG = sR
G + cG ln T

TR
.

(25)

∆sR ≡ MO2sR
O2

+
1
6

MGsR
G −MCO2sR

CO2
−MH2OsR

L = −40, 1
J

mol K
. (26)

These equations are the caloric equations of state of the ideal gasesN2, O2 andCO2, of the incompressible
liquid H2O, and of the solid glucose respectively. They are known to all students of thermodynamics.

2.7 Evaluation

We combine the two energy equations by summation to get∑
αhout

α ṁout
α −∑αhin

α ṁin
α = F in

E − F out
E . (27)

All quantities occurring in (27) have been explicity given in previous sections, see (9) through (11) and (14)
through (17) as well as (23), (24). Only the values ofhα andF out

E depend on the temperatureT so that (27)
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represents an equation for the temperature of the system if the radiative influxF in
E and the growth rate ˙mG

are given. We obtain with the radiation intensitystr = 1(
466, 3 · 103 − 42, 9

T − TR

K

)
ṁG

mol/s
= 650− 5, 79 · 10−8 T4

K 4
(28)

and hence, by (11)

T = 325K . (29)

Next we combine the two entropy equations by summation and obtain the entropy inequality∑
αsout

α ṁout
α −∑αsin

α ṁin
α = F in

S − F out
S +

∫
V

([
r
T + σSM

]
+ σMM

)
dV ≥ 0 . (30)

All quantities on the L.H.S. andF in
S , F out

S have been given before and we obtain, always withstr = 1(
−40, 1− 42, 9 ln

T
TR
− 62, 7

)
ṁG

mol/s
= 0, 15− 4

3
5, 79 · 10−8 T3

K 3
+
∫

V

([ r
T

+ σSM

]
+ σMM

)
dV . (31)

The attentive reader recognizes the individual contributions in (28) and (31): The underlined term in (31)
represents the pressure ratios that contribute to the specific entropies, and the first two terms on the right
hand sides of (28) and (31) represent the balance of in- and efflux of energy and entropy. For the temperature
T = 325K we obtain from (31), by use of (11)∫

V

([ r
T

+ σSM

]
+ σMM

)
dV = 2, 5

W
K

A
m2

. (32)

A is the area which the plant offers to the radiation.
Thus the entropy production of matter and radiation is positive andthe second law is satisfied.

2.8 Discussion

Note that the radiation plays the overwhelming role in (28) and (31). Even without any left hand sides in those
equations, i.e. without plant growth, the two equations would give nearly the same results for temperature
and entropy production. Therefore the entropy production (32) is due to an overwhelming degree to the
rearrangement of radiation by absorption, reemission and scattering.

Infact, the tiny material partσMM of the entropy production isnegative. We obtain from (22)1 and (19)
by elimination ofr∫

V
σMM dV = − 1

T

(∑
α

(
hout
α − T sout

α

)
ṁout
α −

∑
α

(
hin
α − T sin

α

)
ṁin
α

)
. (33)

With the values given before the entropy production of matter comes out as∫
V
σMM dV = − 1

T

(
466, 3 · 103 − 42, 9

T − TR

K
+ T

[
40, 1 + 42, 9 ln

T
TR

+ 62, 7

])
ṁG

mol/s
W
K

A
m2

(34)

or with T = 325K (cf. the energy balance (28), and (11))∫
V
σMM dV = −10, 23 · 10−3 W

K
A

m2
. (35)

We are unsatisfied with this result and we reject it, because we believe that the material entropy production
should be positive. That forces us to investigate an alternative to the proposition of Schrödinger.
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Fig. 2. Control volume with additional mass
fluxes

3 Watering and ventilation

3.1 Proposition

While in the Schr̈odinger proposition the plant may survive and thrive on just enoughCO2 and H2O as is
needed for the stoichiometric reaction, in reality plants consume additional water, – a lot of it – and more air
than is required for theCO2 supply. The thesis to be investigated in this chapter is that the excess amounts
of water and air are thermodynamically relevant in the following manner:

– the excess water is transpired and thereby acts as a coolant for the plant.
– the excess air permits the transpired water to mix with a larger air volume and the corresponding entropy of

mixing provides an increase of entropy large enough to resolve the dilemma described in the Introduction.

3.2 Balance of masses

Since excess water and air are required in the new proposition, there is now also an efflux of water vapour
and of CO2 which we did not consider before. For the purpose of formulating the balance equations we
therefore replace Fig. 1 by Fig. 2 which includes the additional mass fluxes.

For good measure we permit the incoming air to be moist withz being its humidity7.
Thus, since more gases are entering and leaving the system, the evaluation of the mass balance equations

is more cumbersome than before, but not basically different. We have, – in analogy to (14)

ṁout
N2
− ṁin

N2
= 0 ,

ṁout
O2
− ṁin

O2
= MO2µ0λ ,

ṁout
CO2

− ṁin
CO2

= −MCO2µ0λ ,

ṁout
V − ṁin

V = xMH2Oµ0λ ,

− ṁin
L = − (1 + x) MH2Oµ0λ ,

ṁout
G = 1

6MGµ0λ .

(36)

The indices L and V refer to liquid water and water vapour. There is no liquid water leaving the system.x
is the excess amount of liquid water that we supply to the plant in addition to what the chemical reaction
requires.

The partial pressures and the mass fluxes of the incoming constituents are given by

7 The humidity is the mass of water divided by the mass of air that carries it.



Plant growth – A thermodynamicist’s view 135

pin
N2
p = 0,7897

1+z
MA

MH2O

ṁin
N2

MN2
= 0,7897

1+z
MA

MH2O

· pV̇
RT

pin
O2
p = 0,21

1+z
MA

MH2O

ṁin
O2

MO2
= 0,21

1+z
MA

MH2O

· pV̇
RT

pin
CO2
p = 0,0003

1+z
MA

MH2O

hence
ṁin

CO2
MCO2

= 0,0003

1+z
MA

MH2O

· pV̇
RT = (1 + y)µ0λ

pin
V
p =

z
MA

MH2O

1+z
MA

MH2O

ṁin
V

MH2O
=

z
MA

MH2O

1+z
MA

MH2O

· pV̇
RT

ṁin
L

MH2O
= (1 + x)µ0λ .

(37)

MA = 29 is the mean relative molecular mass of air andy is the excess amount of air that we supply to the
plant in addition to what the reaction requires.

The effluxes of all masses and the partial pressures of the outgoing gas constituents may be calculated
from (36). We obtain

ṁout
N2

MN2
= 0,7897

0,0003 (1 + y)µ0λ
pout

N2
p =

0,7897
0,0003(y+1)

(y+1)
0,0003

(
0,7897+0,21+z

MA
MH2O

)
+1+x+y

ṁout
O2

MO2
=
(

0,21
0,0003 (1 + y) + 1

)
µ0λ

pout
O2
p =

0,21
0,0003(y+1)+1

(y+1)
0,0003

(
0,7897+0,21+z

MA
MH2O

)
+1+x+y

ṁout
CO2

MCO2
= yµ0λ hence

pout
CO2
p = y

(y+1)
0,0003

(
0,7897+0,21+z

MA
MH2O

)
+1+x+y

ṁout
V

MH2O
=

(
z

MA
MH2O

0,0003 (1 + y) + x

)
µ0λ

pout
V
p =

z
MA

MH2O

(y+1)
0,0003+x

(y+1)
0,0003

(
0,7897+0,21+z

MA
MH2O

)
+1+x+y

ṁout
L

MH2O
= 0

ṁout
G

MG
= 1

6µ0λ

(38)

3.3 Energy balance

The energy balance equations are formally the same ones as in (19) and in particular the total balance of
matter and radiation reads

∑
αhout

α ṁout
α −∑αhin

α ṁin
α =

in
F E −

out
F E . (39)

The only difference to the previous case is that the water vapour provides a new constituent and, – of course
– the values of the mass fluxes are different. The only additional equation of state is the one for the water
vapour and this reads

hV = hR
L + r (TR) + 4 R

MH2O
(T − TR) , where r (TR) = 2, 44 · 103 J

gr . (40)

r (TR) is the heat of evaporation of water at the reference temperature.
If all state functions and the mass fluxes (37), (38) are inserted into (39), as well as the radiative energy

fluxes (9), (10) – withstr = 1 – we obtain an equation for the temperature, viz.8

(
466, 3 · 103 + x · 18 · 2, 44 · 103

) ṁG

mol/s
= 650− 5, 79 · 10−8 T4

K 4
. (41)
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Fig. 3. Temperature as a function of excess water forF in
E = 650W

m2

(str = 1) and two curves denotedstr = 0, 9 andstr = 0, 75 which
correspond to the respective fractions ofF in

E = 650W
m2

ThusT very nearly is a linearly decreasing function of the excess waterx, as shown in Fig. 3. The figure is
constructed for the value (11) of ˙mG.

We conclude from the figure – and equation (41) – that the temperature is smaller, if more water is
supplied and transpired. Thus the excess water works as coolant; its evaporation cools the system. Forx = 0
we obtain the old valueT = 325K , see (29) while for a temperature of 25◦C we need an excess valuex
which is about 310.

Obviously the (T, x)-plot depends strongly on the influx of radiative energy. The valueF in
E = 650W

m2

may be on the large side. Figure 3 shows two curves that correspond to influxes of 585W
m2 and 490W

m2 , i.e.
radiation intensitiesstr = 0, 9 andstr = 0, 75. It is clear that in those cases we have lower temperatures, or
– for a given temperature – that we need less excess water for cooling.

3.4 Entropy balance of matter. Growth condition I

We recall the entropy balance of matter (20)1, in which we replacer by use of the energy balance of matter
(19)1. Thus we obtain the equation

∑
α

(
hout
α − T sout

α

)
ṁout
α −∑α

(
hin
α − T sin

α

)
ṁin
α = − T

∫
VσMM dV . (42)

This is formally the same equation as (33) but now the sum over the constituents contains the water vapour
and, of course, the values of the mass fluxes and the partial pressures are different. However, all quantities
have already been given except one: the specific entropy of the water vapour. This reads

sV = sR
L +

r (TR)
TR

+ 4
R

MH2O
ln

T
TR
− R

MH2O
ln

pV

p (TR)
. (43)

p (TR) is the pressure of saturated vapour at the temperatureTR = 298K , i.e. we havep (TR) = 3, 2·10−2atm.
If everything is inserted into (42) we obtain a left hand side contains 4 parameters, viz.

– temperature
– excess waterx, which depends onT, cf. Fig. 3
– excess airy
– humidity z

We introduce the dimensionless temperatureτ = T
TR

and we require that the material entropy production
be positive, – rather than only the total entropy production (see the discussion in Sect. 2.8). Thus we obtain
the inequality

8 The terms proportional toT − TR have been neglected in (41), because they are small compared to the other terms.
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+
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RTR

MH2O (1− τ ) +

6 x · (4− cW
R MH2O

)
(τ − 1− τ ln τ ) +

7 x · τ ln pout
V

p(TR)

8 =− τ
Rµ0λ

∫
VσMM dV ≤ 0 .

(44)

We have numbered the individual terms, because we can identify their physical significance in words as
follows

1 Heat of reaction in the reference statepR = 1atm, TR = 298K
2 Entropy of reaction in the reference state
3 Change of enthalpy and entropy withT − TR due to specific heats
4 Entropy of mixing of gaseous constituents
5 Entropy of evaporation
6 Change of enthalpy and entropy of evaporating water withT − TR

7 Entropy of mixing of evaporated water
8 Requirement of non-negative material entropy production

We may call this inequality the growth condition. Actually we call it thegrowth condition I, because we shall
have another condition which concerns the ability of the plant to transpire water.

3.5 Growth condition II

If the air has a high humidityz, it may not be able to absorb all the water that the plant wants to transpire. This
effect limits the partial pressure of the outgoing water vapour: it has to be smaller thanp (T) , the saturation
pressure corresponding to the prevailing temperatureT. Thus we come togrowth condition IIwhich reads

pout
V < p (T) or, by (38) y + 1≥ 3 · 10−4 1− p(T)

p
p(T)

p −z
MA

MH2O

(
1− p(T)

p

) (45)

3.6 Evaluation

For a given temperatureτ = 1 corresponding to an excess water valuex = 310 (see Fig. 3 forstr = 1) and
two choices for the humidityz the left hand side of growth condition I – the inequality (44) – is plotted as
a function ofy, the excess air value. Figure 4 shows the result. The curves are thermodynamically relevant
only where they fall below the abscissa, because that is where the entropy production is positive as required
by growth condition I. But this is not all: The growth condition II must also be satisfied and this provides a
lower bound for the excess airy. This lower bound is represented by the dot on the curves of Fig. 4 and we
conclude that we must have more excess air when the air is more humid.

Inspection shows that the items(3) , (5) and (6) vanish from the growth condition I (44) whenT = TR

holds, i.e.τ = 1. But even for other values ofτ these items never amount to much numerically; we must
realize thatτ cannot move far out of the range 0, 9 < τ < 1, 1 or photosynthesis will stop. Figure 5 shows
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Fig. 4. Material entropy production (normalized) as a function
of excess airy for the three temperaturesT1 = 15◦C , T2 =
25◦C and T3 = 35◦C . For each temperature the two curves
represent two values of humidityz as indicated

the respective values of all terms in (44) forT = TR, z = 0 and as a function of excess airy. We see that only
term (1) , the heat of reaction, and the two terms(4) and(7) , the entropies of mixing are relevant. And while
(1) and (4) are either fully or nearly independent ofy, term (7) , the entropy of mixing of the evaporated
water with the surrounding air, depends strongly ony : The more excess air there is, the more mixing of
vapour and air will occur.

Seeing that only the terms(1) , (4) and(7) contribute significantly to the inequality (44) we may simplify
growth condition I and write

∆hR

RTR
+ τ (1 + y)

{
pin

N2

pin
CO2

ln
pout

N2

pin
N2

+
pin

O2

pin
CO2

ln
pout

O2

pin
O2

}
+ x · τ · ln

pout
V

p (TR)
≤ 0 . (46)

In this formula item(4) in (44) has also been truncated, because only its first two terms are numerically
relevant.

In conclusion we may say that thermodynamic principles require watering to the extent of 50 to 500
times, – depending onτ – the amount of water that is needed for the reaction. Also ventilation is required to
the extent of 0 to 6 times – depending onτ – the amount of air than is needed for the supply ofCO2 to the
plant.
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Fig. 5. The individual terms in the growth condition
I. Case:τ = 1, z = 0

While the need for watering is well known to plant physiologists, e.g. see [5], -and really to everybody
– , the excess air is not quantified in the literature to our knowledge, although it is generally recognized that
ventilation affects the plant growth positively (e.g. see [8]).

4 Growth rate for the reversible reaction

4.1 Reversibility

It is unfortunate that the entropy balance (44) is aninequalityrather than anequation,because that fact leaves
us with onlyoneequation – the energy balance – for the 6 parameters of our system. The parameters are

growth rateṁG

temperatureT
radiation intensitystr
excess waterx
excess airy
humidity z .

(47)

However, we may assume – perhaps – that the entropy production is small, because the whole process
of glucose formation in plants runs quite slowly. Therefore we suggest that the process is reversible to a
reasonable approximation and this means that there is no entropy production.9 By this assumption we gain
another equation, because the entropy inequality (44) becomes an entropy equality.

The energy equation contains four of the parameters (47), viz. ˙mG, T, str andx, while the new entropy
equation also contains four parameters, albeit different ones, viz.T, x, y, z. The two equations read

ṁG

mol/s
=

str · 650− 5, 79 · 10−8 T4

K 4

466, 3 · 103 + x · 18 · 2, 44 · 103
, (48)
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+
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pin
CO2

ln
pout
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pin
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}
+ x · τ · ln

pout
V

p (TR)
= 0 . (49)

Note that, by (37) and (38), the in-pressures depend onz, while the out-pressures depend onx, y andz.
In one respect the excess airy is not a good variable to have, because it is difficult to control. What we

can control easily is the volume fluẋV of the incoming air. By (37) and (38) we have

1 + y =
3 · 10−4

1 + z MA
MH2O

1
6MG

ṁout
G

pV̇
RT

(50)

9 For the present argument – for simplicity – we ignore the constraints that growth condition II imposes upon the reaction.
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and this relation may be used to replacey in (49) whereever it occurs, namely in the out-pressures.
Thus in synthetic notation the two equations (48) and (49) read

F (ṁG, T, str, x) = 0 and G
(
ṁG, T, x, V̇ , z

)
= 0 . (51)

4.2 Growth rate as a function of temperature

So as to get an idea about what the theory predicts – apart from the need for watering and ventilation – we
calculate the growth rate ˙mG as a function of temperature. We proceed as follows: We fix

z = 0, V̇ = 0, 053m3

s , str = 1, 0.9, 0.75 (52)

and elimatex between the equations (51)1, 2, thus obtaining ˙mG = ṁG (T, str) . The left hand side of Fig. 6
shows the result for the three values (52)3 of the parameter valuesstr.

We itemize three salient features of these curves

– there is an optimal temperature for growth
– the optimal temperature grows with an increasing influx of radiation
– the growth rate is promoted by a higher influx of radiation.

All three of these conclusions from the theory are confirmed by observations. Indeed, the right hand side
of Fig. 6 shows a plot taken from the book by Larcher [5], valid for the plantAtriplex patula, vulgo spinach.
The curves of this plot show the same properties qualitatively as the calculated curves.

Moreover, the amounts of the growth rates are roughly the same ones in the two diagrams. Indeed, for
glucose we have the typical value10

12
µmolCO2

s
= 1, 3

gr
h

.

The radiation rates in the measured plot refer to the Photosynthetically Active Radiation and it is given here
in terms of mols of the photons that carry the energy. Thus

103µmolPh

s
=̂ 220W .

It will be recalled that the radiation intensity factorstr = 1 corresponds to 650W. We have argued previously,
– see Sect. 2.2 – that only a quarter of the radiative influx is photosynthetically active. Therefore the parameter
values of the experimental and theoretical plots of Fig. 6 are also roughly the same.

10 molCO2 is one mol ofCO2, which is used to synthesize16mol of glucose, i.e. 30gr .

Fig. 6. Growth rate as a function of temper-
ature. Left: Theory. Right: Observation[5]
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Fig. 7. Growth rate as a function of energy influx. Left: Theory. Right: Observation [8];µE
s meansµmolPh

s

If we refer the volume flux (52)2 to the growth rate maximum of 8gr
h we obtain a specific volume of

24 m3

gr which is 8 to 9 times as much as the maximum amount needed, if the stoichiometric reaction alone
would occur, see Sect. (2.3).

All in all this is satisfactory, qualitatively and quantitatively so that, perhaps, out thermodynamic theory
of glucose synthesis gains some credence.

4.3 Growth rate as a function of radiation intensity

We may also fix parameters as follows

z = 0, V̇ = 0, 071m3

s , T = 18◦C

and elimatex between the two equations (51). Thus we obtain ˙mG = ṁG (str) . The left hand side of Fig. 7
shows the resulting curve which is nearly a straight line: Not unexpectedly the growth rate grows linearly with
the radiation density. Actually the behaviour has also been observed by botanists and the right hand side of
Fig. 7 represents one such observation, made for the plant Chrysanthemum Horim. Quantitative conclusions
cannot be drawn from Fig. 7 since the range of energy fluxes is different in the two diagrams and the ”relative
units” of the experimental picture are difficult to translate intogr /h.

4.4 Growth rate as a function of volume flux and of humidity

We investigate other aspects of the formula (51), viz.

– Setz = 0, T = 25◦C , str = 1 and calculate ˙mG = ṁG
(
V̇
)
.

– SetT = 25◦C , V̇ = 0, 069m3

s , str = 1 and calculate ˙mG = ṁG (z) .

The results are shown in the diagrams of Fig. 8. We conclude that better ventilation with dry air promotes
growth, while a higher humidity of the air – at a given volume flux – is bad for growth.
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Fig. 8. Left: Growth rate as a function of volume flux. Right: Growth rate as a function of humidity
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