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The stability of a triply diffusive fluid-saturated porous layer is investigated. A linear stability
analysis similar to that of Pearlstein et al [1] is presented. This allows us to make a thorough
investigation of the topology of the neutral curves. For some values of the thermal and solute
diffusivities we obtain highly unusual neutral curves, in particular a heart-shaped, disconnected
oscillatory curve. The effect of this is that three critical Rayleigh numbers are required to
fully specify the linear stability criteria, a novel result in porous convection. The influence of
nonlinear terms is likely to have important consequences for the experimental realisation of
the linear results and so we investigate the nonlinear stability of the problem by making use
of the energy method. This provides an unconditional nonlinear stability boundary and enables
us to identify possible regions of subcritical instability.

1 Introduction

The subject of double diffusive convection of a viscous fluid, or of a fluid-saturated porous layer, has been an
active area of research for many years. In the viscous fluid case in particular there is a considerable body of
work. Reviews of this subject can be found in Turner [2] and Huppert and Turner [3]. In the area of porous
media fluid mechanics there are many physical problems that can be modelled as fluid-saturated porous layers
stratified by heat and salt concentration, such as the geothermal reservoirs found in the Imperial Valley in
California (Cheng [4]), near Lake Kinnert in Israel (Rubin [5]) and the Wairakei geothermal system in New
Zealand (Griffiths [6]).

Reviews of the theoretical treatment of the double diffusive porous problem can be found in Cheng [4]
and Nield and Bejan [7]. The linear stability of a fluid-saturated porous layer stratified by heat and salt
concentration was first studied by Nield [8] and Taunton et al [9] who considered the onset of salt fingers.
The formulation of Nield [8] has been extended by Rubin [5] to introduce a nonlinear salinity profile, by
Patil and Rudraiah [10] who included the effect of thermal diffusion (the Soret effect) and by Murray and
Chen [11] to account for the effects of temperature dependent viscosity and volumetric expansion coefficients
and a nonlinear basic-state salinity profile. There has been very little experimental work in double diffusive
convection in porous media. Griffiths [6] obtained values of heat and salt flux through a thin “diffusive”
interface between two layers of fluid with different temperatures and salt concentrations while Murray and
Chen [11] incorporate a nonlinear time-dependent basic-state salinity profile in considering the onset of double
diffusive convection in a finite box of porous medium.

In comparison there has been very little study of the effect of a third diffusing component on the onset of
convection. Given the number of double diffusive problems there must be many examples where more than
one salt concentration is present. There are many fluid system containing more than two components. For
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example, Degens at al [12] have described the waters of Lake Kivu in East Africa as having a salinity which
is the sum of many salts and the oceans contain many salts with concentrations much less than the sodium
chloride concentration. One particular application of triple diffusive convection can be found in experiments
on double diffusive porous convection in which the effect of dyes or small temperature gradients should be
considered. Further applications may be found in the area of contaminant transport (Celia et al [13], Chen et
al [14]) where the chemical species that form the contaminants are non-reactive.

The linear stability of triple diffusive porous convection has been studied by Rudraiah and Vortmeyer [15]
and Poulikakos [16]. They adapt the method of Griffiths [17] who considered the effect of a third component
in the viscous fluid case. Since then the triple diffusive viscous flow problem has been studied by Pearlstein
et al [1]. They found that the results of Griffiths [17] were not always true. In particular the conclusion of
Griffiths [17] that “marginal stability of oscillatory modes occurs on a hyperboloid in Rayleigh number space
but the surface is very closely approximated by its planar asymptotes for any diffusivity ratios” is shown to
be incorrect. Pearlstein et al [1] show that for some fixed values of the diffusivity ratios, Prandtl number and
two of the three Rayleigh numbers, three values of the third Rayleigh number may be required in order to
specify the linear stability criteria. The effect of this is that the fluid is linearly unstable in two sections of
the Rayleigh number domain and stable in the intermediate section. These novel results can be attributed to
the existence of disconnected oscillatory neutral curves lying below the stationary neutral curve. In addition
Pearlstein et al [1] find that the oscillatory neutral curve can be heart-shaped which those authors claim offers
the possibility of simultaneous onset of instability at two different horizontal wavenumbers but the same
Rayleigh number.

The results of Rudraiah and Vortmeyer [15] and Poulikakos [16] are similar to those of Griffiths [17].
Rudraiah and Vortmeyer [15] also claim that the stability boundary for oscillatory convection is a hyperboloid
in Rayleigh number space that is closely approximated by its planar asymptotes. Motivated by the fact that
Pearlstein et al [1] have shown the results of Griffiths [17] to be incomplete, we make a systematic investigation
of the topology of the neutral curves and reconsider the results of Rudraiah and Vortmeyer [15] and Poulikakos
[16].

The linear stability analysis presented here does not yield any information on the effect of nonlinear terms.
In Sect. 5 we discuss the possible effect that nonlinear terms may have on the experimental realisation of
the unusual results predicted by the heart-shaped oscillatory curves. Of particular relevance is the work of
Proctor [18] and Hansen and Yuen [19]. Both consider subcritical instabilities in the double diffusive fluid
problem and show that subcritical instability can occur at values of the thermal Rayleigh number much less
than that predicted by the linear theory. Rudraiah, Srimani and Friedrich [20] consider the nonlinear stability
of finite-amplitude convection of a two-component fluid-saturated porous layer using truncations of Fourier
series. These authors also find that finite-amplitude instability is possible at subcritical values of the thermal
Rayleigh number. Rudraiah, Shivakumara and Friedrich [21] use a similar method to investigate the effect of
rotation on the double diffusive problem. Recently Guo and Kaloni [22] have applied the energy method to
the double diffusive problem with rotation. There has been no work on the triple diffusive problem, however,
and hence the need for the present analysis. One very important advantage of the application of the energy
method given in the present work is that it provides unconditional results, i.e. nonlinear stability is guaranteed
for initial perturbations of arbitrary sized amplitude.

The layout of this work is as follows. In Sect. 2 we present a linear stability analysis of the triple diffusive
problem in a porous medium in the vein of Pearlstein et al [1]. The problem is formulated for heat and two
salt concentrations as the three stratifying agencies. In Sect. 3 the energy method is applied to this problem
for two distinct cases. Firstly, when all three stratifying agencies are destabilizing and secondly the case
corresponding to heating from below with one salt field destabilizing and the other stabilizing. In Sect. 4
numerical results for both the linear and nonlinear analyses are presented and in the final section we discuss
the difficulties of reproducing these results experimentally.
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2 Linear stability analysis

2.1 Perturbation equations and dispersion relation

Consider a fluid-saturated porous layer lying in the infinite three-dimensional region 0< z < d. The
boundariesz = 0 andz = d are maintained at temperaturesT1 and T2 respectively. Suppose further that the
fluid has dissolved in it two different chemical components or “salts”. Denote the concentration of component
α by Cα (α = 1, 2). The concentration of componentα at the lower and upper boundaries is held atCα

l
andCα

u respectively.
The equation of state is given by

ρ = ρ◦
(

1− α (T − T◦) + A1

(
C1 − Ĉ1

)
+ A2

(
C2 − Ĉ2

))
,

whereρ◦,T◦ and Ĉα (α = 1, 2) are reference values of density, temperature and salt concentration respec-
tively. The constantsα andAα (α = 1, 2) represent the thermal and solute expansion coefficients respectively.

The equations of motion which govern flow in a porous medium are largely based on a relation which is
a generalisation of empirical observations (c.f. Joseph [23]). This relation is known as Darcy’s Law and can
be written

∇p = −µ
k

u + ρg,

where the variablesp, µ, k, u and g represent pressure, dynamic viscosity, porosity, velocity and gravity.
In addition to Darcy’s Law we have the incompressibility condition and the equations of conservation of
temperature and solute. Combining these equations with the Darcy law and the equation of state we obtain
the following system of governing equations:

p,i = −µ
k
vi − gρ◦(1− α(T − T0)

+A1(C1 − Ĉ1) + A2(C2 − Ĉ2))ki , (2.1)

vi ,i = 0, (2.2)

T,t + vi T,i = κ∆T, (2.3)

Cα
,t + vi C

α
,i = κα∆Cα, (α = 1, 2), (2.4)

where indicial notation and the Einstein summation convention have been employed. The vectork is the
unit vector in thez-direction. The variablesκ andκα (α = 1, 2) represent thermal and solute diffusivities
respectively.

The boundary conditions we consider are

T(0) = T1, T(d) = T2,
Cα(0) = Cα

l , Cα(d) = Cα
u , (α = 1, 2),

v3 = 0 at z = 0, d.
(2.5)

The experimental realisation of prescribing these boundary conditions, especially those on the concentration
fields, is discussed in Sect. 5.

Consider a steady solution ( ¯vi , p̄, T̄, C̄α) of (2.1)–(2.5) where ¯vi = 0 andT̄ and C̄α are functions ofz.
Equations (2.3) and (2.4) show that, utilising (2.5),

T̄ = T1 − βz, (β =
T1 − T2

d
),

C̄α = Cα
l − 4Cα

d
z, (4Cα = Cα

l − Cα
u ).

The steady state pressure ¯p can be obtained from (2.1) which shows that



364 J. Tracey

dp̄
dz

= −gρ◦
[

1− α(T1 − βz − T◦) + A1

(
C1

l −
4C1

d
z − Ĉ1

)
+A2

(
C2

l −
4C2

d
z − Ĉ2

)]
,

and so,

p̄ = ρ◦gz2

[
−αβ

2
+ A1

4C1

2d
+ A2

4C2

2d

]
−ρ◦gz

[
1− α(T1 − T◦) + A1(C1

l − Ĉ1) + A2(C2
l − Ĉ2)

]
+ p◦,

wherep◦ is constant.
In order to investigate the linear stability of this basic solution we introduce perturbations (ui , π, θ, φ

α)
to (v̄i , p̄, T̄, C̄α) via

vi = v̄i + ui , p = p̄ + π, T = T̄ + θ, Cα = C̄α + φα.

The resultant perturbation equations are non-dimensionalized using the following scalings:

t = t∗
d2

κ
, u = u∗

κ

d
, π = π∗

µκ

k
, x = x∗d,

θ = θ∗T#, φα = (φα)∗Φα,

T# =

(
µκ|δT|
αρogkd

)1/2

, Φα =

(
µκPα| 4 Cα|

Aαρogkd

)1/2

,

R =

(
αρogkd|δT|

µκ

)1/2

, Rα =

(
AαρogkdPα| 4 Cα|

µκ

)1/2

,

δT = T1 − T2,H = sgn(δT), Hα = sgn(4Cα), Pα =
κ

κα
.

HereR andRα are the thermal and salt Rayleigh numbers andPα are salt Prandtl numbers.
The nonlinear perturbation equations are then, in non-dimensional form (dropping the asterisks),

π,i = −ui +
[
Rθ − R1φ

1 − R2φ
2
]

ki , (2.6)

ui ,i = 0, (2.7)

θ,t + ui θ,i = HRw +∆θ, (2.8)

P1(φ1
,t + uiφ

1
,i ) = H1R1w +∆φ1, (2.9)

P2(φ2
,t + uiφ

2
,i ) = H2R2w +∆φ2. (2.10)

wherew = u3. The boundary conditions which follow from (2.5) for the perturbed quantities are

w = θ = φ1 = φ2 = 0 on z = 0, 1. (2.11)

We wish to perform a linearized stability analysis on (2.6)–(2.11) in the vein of Pearlstein et al [1]. Firstly
equations (2.6)–(2.10) are linearized by neglecting terms containing products of the perturbed quantities. A
time dependence ofeσt is introduced by substituting

u(x, t) = u(x)eσt ,

θ(x, t) = θ(x)eσt ,

φα(x, t) = φα(x)eσt (α = 1, 2).

The pressure term is eliminated by taking curlcurl of equations (2.6) and then taking the third component.
This gives
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∆w = R∆∗θ − R1∆
∗φ1 − R2∆

∗φ2, (2.12)

σθ = HRw +∆θ, (2.13)

P1σφ
1 = H1R1w +∆φ1, (2.14)

P2σφ
2 = H2R2w +∆φ2, (2.15)

where∆∗ =
∂2

∂x2
+
∂2

∂y2
is the horizontal Laplacian.

In order to obtain an equation inw alone we operate on (2.12) with (σ−∆)(P1σ−∆)(P2σ−∆) and use
(2.13) – (2.15) to eliminateθ, φ1 andφ2. The resultant equation forw is found to be

(σ −∆)(P1σ −∆)(P2σ −∆)∆w = HR2(P1σ −∆)(P2σ −∆)∆∗w

−H1R2
1(σ −∆)(P2σ −∆)∆∗w

−H2R2
2(σ −∆)(P1σ −∆)∆∗w.

(2.16)

We introduce normal modes, i.e.
w = W(z)ei (mx+ny).

In order to put our equation into a similar form to equation (2.3) of Pearlstein et al [1] the following
transformations are introduced:

HR2 → R1, H1R2
1 → −R2, H2R2

2 → −R3, P1 → P2, P2 → P3.

Equation (2.16) becomes

(σ − (D2 − k2))(P2σ − (D2 − k2))(P3σ − (D2 − k2))(D2 − k2)W
= −k2

{
R1(P2σ − (D2 − k2))(P3σ − (D2 − k2))

+R2(σ − (D2 − k2))(P3σ − (D2 − k2))
+R3(σ − (D2 − k2))(P2σ − (D2 − k2))}W,

wherek2 = m2 + n2 andD =
d
dz

.

The boundary conditions onw imply that W(z) = sinnπz. Puttingyn = n2π2 + k2, we have

(σ + yn)(P2σ + yn)(P3σ + yn)yn = k2 {R1(P2σ + yn)(P3σ + yn)
+R2(σ + yn)(P3σ + yn)
+R3(σ + yn)(P2σ + yn)} .

(2.17)

We wish to use this equation to obtain information about the stability of the basic solution. To do this we can
consideryn,P2,P3,R2 andR3 to be known whileR1 can be varied until a neutral solution (i.e.Re(σ) = 0) is
obtained. Rewrite (2.17) as

R1 =
(σ + yn

k2

)
yn − R2

σ + yn

P2σ + yn
− R3

σ + yn

P3σ + yn
. (2.18)

We are looking for neutral solutions so set the real part ofσ equal to zero, i.e. letσ = 0 + iω. Then (2.18)
becomes, upon removing complex quantities from the denominators,

R1 =
y2

n

k2
− R2

P2ω
2 + y2

n

P2
2ω

2 + y2
n
− R3

P3ω
2 + y2

n

P2
3ω

2 + y2
n

+iωyn

[
1
k2
− R2

1− P2

P2
2ω

2 + y2
n
− R3

1− P3

P2
3ω

2 + y2
n

]
,

(2.19)

which we rewrite as
R1 = f1(k, ω,R2,R3,P2,P3) + iωynf2(k, ω,R2,R3,P2,P3).

The quantityR1 is real so equation (2.19) implies that eitherω = 0 or f2 = 0.
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The caseω = 0 corresponds to stationary onset of convection. Settingω = 0 in (2.19) yields

R1 = Rs
1 =

y2
n

k2
− R2 − R3. (2.20)

So, for stationary neutral solutionsR1 is a single-valued function of the wavenumber. The critical value of
k which gives the minimum value ofRs

1 can be found by setting the derivative of (2.20) with respect tok
equal to zero, to findk = nπ. So the critical Rayleigh number for steady onset is

Rs,crit
1 = 4π2 − R2 − R3, (2.21)

sincen = 1 clearly gives the minimum value.
For oscillatory onsetω 6= 0, so equation (2.19) requires thatf2 = 0, i.e.

1
k2
− R2

1− P2

P2
2ω

2 + y2
n
− R3

1− P3

P2
3ω

2 + y2
n

= 0.

Rewrite this as a quadratic dispersion relation inω2,

ω4P2
2 P2

3 + ω2
[
y2

n(P2
2 + P2

3 ) + k2(R2(P2 − 1)P2
3 + R3(P3 − 1)P2

2 )
]

+y2
n

[
y2

n + k2(R2(P2 − 1) + R3(P3 − 1))
]

= 0,

or as
α(P2,P3)ω4 + β(k,R2,R3,P2,P3)ω2 + γ(k,R2,R3,P2,P3) = 0. (2.22)

The fact that this is a quadratic inω2 means that it may give rise to solutions with more than one positive
value ofω2 for fixed P2,P3,R2,R3, k. This has important consequences for the linear stability of our basic
solution and we now concentrate on finding such solutions.

Firstly, necessary conditions for the existence of multiple oscillatory neutral solutions are obtained.
If two real positive roots of (2.22) exist thenβ < 0 andγ > 0, i.e.,

y2
n(P2

2 + P2
3 ) + k2(R2(P2 − 1)P2

3 + R3(P3 − 1)P2
2 ) < 0, (2.23)

and
y2

n + k2(R2(P2 − 1) + R3(P3 − 1))> 0. (2.24)

Multiplying (2.24) by P2
2 and adding to−1×(2.23) gives

y2
n(P2

2 − P2
2 − P2

3 ) + k2
[
R2(P2 − 1)(P2

2 − P2
3 ) + R3(P3 − 1)(P2

2 − P2
2 )
]
> 0,

i.e.

R2(P2 − 1)(P2 − P3) >
y2

nP2
3

k2(P2 + P3)
> 0.

Similarly, multiplying (2.24) byP2
3 and adding to−1×(2.23) yields

R3(P3 − 1)(P3 − P2) >
y2

nP2
2

k2(P2 + P3)
> 0.

So, necessary conditions for the existence of two frequencies on the oscillatory curve are

R2(P2 − 1)(P2 − P3) > 0, (2.25)

R3(P3 − 1)(P3 − P2) > 0. (2.26)

For fixed P2,P3 satisfying (P2 − 1)(P3 − 1)(P2 − P3) 6= 0, i.e. the three diffusivities being distinct from
each other, (2.25) and (2.26) are satisfied in exactly one quadrant of the (R2,R3)-plane. If we consider the
case ofR2 < 0 andR3 < 0 (i.e. both salt fields stabilizing) then (2.25) and (2.26) imply that we cannot have
two onset frequencies at one wavenumber, so in order to have two onset frequencies at one wavenumber one
of these stratifying agencies must be destabilizing. This is in contrast with Pearlstein et al [1] who claim that
two destabilizing effects cannot give rise to two onset frequencies at one wavenumber. However, examination
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of the sign convention used by Griffiths [17] and subsequently by Pearlstein et al [1] shows that the effects
that Pearlstein et al [1] claim are destabilizing are actually stabilizing so our results are, in fact, in agreement
with those of Pearlstein et al [1] .

We want to find the values ofR1,R◦1 , on the oscillatory (R1, k) neutral curve corresponding to two different
onset frequencies at one wavenumber. To do this, rewrite the real and imaginary parts of (2.17) as

− ω2
[
y2

nf1 − k2(Ro
1 f2 + f3)

]
+ y2

n

[
y2

n − k2(R◦1 + f4)
]

= 0, (2.27)

− ω3f2 + ω
[
y2

nf5 − k2(R◦1 f6 + f7)
]

= 0, (2.28)

where
f1 = P2 + P3 + P2P3, f2 = P2P3, f3 = R2P3 + R3P2, f4 = R2 + R3,

f5 = 1 + P2 + P3, f6 = P2 + P3, f7 = R2(1 + P3) + R3(1 + P2).

On the oscillatory (R1, k) neutral curveω = 0 only at the bifurcation points with the stationary (R1, k)
neutral curve. Here a bifurcation point is one at which the oscillatory and stationary neutral curves intersect
and the frequencyω tends to zero as the bifurcation point is approached. So, away from the bifurcation points
we can divide (2.28) byω to get

ω2 =
y2

nf5 − k2(R◦1 f6 + f7)
f2

. (2.29)

Substitute (2.29) into (2.27) to get

y4
n

k4
f8 +

y2
n

k2
(R◦1 f9 + f10)− (R◦1 f6 + f7)(R◦1 f2 + f3) = 0, (2.30)

where
f8 = −f1f5 + f2, f9 = f1f6 + f2f5 − f2, f10 = f1f7 + f3f5 − f2f4.

Equation (2.30) is satisfied on the oscillatory neutral curve. We can use it to locate extremal points on
the oscillatory curve in the (R1, k)-plane. To find these points differentiate (2.30) with respect tok and set
∂R◦

1

∂k
= 0 to get

2yn(2k2 − yn)(2y2
nf8 + k2(R◦1 f9 + f10)) = 0.

So the extremal values ofR◦1 occur at either

2k2 − yn = 0, (2.31)

or
2y2

nf8 + k2(R◦1 f9 + f10) = 0. (2.32)

Equation (2.31) corresponds to the casek = nπ. From (2.31),
y2

n

k2
= 4n2π2 which is substituted into (2.30)

to obtain
(R◦1 )2f2f6 + R◦1 (f2f7 + f3f6 − 4n2π2f9) + (f3f7 − 16n4π4f8 − 4n2π2f10) = 0. (2.33)

For fixedP2,P3,R2,R3 this is a quadratic inR◦1 which has zero, one or two real solutions. For each solution
the sign ofω2 in (2.29) must be checked. So there may be zero, one or two physically meaningful extremal
values ofR◦1 on the oscillatory neutral curve corresponding tok = nπ.

In the other case substitution of (2.32) into (2.30) yields

(R◦1 )2(f 2
9 + 4f2f6f8) + R◦1 (2f9f10 + 4f2f7f8 + 4f3f6f8) + (f 2

10 + 4f3f7f8) = 0. (2.34)

Again this is a quadratic inR◦1 which may have zero, one or two physically meaningful (ω2 ≥ 0) solutions
at wavenumbers other thank = nπ. In this case we can obtain some more information. If we define

f11 = −R◦1 f9 + f10

2f8
,

then (2.32) may be rewritten as
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(n2π2 + k2)2 − f11k2 = 0,

i.e.
k4 + (2n2π2 − f11)k2 + n4π4 = 0.

This has zero or two positive real roots. So, for each physically meaningful value ofR◦1 satisfying (2.32) there
are two extrema on the oscillatory neutral curve withk 6= nπ. So there may be two extrema at oneR◦1 (from
(2.32)) and two extrema atk = nπ (from (2.31)) in which case the oscillatory neutral curve is heart-shaped.

2.2 Locating the oscillatory neutral curves

The existence of the closed oscillatory curves can be decided by locating any bifurcation points and points of
infinite slope on the oscillatory neutral curves. The advantage of this approach is that it eliminates the need
to search for the oscillatory curves in the (R1, k)-plane.

Bifurcation points are the only points on the oscillatory curve at whichω = 0. They can be located by
settingω = 0 in (2.22). This yieldsγ = 0, i.e.,

y2
n + k2(R2(P2 − 1) + R3(P3 − 1)) = 0.

Setδ = R2(P2 − 1) + R3(P3 − 1) and rewrite this as a quadratic ink2,

k4 + k2(2n2π2 + δ) + n4π4 = 0 .

This has zero or two real positive solutions, corresponding to zero or two bifurcation points. The value ofR◦1
corresponding tok can be found by settingω = 0 in (2.27). This gives us

R◦1 =
y2

n

k2
− f4.

The resultant pair (R◦1 , k) must be substituted into (2.29) to ensure thatω2 ≥ 0.
At points of infinite slope the number of branches on the oscillatory curve changes from zero to two or

vice-versa. Consequently at these points the number of positive roots of (2.22) changes from zero to two, so
points of infinite slope may be determined by solving

β2 − 4αγ = 0

from (2.22). Rearranging this yields a quartic ink2

Ak8 + k6(4n2π2A + B) + k4(6n4π4A + 2n2π2B + C) + k2(4n6π6A + n4π4B) + An8π8 = 0,

where
A =

(
P2

2 − P2
3

)2 ≥ 0,

B = −2(P2 + P3)
[
P2

3 R2(P2 − 1)(P2 − P3) + P2
2 R3(P3 − 1)(P3 − P2)

]
,

C =
[
R2(P2 − 1)P2

3 + R3(P3 − 1)P2
2

]2 ≥ 0.

This has four possible sign changes and so, by Descartes’ rule of signs, four possible positive real roots.
However, it can be shown that there are at most two physically meaningful positive roots and consequently
at most two points of infinite slope.

The value ofR1 on the oscillatory curve at the point of infinite slope can be found by differentiating

(2.30) and setting
∂k
∂R◦1

= 0. This yields

R◦1 = − (f2f7 + f3f6)k2 − y2
nf9

2k2f2f6
.

Again for each pair (R◦1 , k) the sign ofω2 in (2.29) must be checked.
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Fig. 1. Topology of the neutral curves.a Two bifurcation points, no points of infinite slope.b Two bifurcation points, two points of
infinite slope.c No bifurcation points, two points of infinite slope.d No bifurcation points, two points of infinite slope

2.3 Topology of the neutral curves

The possible combinations of bifurcation points and points of infinite slope allow us to determine the shape of
the neutral curves. If there are no bifurcation points and no points of infinite slope then there is no oscillatory
curve, since the oscillatory curve must be either connected to the the stationary curve (and so there are two
bifurcation points), or disconnected from the stationary curve and closed (and so there are two points of
infinite slope).

If there are two bifurcation points and no points of infinite slope then the neutral curves look like Fig. 1a.
The oscillatory curve is single-valued betweenkb1 andkb2 and does not exist for any other values ofk.

If there are two points of infinite slope and two bifurcation points then the neutral curves look like Fig. 1b.
The oscillatory curve is double-valued betweenks1 andkb1 and betweenkb2 andks2 and single-valued between
kb1 andkb2. This has no bearing on stability as the single critical Rayleigh number still occurs at the minimum
of the oscillatory curve.

If there are two points of infinite slope and no bifurcation points then the neutral curves will look like
Fig. 1c or Fig. 1d. In Fig. 1c the oscillatory neutral curve does not lie entirely below the stationary curve
and so still only one critical Rayleigh number is required to describe linear instability. The points where the
stationary and oscillatory curves meet are not true bifurcation points. As the point of intersection is approached
along the oscillatory curve the frequency,ω, does not tend to zero. In Fig. 1d the oscillatory curve lies wholly
below the stationary curve and now three values ofR1 are required to specify the linear instability criteria.
The fluid is linearly unstable forR1

1 < R1 < R2
1 and forR1 > R3

1 and stable forR2
1 < R1 < R3

1.

3 Nonlinear stability analysis

We now present an analysis of the nonlinear stability of the basic solution by use of the energy method. The
nonlinear perturbation equations are, from (2.6)–(2.10),

π,i = −ui + [Rθ − Sφ− Tψ] ki , (3.1)

ui ,i = 0, (3.2)

θ,t + ui θ,i = HRw +∆θ, (3.3)

P1
(
φ,t + uiφ,i

)
= H1Sw +∆φ, (3.4)

P2
(
ψ,t + uiψ,i

)
= H2Tw +∆ψ. (3.5)

where, for later convenience, the following transformations have been used

φ1 → φ, φ2 → ψ, R1 → S, R2 → T.

Let V denote a period cell for the solution. The boundary conditions we consider are

w = θ = φ = ψ = 0 onz = 0, 1,
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and further thatui , θ, φ, ψ andπ are periodic on the lateral boundaries ofV .
To commence multiply (3.1) byui , (3.3) byθ, (3.4) byφ and (3.5) byψ and integrate overV . Integration

by parts and use of the boundary conditions yields

0 = −‖u‖2 + R(θ, w)− S(φ,w)− T(ψ,w), (3.6)
d
dt

1
2
‖θ‖2 = HR(w, θ)− ‖∇θ‖2, (3.7)

d
dt

P1

2
‖φ‖2 = H1S(w, φ)− ‖∇φ‖2, (3.8)

d
dt

P2

2
‖ψ‖2 = H2T(w,ψ)− ‖∇ψ‖2, (3.9)

where‖ · ‖ denotes theL2(V ) norm and (f , g) =
∫

V
f g dV .

If we now form (3.6) +λ (3.7) + ξ (3.8) +µ (3.9), whereλ, ξ andµ are positive coupling parameters to
be selected at our discretion, then

d
dt

(
λ

2
‖θ‖2 +

ξP1

2
‖φ‖2 +

µP2

2
‖ψ‖2

)
= (λH + 1)R(w, θ) + (ξH1 − 1)S(w, φ) + (µH2 − 1)T(w,ψ)

− (‖u‖2 + λ‖∇θ‖2 + ξ‖∇φ‖2 + µ‖∇ψ‖2
)
.

(3.10)

If we now define an energy

E(t) =
λ

2
‖θ‖2 +

ξP1

2
‖φ‖2 +

µP2

2
‖ψ‖2,

then (3.10) shows that
dE
dt

= I −D ,

where
I = (λH + 1)R(w, θ) + (ξH1 − 1)S(w, φ) + (µH2 − 1)T(w,ψ),

D = ‖u‖2 + λ‖∇θ‖2 + ξ‖∇φ‖2 + µ‖∇ψ‖2.

By rearrangement,
dE
dt

= I −D = −D
(

1− I
D

)
.

If we now define
1
Λ

=
max
H

I
D
, (3.11)

whereH is the space of admissible functions, then

dE
dt

≤ −D (1− 1
Λ

).

If now
Λ > 1, (3.12)

then

1− 1
Λ

= a > 0,

and so
dE
dt

≤ −aD .

The Poincaŕe inequality is (see e.g. Straughan [24])

‖∇θ‖2 ≥ λ∗‖θ‖2,
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whereλ∗ > 0, with similar results forφ andψ. Application of this gives that∃λ1 > 0 such that

D ≥ λ1E.

Therefore,
dE
dt

≤ −aλ1E, (3.13)

which can be integrated to yield
E(t) ≤ E(0)e−aλ1t .

So, if Λ > 1 thenE(t) → 0 ast →∞ at least exponentially fast and so our steady solution is stable.
The problem remains to find the maximum in (3.11).
In order to clear the denominator of the maximisation problem of coupling parameters we make the

following transformations √
λθ → θ,

√
ξφ→ φ,

√
µψ → ψ.

The resultant maximisation problem to be considered is

1
Λ

=
max
H

(
λH + 1√

λ

)
R(w, θ) +

(
ξH1 − 1√

ξ

)
S(w, φ) +

(
µH2 − 1√

µ

)
T(w,ψ)

‖u‖2 + |∇θ‖2 + ‖∇φ‖2 + ‖∇ψ‖2
.

The Euler-Lagrange equations for this maximum are derived as follows

δ

(
I
D

)
=

δI
D

− I
1

D 2
δD

=
1

D

(
δI − I

D

∣∣∣∣
max

δD
)

=
1

D

(
δI − 1

Λ
δD

)
= 0,

where

δF =
∂F
∂wi

− ∂

∂xj

(
∂F
∂wi ,j

)
= 0 ,

with wi standing forui , θ, φ or ψ. Therefore

δI − 1
Λ
δD = 0. (3.14)

SinceH is restricted to those functions that are divergence free, the solenoidal conditionui ,i = 0 must be
added into the maximisation problem by means of a Lagrange multiplier. This is done by adding a term∫

V
π(x)ui ,i dV = 0

in the maximisation. With the above condition included, the Euler-Lagrange equations are

Λ

[(
λH + 1

2
√
λ

)
Rθ −

(
1− H1ξ

2
√
ξ

)
Sφ−

(
1− H2µ

2
√
µ

)
Tψ

]
ki − ui = π,i (3.15)

Λ

(
λH + 1

2
√
λ

)
Rw +∆θ = 0, (3.16)

− Λ

(
1− H1ξ

2
√
ξ

)
Sw +∆φ = 0, (3.17)

− Λ

(
1− H2µ

2
√
µ

)
Tw +∆ψ = 0. (3.18)
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At the stability limit Λ→ 1. SettingΛ = 1 in the Euler-Lagrange equations (3.15)–(3.18) will then yield
the optimum results. The equations to be solved are now[(

λH + 1

2
√
λ

)
Rθ −

(
1− H1ξ

2
√
ξ

)
Sφ−

(
1− H2µ

2
√
µ

)
Tψ

]
ki − ui = π,i (3.19)

(
λH + 1

2
√
λ

)
Rw +∆θ = 0, (3.20)

−
(

1− H1ξ

2
√
ξ

)
Sw +∆φ = 0, (3.21)

−
(

1− H2µ

2
√
µ

)
Tw +∆ψ = 0. (3.22)

We now considerS andT to be fixed and investigate the variation ofR, where now

R = R(λ, ξ, µ, a2),

wherea is a wavenumber.
We will consider two special cases. Firstly,

H = 1,H1 = H2 = −1.

This corresponds to heating from below and salting from above with both salt fields. In this case all three
effects are destabilizing. Equations (3.19)–(3.22) become[(

λ + 1

2
√
λ

)
Rθ −

(
ξ + 1

2
√
ξ

)
Sφ−

(
µ + 1
2
√
µ

)
Tψ

]
ki − ui = π,i (3.23)

(
λ + 1

2
√
λ

)
Rw +∆θ = 0, (3.24)

−
(
ξ + 1

2
√
ξ

)
Sw +∆φ = 0, (3.25)

−
(
µ + 1
2
√
µ

)
Tw +∆ψ = 0. (3.26)

We will now vary each ofλ, ξ andµ in turn and find the optimum values of these coupling parameters.
Firstly, we considerξ, µ,S and T to be fixed and investigate the optimum value ofλ by using parametric
differentiation. Let now superscripts 1 and 2 refer to a solution of (3.23)–(3.26) corresponding to parameters
λ1 andλ2 respectively. We now form the inner products ((3.23)1, u2), ((3.23)2, u1), ((3.24)1, θ2), ((3.24)2, θ1),
((3.25)1, φ2), ((3.25)2, φ1), ((3.26)1, ψ2) and ((3.26)2, ψ1). Putting

f =
λ + 1

2
√
λ
, g =

ξ + 1

2
√
ξ
, h =

µ + 1
2
√
µ
, (3.27)

we derive the equations

R1f 1(θ1, w2)− Sg(φ1, w2)− Th(ψ1, w2) = (u1, u2), (3.28)

R2f 2(θ2, w1)− Sg(φ2, w1)− Th(ψ2, w1) = (u2, u1), (3.29)

f 1R1(w1, θ2) = D(θ1, θ2), (3.30)

f 2R2(w2, θ1) = D(θ2, θ1), (3.31)

− Sg(w1, φ2) = D(φ1, φ2), (3.32)

− Sg(w2, φ1) = D(φ2, φ1), (3.33)

− Th(w1, ψ2) = D(ψ1, ψ2), (3.34)
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− Th(w2, ψ1) = D(ψ2, ψ1), (3.35)

whereD(α, β) = (∇α,∇β).
To proceed, form (3.28) + (3.30)− (3.29)− (3.31) + (3.32)− (3.33) + (3.34)− (3.35) to find(

R2f 2 − R1f 1
) [

(θ2, w1) + (θ1, w2)
]

= 0.

Divide this byλ2 − λ1 and rearrange to find[
R2 f 2 − f 1

λ2 − λ1
+ f 1 R2 − R1

λ2 − λ1

] [
(θ2, w1) + (θ1, w2)

]
= 0.

If we now letλ2 → λ1, then (
R
∂f
∂λ

+ f
∂R
∂λ

)
(θ, w) = 0. (3.36)

However, from (3.20)
Rf (θ, w) = D(θ, θ) = ‖∇θ‖2. (3.37)

At the optimum value ofλ,
∂R
∂λ

= 0 and so, from (3.36) and (3.37),

R
∂f
∂λ

‖∇θ‖2

Rf
= 0,

and sincef > 0, we have
∂f
∂λ

= 0. From (3.27),

∂f
∂λ

=
λ− 1

4λ
3
2

.

So,
∂R
∂λ

= 0⇒ λ = 1. (3.38)

If we now fix λ andµ and varyξ then a similar argument to the above will show that

∂R
∂ξ

= 0⇒ ξ = 1,

and similarly, for fixedλ andξ the optimum value ofµ is 1.
With λ = ξ = µ = 1 the equations (3.23)–(3.26) are identical to the linearized versions of (3.1)–(3.5)

with a time dependenceeσt assumed andσ set equal to zero. So, if we can show thatσ is real, the linear
instability and nonlinear stability boundaries will coincide.

The linearized perturbation equations are, from (3.1)–(3.4) with a time dependenceeσt assumed,

π,i = −ui + [Rθ − Sφ− Tψ] ki , (3.39)

σθ = Rw +∆θ, (3.40)

P1σφ = −Sw +∆φ, (3.41)

P2σψ = −Tw +∆ψ. (3.42)

If we now multiply (3.39) byu∗i (the complex conjugate ofui ), (3.40) byθ∗, (3.41) byφ∗, (3.42) byψ∗,
integrate each overV and make use of the boundary conditions we find

0 = −‖u‖2 + R(θ, w∗)− S(φ,w∗)− T(ψ,w∗), (3.43)

σ‖θ‖2 = R(w, θ∗)− (θ,j , θ
∗
,j ), (3.44)

P1σ‖φ‖2 = −S(w, φ∗)− (φ,j , φ
∗
,j ), (3.45)

P2σ‖ψ‖2 = −T(w,ψ∗)− (ψ,j , ψ
∗
,j ), (3.46)
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where now‖a‖ = (a, a∗). Adding (3.43) + (3.44) + (3.45) + (3.46) yields

σ
(‖θ‖2 + P1‖φ‖2 + P2‖ψ‖2

)
= R [(θ, w∗) + (θ∗, w)] − S [(φ,w∗) + (φ∗, w)]

−T [(ψ,w∗) + (ψ∗, w)]

− (‖u‖2 + ‖∇θ‖2 + ‖∇φ‖2 + ‖∇ψ‖2
)
,

(3.47)

The right hand side of (3.47) is real and so if we letσ = σr + iσi , then taking the imaginary part of (3.47)
yields

σi
(‖θ‖2 + P1‖φ‖2 + P2‖ψ‖2

)
= 0.

Hence,
σi = 0.

Therefore the growth rate is real and so the linear instability and nonlinear stability boundaries coincide in
this case. This is an important result and demonstrates that whenH = 1,H1 = H2 = −1 there can be no
subcritical instabilities.

The next case we consider is
H = H1 = 1,H2 = −1.

This corresponds to the situation studied in Sect. 2 where the layer is heated from below, salted from below in
component 1 but salted from above in component 2. This means that heat and component 2 are destabilizing
but component 1 is in competition and acts as a stabilizing agent. Since the differential equations (2.6)–(2.10)
do not form a symmetric system we do not expect agreement between the linear and nonlinear stability results.
In this case the Euler-Lagrange equations (3.19)–(3.22) become[(

λ + 1

2
√
λ

)
Rθ −

(
1− ξ

2
√
ξ

)
Sφ−

(
µ + 1
2
√
µ

)
Tψ

]
ki − ui = π,i (3.48)

(
λ + 1

2
√
λ

)
Rw +∆θ = 0, (3.49)

−
(

1− ξ

2
√
ξ

)
Sw +∆φ = 0, (3.50)

−
(
µ + 1
2
√
µ

)
Tw +∆ψ = 0. (3.51)

Now set

f =
λ + 1

2
√
λ
, g =

1− ξ

2
√
ξ
, h =

µ + 1
2
√
µ
. (3.52)

If we now use parametric differentiation to find the optimum values ofλ, ξ andµ, then a similar argument
to that leading to (3.38) will show that

∂R
∂λ

= 0⇒ λ = 1,
∂R
∂µ

= 0⇒ µ = 1.

However, when we apply this argument forλ and µ fixed and consider the variation inξ we find, with
λ = µ = 1,

∂R
∂ξ

(θ, w)− S
∂g

∂ξ
(φ,w) = 0.

From (3.49), (3.50) and (3.52)

‖∇θ‖2

R
∂R
∂ξ

= −S
∂g

∂ξ

‖∇φ‖2

gS
=

ξ + 1
2ξ(1− ξ)

‖∇φ‖2,
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where‖ · ‖ once again denotes theL2(V ) norm. So the system is singular atξ = 1. While we cannot find a

solution for
∂R
∂ξ

= 0 note that

ξ < 1⇒ ∂R
∂ξ

> 0, ξ > 1⇒ ∂R
∂ξ

< 0.

This suggests that the best value ofξ is one. With this value ofξ, equations (3.48)–(3.51) become (theφ
equation dropping out),

Rθki − Tψki − ui = π,i (3.53)

Rw +∆θ = 0, (3.54)

− Tw +∆ψ = 0. (3.55)

We now solve these equations forT fixed. We eliminate theπ,i term by taking curlcurl of equations (3.53)
and taking the third component to leave

R∆∗θ − T∆∗ψ −∆w = 0,
∆θ = −Rw,
∆ψ = Tw,

where∆∗ is once again the horizontal Laplacian. If we now eliminateθ andψ we have a single equation in
w

R2∆∗w + T2∆∗w +∆2w = 0.

Now assumew = sinnπz ei (m1x+m2y) to find

R2 + T2 =

(
n2π2 + a2

)2

a2
,

wherea2 = m2
1 + m2

2 is a wavenumber. If we now minimise the right-hand side overn anda we find the least
value is 4π2. So, our nonlinear energy boundary is(

R2 + T2
)
min = 4π2. (3.56)

4 Results

4.1 Linear instability

All results are for the casen = 1. Although there is no proof thatn = 1 yields the minimum critical Rayleigh
number, both the present work and the results of Pearlstein et al [1] suggest this to be so.

The case whereP2 = 4.545454 andP3 = 4.761904 yields similar results to those of Pearlstein et al
[1]. These values forP2 and P3 correspond to the values forκ, κ1 and κ2 chosen by Pearlstein et al [1].
Figure 2 shows the stability boundaryRcrit

1 as a function ofR2 for fixed R3 = 261.0. There are three regions
of interest. To the left of the cusp (R2 < −285.28) there is a region of oscillatory onset. Here oscillatory
instability first occurs at a smaller value ofR1 than does stationary instability and there is a single critical
value of R1. To the right of the point of infinite slope (R2 > −284.92) instability occurs with real growth
rate. Here oscillatory instability does not occur and again there is one critical value ofR1. The intervening
region is the most interesting and is shown in the right-hand graph of Fig. 2. Here three values ofRcrit

1 are
required to fully specify the linear instability criteria. Oscillatory instability sets in first at the lowest critical
Rayleigh number. Then there is a region of oscillatory instability until the middle critical Rayleigh number
is reached. At this point the system becomes linearly stable again until the third critical Rayleigh number is
reached. Here stationary instability sets in and the system remains linearly unstable for all higher values of
R1. These stability boundaries are identical to those of Pearlstein et al [1] in that each ofRcrit

1 andR2 can be
a multi-valued function of the other for fixedR3,P2 andP3.



376 J. Tracey

Fig. 2. (Rcrit
1 , R2) stability boundary forR3 = 261.0, P2 = 4.545454, P3 = 4.761904. The right-hand graph shows the multi-valued region

in more detail

Fig. 3. (Rcrit
1 , R3) stability boundary forR2 = −284.0, P2 = 4.545454, P3 = 4.761904. The right-hand graph shows the multi-valued

region in more detail

Figure 3 shows the (Rcrit
1 ,R3) stability boundary for the same values ofP2 and P3 with R2 = −284.0.

Clearly Rcrit
1 andR3 can be multi-valued functions of each other. Again three values ofRcrit

1 may be required
to fully describe the linear stability criteria.

Figures 4 and 5 show the (R1, k) neutral curves forR3 = 261.0, P2 = 4.545454, P3 = 4.761904 and various
R2. For R2 = −320.0 the oscillatory curve is connected to the stationary curve at two bifurcation points and
the single critical Rayleigh number occurs at the minimum on the oscillatory curve. AsR3 is increased to
−310.0,−305.0 and−300.0 the bifurcation points move closer together. AtR2 = −288.5 the curve has lost
its single-valued nature and there are two points of infinite slope. However, still only one critical Rayleigh
number occurs. At a value ofR2 lying between−288.5 and−287.0 the bifurcation points move together and
coallesce and a closed oscillatory neutral curve is formed. AtR2 = −287.0 the oscillatory curve has become
detached from the stationary curve. The graphs ofR2 = −286.0 show the heart-shaped curve more clearly. As
R2 is increased the oscillatory curve moves entirely below the stationary curve and now three critical values
of R1 are required. For the larger values ofR2 shown the oscillatory curve becomes increasingly smaller until
at a value ofR2 between−285.1 and−284.9 the oscillatory curve collapses to a point and disappears. At
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Fig. 4. Neutral curves forR3 = 261.0, P2 = 4.545454, P3 = 4.761904

Fig. 5. Further neutral curves forR3 = 261.0, P2 = 4.545454, P3 = 4.761904
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Fig. 6. (Rcrit
1 , R3) stability boundary forR2 = 115.0, P2 = 0.5, P3 = 1.5. The right-hand graph shows the multi-valued region in more

detail

Fig. 7. Neutral curves forR2 = 115.0, P2 = 0.5, P3 = 1.5

R2 = −284.9 the oscillatory curve is no longer found and the single critical Rayleigh number occurs at the
minimum on the stationary curve.

The case whereP2 = 0.5, P3 = 1.5 and R2 = 115.0 is of interest as the results correspond to heating
the fluid from above while the two salts are gravitationally unstable. Similar results to the case where
R3 = 261.0, P2 = 4.545454, P3 = 4.761904 are found. The stability boundary is shown in Fig. 6. As before
there is a multivalued region where three critical Rayleigh numbers occur. The neutral curves in Figs. 7 and 8
show similar behaviour to the previous numerical example. AtR3 = 10.0 the oscillatory curve is single-valued
and connected to the stationary curve at two bifurcation points. The single critical Rayleigh number occurs at
the minimum on the oscillatory curve. AsR3 is increased to 20.0 the bifurcation points move closer together
and the oscillatory curve loses its single-valued nature. AsR3 is increased further the bifurcation points move
closer together until at a value ofR3 between 35.0 and 41.0 they coallesce and a closed oscillatory curve
is formed. This closed curve then moves below the stationary curve and three critical Rayleigh numbers are
required. The closed curve is heart-shaped over a small range of values (approximatelyR3 = 41.0− 43.0).



Convection-diffusion in a porous medium. 379

Fig. 8. Further neutral curves forR2 = 115.0, P2 = 0.5, P3 = 1.5

Fig. 9. Linear instability and nonlinear stability boundaries. The linear insta-
bility boundaries are shown for three values ofR2

At R3 = 44.0 the curve has lost its heart shape and is now a convex curve. For increasing values ofR3 this
convex curve decreases in size until it eventually collapses to a point and disappears. AtR3 = 50.0 only the
stationary neutral curve is found and the single critical Rayleigh number occurs at the minimum of this curve.

4.2 Nonlinear stability

Figure 9 shows the nonlinear stability boundary for the caseH = H1 = 1,H2 = −1 from equation (3.56)
plotted with the linear instability boundary for fixed values ofR2 = −284.0,P2 = 4.545454,P3 = 4.761904.
In addition we show the linear instability boundaries forR2 = −184.0 andR2 = −130.5. For larger values of
R2 than−130.5 we do not find closed oscillatory neutral curves. As these closed curves are the main focus
of this work we do not consider any larger values ofR2. As can be seen from the figure, the larger the value
of R2 the closer the nonlinear energy boundary is to the linear instability boundary and the smaller the region
of possible subcritical instabilities. This is not surprising as the equation corresponding toR2 (theφ equation)
drops out of the analysis in Sect. 3 and so does not provide any information. However, these results do have
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the advantage that they are unconditional, i.e. nonlinear stability is guaranteed for initial perturbations of
arbitrary sized amplitude.

5 Conclusions and discussion

In the case whereP2 = 4.545454,P3 = 4.761904 we find that the important results of Pearlstein et al [1] have
carried over to the porous case. In particular the existence of stability boundaries in the (R1,R3) (or (R1,R2))-
plane that are multivalued functions of bothR1 and R3 (or both R1 and R2) shows that the conclusion of
Rudraiah and Vortmeyer [15] that “marginal stability of oscillatory modes occurs on a hyperboloid in Rayleigh
number space but the surface is very closely approximated by its planar asymptotes for any diffusivity ratios”
is incorrect. In addition the existence of heart-shaped oscillatory neutral curves resulting in the onset of
oscillatory instability at a given value ofR1 for two different horizontal wavenumbers is a feature not seen
before in multi-component porous convection.

In the case whereP2 = 1.5,P3 = 0.5 we find positive values ofR2 and R3 that give rise to heart-shaped
oscillatory curves. These values correspond to the case of having both salt fields destabilizing. In the work of
Pearlstein et al [1] they claim (erroneously) that when the stratifying agencies corresponding toR2 andR3 are
destabilizing then it is impossible to have two onset frequencies at the same wavenumber. As explained in
Sect. 2 the necessary conditions (2.25) and (2.26) that we derive show that having both salt fields stabilizing
rules out the possibility of having a multi-valued oscillatory curve.

In equations (2.5) we regarded temperature and the normal component of velocity as being prescribed at
the boundaries. These boundary conditions are discussed by Joseph (1976). In a porous medium the fluid will
stick to a solid wall but this effect is confined to a boundary layer whose size is measured in pore diameters.
As the wall friction does not overtly affect the motion in the interior it is reasonable to replace the true wall
with a frictionless wall in our analysis.

Pearlstein et al [1] discuss the experimental problems of prescribing constant concentration at the bound-
aries. They suggest the use of semi-permeable membranes as boundaries through which solute can pass into
the working fluid volume. If the fluid outside the membrane is maintained at a constant concentration then
the solute boundary condition could be realised to within a good approximation.

There is some doubt as to whether the onset of instability at two wavenumbers and the same Rayleigh
number would be seen experimentally. In a situation where we have a heart-shaped oscillatory neutral curve
the initial onset of instability occurs at the minimum on the oscillatory curve. The value ofR1 corresponding
to onset at two different frequencies is, however, not a minimum and this instability lies in the range where
nonlinear effects are likely to be important. Work by Proctor [18] and Hansen and Yuen [19] on finite amplitude
double diffusive convection and by Rudraiah, Srimani and Friedrich [20] on the equivalent problem in a porous
medium have shown that subcritical convection could occur at values of the thermal Rayleigh number much
less than that predicted by the linear stability theory and hence the need for the nonlinear analysis presented
here.

In addition there is the physical relevance of the equation of state. McKay and Straughan [25] argue that
the density of a fluid is never a linear function of temperature. Straughan and Walker [26] consider the results
of Pearlstein et al [1] in the case where the density is a quadratic function of temperature. They find that the
closed oscillatory neutral curves are no longer perfectly heart-shaped but instead are slightly skewed. The
phenomenon of onset of instability at two different wavenumbers and the same Rayleigh number is no longer
seen. In the porous media case work in progress by this author with a quadratic temperature law shows similar
results to Straughan and Walker [26]. The oscillatory neutral curves are no longer perfectly heart shaped and
the feature described above is no longer observed. In order to improve the energy results given here it may
be possible to adapt the generalized energy method of Mulone [27]. Again, work to this end is in progress.
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