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Abstract The paper analyzes the vibrational behavior of cylinders in the offset printing machine caused by
a cylinder gap shock. Specifically, it assesses the stability of a system of two cylinders. The analysis of the
proposed model is reduced to solving a set of Hill equations. The singularity of the obtained equations is
the relationship between the natural frequencies of the system and modulation depth. Numerical simulations,
along with the generalized Hill’s determinant method, were employed to determine the critical parameters of
parametric resonance, thereby establishing the conditions necessary for the stability of periodic vibrations.
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1 Introduction

The presence of vibrations of offset printingmachines is a serious problem that can cause issues with the course
of the printing process and reduce the quality of obtained prints. The most significant cause of vibrations of
offset machines is the construction of printing units, whose main components are three cylinders (Fig. 1a):
plate, blanket and impression cylinder.

Two of them—the plate cylinder and blanket cylinder—are in direct contact, and the various phenomena
occurring during their turns can be a source of vibration. According to the literature, the formation of vibrations
of cylinders is connected with their design.

In [1], the author mentions the phenomenon known as "cylinder gap shock", which is associated with
sudden and temporary loss of contact between the plate cylinder and the blanket cylinder, which arises as a
result of turning ducts contained in both cylinders. Positions [2–4] also contain references to the problem of
cylinder gap shock and describe vibrations of cylinders or the entire structure of the printing machine.

The literature on the subject of vibrations of printing machines is not extensive [5–7]. A few works related
to this issue are focused on modelling of dynamic phenomena occurring in structural frames of machines [3]
or in cylinders of the printing unit [2–4,8–14]. One of the main problems arising as a result of vibrations
generated during the operation of the printing machine is the phenomenon of banding, which appears on the
prints in the form of lighter and darker strips that are parallel to the axis of the cylinder. This phenomenon
is especially noticeable on surfaces that are evenly covered with paint, i.e., uniform-colour backgrounds (full
fields, completely covered with paint) or tints (fields that are not fully covered with paint). A number of
scientific publications list the poor condition of the machine [2,15] and the phenomenon known as cylinder
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Fig. 1 a Turning ducts of printing cylinders; 1—plate cylinder, 2—blanket cylinder, 3—impression cylinder, 4—printing plate,
5—blanket, 6, 7—rear and front clip, 8—clips of the blanket, 9—gripper of the impression cylinder and b the accompanying
changes in stiffness for ε = T/16, ε0 = T/8, T = 2π/ωω = 1751.52 s−1

gap shock (CGS) as a few causes of banding [2]. This phenomenon is a stroke occurring between the plate
cylinder and the blanket cylinder, which is generated when the cylinders are turning [1,3].

However, in the literature, one can also find references to the formation of cylinder gap shock between the
blanket cylinder and the impression cylinder [16].

The aim of this work is to analyse vibrations caused by cylinder gap shock, as well as to develop a
methodology for assessing the stability of two cylinders when they are and they are not equipped with bearer
rings (Fig. 2).

We shall consider a dual mass oscillating systemwith the initial conditions as a dynamic model for printing
cylinders of the offset printing machine. Differential equations of vibrations of a dual mass system are stored
and solved in the matrix form

ż (t) = Â (t) z(t), z (0) = z0 (1)

where z(t) = [z1, z2, z3, z4]T - state vector, Â - matrix of the system.
A lot of studies have carried out analysis of forced and free vibrations of the system with two degrees of

freedom for constant coefficients of the Â0 matrix, for example [17–22].
The analysis of forced vibrations in the case of periodic changes in coefficients of the Â(t) matrix was

carried out in the following works [18,23–27].
In [13], the author conducted a study after determining dynamic forces generated by an imbalance of the

plate cylinder and the blanket cylinder for specific parameters and accuracy of balance adopted for printing
machines of the tower type. The vibrations of offset printing machines lead to a reduction in performance
and deterioration in print quality. The authors of [4,9–12] analysed the impact of bearer rings on torsional
vibrations of the plate and blanket cylinders using the method of computational experiment. The vibrations of
printing machines were considered in [8,14]. The article [28] presents a study on the effect of mistakes when
mounting the cylinders on the print quality and on ink film thickness.

Offset printing presses, particularly the advanced ones, use precise and high-resolution printing techniques.
These capabilities can be adapted to manufacture metamaterials, which often require complex and microscale
patterning. Metamaterials are engineered materials with properties not typically found in natural materials
[29–39]. They can be designed to have unique properties [40–46]. The precision of offset printing can be
leveraged to create the detailed structures necessary for metamaterials to exhibit their unique properties. Thus,
advancing knowledge of this system to improve its performance paves the way to new applications that have
been ignored until now. In particular, offset printing is a form of lithography, which is a key technique used in
the creation of metamaterials. Lithographic techniques are employed to pattern the small-scale structures that
give metamaterials their unusual properties, such as negative refraction, negative stiffness, or cloaking.

One of the challenges in metamaterials research and application is producing them at scale and at a rea-
sonable cost. Offset printing, being a mature and widely-used technology, offers a scalable and potentially
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Fig. 2 Model of the printing cylinders

cost-effectivemethod for producingmetamaterial structures. This can facilitate the commercialization andprac-
tical application of metamaterials. Metamaterials have significant applications in optics, electronics, acoustics,
and mechanics, areas where precise and high-quality printing techniques are crucial. Offset printing presses
can be adapted to create different kinds of metamaterials, which require accurate placement and patterning of
materials at the micro- or nanoscale. In summary, the advanced manufacturing capabilities of modern offset
printing may be crucial in the development and production of metamaterials. The precision, scalability, and
cost-effectiveness of offset printing make it a valuable technique in the field of metamaterials research and
application.

The analysed system consists of a plate cylinder and blanket cylinder and has two degrees of freedom
(Fig. 2).

The phenomenon of cylinder gap shock was considered as a source of parametric vibrations in the system,
meaning that their formation is caused by cyclic changes in stiffness of the system associated with turning
ducts (Fig. 1b).

The following study assumes that vibrations of the plate and offset cylinder take place in a vertical plane.
The printing unit was reduced to the dual mass system that represents plate and blanket cylinders (Fig. 2).

2 Mathematical statement of the problem

The analysed model of plate cylinders and blanket cylinders is shown in Fig. 1. The vibrations of cylinders are
caused by turning ducts, which are equipped with locks that secure the printing plate and offset blanket.

The turning ducts lead to a cyclical (with each turn of the cylinders) and sudden change in the stiffness of
the system, which induces parametric vibrations of the system that are described by equations (2).

The model shown in Fig. 2a consists of two masses m1 and m2, three springs with the following stiffness
coefficients k1, k2 and k12. Vibrations of the system are caused by changing stiffness k(t) and viscosity of
c(t) of the blanket. Therefore, it may be described by the following system of parametric equations

{
m1 ẍ1 + c1 ẋ1 + k1x1 + F (t) = 0
m2 ẍ2 + c2 ẋ2 + k2x2 − F (t) = 0 (2)
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Fig. 3 Function describing a temporary decrease of the load. ε = T/16, ε0 = T/8, T = 2π/ω, ω = 1751.52 s−1

where:

F (t) = k12 (x1 − x2) + c12 (ẋ1 − ẋ2) + k (t) (x1 − x2) + c(t) (ẋ1 − ẋ2) (3)

m1, m2—masses of the plate cylinder and the blanket cylinder;
c12, c1, c2 and c(t) – viscous damping coefficients of dampers, which are represented by bearer rings [27],

machine frame and blanket;
k12, k1, k2 and k(t) – stiffness coefficients of springs, which are represented by bearer rings [27], machine

frame and offset blanket.
It is noteworthy that the periodic substructure of metamaterials in this context may be used to create a

dampening effect if introduced in the linking devices modeled by k1, k2, c1, and c2. There are some trials in
this regard, and to provide a few relevant examples from the literature, we refer the reader to the sources about
mechanical damping, sometimes called “meta-damping” [47–49].

The changing load of cylinders arising as a result of periodic changes in stiffness and viscosity of the
blanket is modelled by force (3) (Fig. 2b). More in detail, in offset printing, the initial motion is generally
given to the plate cylinder, which starts the rotation and begins the process of inking the plate. As the plate
cylinder rotates, the inked image is transferred to the blanket cylinder. The impression cylinder then presses
the substrate against the rotating blanket cylinder, which prints the image onto the substrate. This sequence
ensures that the image is accurately and consistently transferred from the plate to the substrate, a crucial aspect
of high-quality offset printing. Therefore, because of the imposed motion of the plate cylinder and the periodic
return of the bumping effects of the slots or gaps placed in the cylinders, periodic changes in the load of
cylinders have been modelled as a periodic change in stiffness and damping of the offset blanket (3), where:

k (t) = k f (t), c (t) = c f (t) (4)

f (t) =

⎧⎪⎪⎨
⎪⎪⎩

1, Tn < t < T2ε+ε0

τ 2ε+ε0

(
3 − 2τε+ε0

)
, T2ε+ε0 < t < Tε+ε0

0, Tε+ε0 < t < Tε

τ 2ε (3 + 2τε) , Tε < t < Tn+1

(5)

τε = (Tε − t)/ε, τε+ε0 = (Tε+ε0 − t)/ε,
T2ε+ε0 = Tn+1 − 2ε − ε0, Tε+ε0 = Tn+1 − ε − ε0, Tε = Tn+1 − ε, n = 0,1,2,...;
Tn = nT , T = 2π/ω—the period of change (decrease) in load of cylinders;

f (t + T ) = f (t)

A graph of the function (5) for the exemplary parameters and for n = 0 is shown in Fig. 3.
Two second-order equations (2) should be reduced to four first-order equations. We will introduce new

variables (state variables) according to the formulas

x1 = z1, ẋ1 = z2, x2 = z3, ẋ2 = z4 (6)
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obtaining an equivalent system of four first-order equations (1) instead of the (2) equation, including (7)

2h11 = 2h01 + 2h10, 2h22 = 2h02 + 2h20, ω
2
11 = ω2

01 + ω2
10, ω

2
22 = ω2

02 + ω2
20

2h01 = c1
m1

, 2h02 = c2
m2

, ω2
01 = k1

m1
, ω2

02 = k2
m2

2h1 = c

m1
, 2h2 = c

m2
, ω2

1 = k

m1
, ω2

2 = k

m2

2h10 = c12
m1

, 2h20 = c12
m2

, ω2
10 = k12

m1
, ω2

20 = k12
m2

(7)

where the Â (t) matrix has the following structure

Â (t) =
⎡
⎢⎣

0 1
−(ω2

11 + ω2
1 f (t)) −2(h11 + h1 f (t))

0 0
(ω2

10 + ω2
1 f (t)) 2(h10 + h1 f (t))

0 0
(ω2

20 + ω2
2 f (t)) 2(h20 + h2 f (t))

0 1
−(ω2

22 + ω2
2 f (t)) −2(h22 + h2 f (t))

⎤
⎥⎦ (8)

The Â(t) matrix is a periodic matrix according to the model in question, which means that it is a matrix with
periodic functions of time.

Â (t + 2π/ω) = Â (t) or Â (t + T ) = Â (t) (9)

Based on the analysis of the above-mentioned works on parametric equations, we can conclude that complex
systems (for example, the printing unit) are expected to contain areas of instability. In the case of the pre-
sented parametric system, the areas of instability should be sought for the parameters satisfying the following
conditions:

ω = 2�i

n
, n = 1, 2, 3, ..., .i = 1, 2 (10)

ω = |�1±�2|
n

, n = 1, 2, 3, ..., (11)

where �i—natural frequency of the system.
Such resonances (11) are known as combination parametric resonances of the summation and differential

type [18,50].
The question is what should be regarded as the natural frequency of the system, if stiffness and viscosity

of the system changes periodically? Stiffness and viscosity should be replaced by averaged values when
calculating the natural frequencies of the system. The quality of averaged values takes the first part of the
Fourier series k a0/2, c a0/2 [27].

To determine the natural frequencies of the system, where stiffness and damping change periodically, Eq.
(1) was replaced by the averaged equation

ż (t) = Â0z(t) (12)

where Â0 = T−1
∫ T
0 Â (t) dt . It should be taken into account that the Â0 matrix is a matrix with constant

coefficients, i.e. the Â (t) matrix contains the a0/2 parameter instead of the function f (t).
After taking into account the formula (5), we can calculate the a0 coefficient

a0 = 2

T

⎛
⎜⎝

T−2ε−ε0∫
0

f (t) dt +
T−ε−ε0∫

T−2ε−ε0

f (t) dt +
T∫

T−ε

f (t) dt

⎞
⎟⎠ = 2

(
1 − (ε + ε0)ω

2π

)

In the end, we obtain the following equation

a0
2

= 1 − ε + ε0

T
(13)

For ε = T /16, ε0 = T /8(2ε + ε0 = T /4) the a0/2 = 13/16 coefficient, for ε = T /32, ε0 = 3T /16,
(2ε + ε0 = T /4) the a0/2 = 25/32 coefficient, for ε = T /64, ε0 = 7T /32 (2ε + ε0 = T /4) the a0/2 = 49/64
coefficient. Conclusion: with the reduction of the εparameter, the a0 coefficient decreases at fulfilling the
condition 2ε + ε0 = T /4.
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3 The analysis of stability areas of processes occurring in the printing unit model

The instability areas of the presented parametric systemshould be sought for parameters satisfying the following
conditions: (10) and (11). We will expand the function f (t) in a Fourier series (14) in the [0, T ] interval, where
T = 2π/ω [51].

f (t) = a0
2

+
∞∑
n=1

(an cos (nωt) + bn sin (nωt)) (14)

where

a0 = 2

T

T∫
0

f (t) dt, an = 2

T

T∫
0

f (t) cos(nωt)dt, bn = 2

T

T∫
0

f (t) sin(nωt)dt (15)

Formally, we obtain a−n = an , b−n = − bn , b0 = 0.
After taking into account the formula (5), we can calculate coefficients an , bn . Finally, we obtain

an = 3T 3

2ε3n4π4

(
1 − cosθ0 − cosθ1 + cosθ2 + ε

T
nπ(sinθ0 − sinθ1 − sinθ2)

)

bn = 3T 3

2ε3n4π4

(
−sinθ0 − sinθ1 + sinθ2 − ε

T
nπ(1 + cosθ0 − cosθ1 − cosθ2)

)
(16)

where

θ0 = 2nπ(T − ε)

T
, θ1 = 2nπ(T − ε − ε0)

T
, θ2 = 2nπ(T − 2ε − ε0)

T

We can write the approximating series for the N elements

f (t) = a0
2

+
N∑

n=1

(
an cos

(
n2π t

T

)
+ bn sin

(
n2π t

T

))
(17)

It was required to use themethod of generalizedHill’s determinants to obtain critical parameters of a parametric
resonance (a condition for the stability of periodic vibrations). In accordance with the Floquet theory, this
method uses the fact that there is a particular solution of the (1) equation:

z (t) = estχ(t) (18)

where χ(t)—periodic vector. The idea of that method is based on searching for a vector-function χ(t) in the
form of a Fourier series with vector coefficients of the vector. As a result, we can solve the equation by the
s coefficient. This equation is the result of a generalized Hill’s determinant for the theory of Mathieu-Hill
equation.

Using the expanded function (14), we can write the Â (t) matrix in the following form

Â (t) = Â0 +
∞∑
n=1

(
Âncos(nωt) + B̂nsin(nωt)

)
(19)

where matrices

Â0 =

⎡
⎢⎢⎣

0 1 0 0
−(ω2

11 + 0.5ω2
1a0) −(2h11 + h1a0) ω2

10 + 0.5ω2
1a0 2h10 + h1a0

0 0 0 1
ω2
20 + 0.5ω2

2a0 2h20 + h2a0 −(ω2
22 + 0.5ω2

2a0) −(2h22 + h2a0)

⎤
⎥⎥⎦ (20)
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Ân =
⎡
⎢⎣

0 0 0 0
−ω2

1an −2h1an ω2
1an 2h1an

0 0 0 0
ω2
2an 2h2an −ω2

2an −2h2an

⎤
⎥⎦ (21)

B̂n =
⎡
⎢⎣

0 0 0 0
−ω2

1bn −2h1bn ω2
1bn 2h1bn

0 0 0 0
ω2
2bn 2h2bn −ω2

2bn −2h2bn

⎤
⎥⎦ (22)

have fixed coefficients.
The Â0 matrix is non-singular and has an inverse matrix Â−1

0 . The vector state z(t) should be expanded in
the Fourier series with vector coefficients of vector

z (t) = exp(st)

[
1

2
Z0 +

∑∞
k=1

(Zk cos kωt + Yk sin kωt)

]
(23)

We can substitute the equation (1) with (19) and (23). For this purpose, we will use the theory of Fourier series.
By equating coefficients to zero at the same exp(st)cos(kωt) and exp (st) sin(kωt) we obtain homogeneous
systems of linear algebraic equations for the components of Zk and Yk vectors⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
Â0 − s Î

)
Zk + 1

2

∞∑
m=1

(
Âm (Zm+k + Zm−k) + B̂m(Ym+k + Ym−k)

)
= ωkYk

( Â0 − s Î )Z0 +
∞∑

m=1

(
ÂmZm + B̂mYm

)
= 0

(
Â0 − s Î

)
Ŷk + 1

2

∞∑
m=1

(
Âm (Ym+k − Ym−k) − B̂m(Zm+k − Zm−k)

)
= −ωkZk

(24)

The system of equations can also be written as follows
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . · · · · · · · · · · · · · · · ⋰

... Â0 − ŝI + 0.5Â4 0.5(Â3 + Â1) 0.5Â2 0.5(B̂3 − B̂1) −2ω̂I + 0.5B̂4
...

... 0.5(Â1 + Â3) Â0 − ŝI + 0.5Â2 0.5Â1 0.5B̂2 − ω̂I 0.5(B̂1 + B̂3)
...

... Â2 Â1 Â0 − ŝI B̂1 B̂2
...

... 0.5(B̂3 − B̂1) ω̂I+0.5B̂2 0.5B̂1 Â0 − ŝI−0.5Â2 0.5(Â1 − Â3)
...

... 2ω̂I+0.5B̂4 0.5(B̂3 + B̂1) 0.5B̂2 0.5(Â1 − Â3) Â0 − ŝI−0.5Â4
...

⋰ · · · · · · · · · · · · · · · . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
Z2
Z1
Z0
Y1
Y2
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0

(25)

The nontrivial solution of the system of linear algebraic equations for the components of Zk and Yk vectors

exists for det
(
Ĥ − s Î

)
= 0, where Ĥ—an infinite block matrix.

The dimension of the phase space is equal to n = 4 for the consideredmodel. The Ĥ matrix is n (2m + 1) =
28 when maintaining m =3 in the Fourier series

Ĥ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Â0 + 0.5Â6 0.5(Â5 + Â1) 0.5(Â4 + Â2) 0.5Â3 0.5(B̂4 − B̂2) 0.5(B̂5 − B̂1) 0.5B̂6 − 3ω̂I)
0.5(Â5 + Â1) Â0 + 0.5Â4 0.5(Â3 + Â1) 0.5Â2 0.5(B̂3 − B̂1) 0.5B̂4 − 2ω̂I 0.5(B̂5 + B̂1)

0.5(Â4 + Â2) 0.5(Â1 + Â3) Â0 + 0.5Â2 0.5Â1 0.5B̂2 − ω̂I 0.5(B̂1 + B̂3) 0.5(B̂4 + B̂2)

Â3 Â2 Â1 Â0 B̂1 B̂2 B̂3
0.5(B̂4 − B̂2) 0.5(B̂3 − B̂1) 0.5B̂2 + ω̂I 0.5B̂1 Â0−0.5Â2 0.5(Â1 − Â3) 0.5(Â2 − Â4)

0.5(B̂5 − B̂1) 0.5B̂4 + 2ω̂I 0.5(B̂3 + B̂1) 0.5B̂2 0.5(Â1 − Â3) Â0−0.5Â4 0.5(Â1 − Â5)

0.5B̂6 + 3ω̂I) 0.5(B̂5 + B̂1) 0.5(B̂4 + B̂2) 0.5B̂3 0.5(Â2 − Â4) 0.5(Â1 − Â5) Â0 − 0.5Â6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(26)
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Fig. 4 The areas of stability of the Hill equation (1) with periodic coefficients determined according to (5) for n = 1

To calculate the instability area in the vicinity of the lateral resonance of order n, it is necessary to leave
harmonics to the order n in series (19) and (23).

When solving an algebraic equation of the 28 series det
(
Ĥ − s Î

)
= 0 according to the s parameter, we

should define the k∗ and ω parameter values, for which the elements have a positive real part.
We will carry out a numerical analysis of parameters [2,3]: m1 = 85kg, m2 = 105kg, k1 = 2.94×

109 N m−1, k2 = 3.16× 109 N m−1, k12 = 0, k = k∗× 108N m−1, c1 = c2 =4.9× 102 N s2 m−1, c12 = 0,
c = 9.21× 102 N s2 m−1. We conducted a numerical analysis for the dimensionless parameter (modulation
depth) k∗ = 0.5; 1.0; 2.0; 4.0; 5.0; 6.0; 10.0 associated with changing stiffness of the blanket. This choice is
made to cover a wide range of scenarios from practical applications. At the same time, numerical simulations
are performed for different frequencies ω [s−1]. The areas of parametric resonance are shown in the following
figures (Figs. 4, 5, 6 and 7). These areas are located between two curves (boundaries of the stability area) and
combine frequencies calculated by the Eqs. (10) and (11) for different values of n.

The areas known as tongues of instability determine the modulation depth and frequency of ω changes, for
which the state of inaction loses stability. The induced vibrations have a frequency that is close to the frequency
specified by formulas (10) and (11) at low modulation depth.

Figure 4 shows the areas of parametric resonance for n = 1. Three areas of parameter values k∗ and ω
[s−1], for which there is a parametric resonance, combine corresponding values 2�2 /1, (�1+ �2)/1, 2�1/1.
For example, there is a lack of parametric resonance for k∗ = 0.0; �1 = 5485.93s−1, �2 = 5881.15s−1. For
k∗ = 0.5, ω ∈ [11006, 11040], ω ∈ [11402, 11449], ω ∈ [11801, 11860] we obtain a parametric resonance,
�1 = 5511.15s−1; �2 = 5914.85s−1.

The areas of critical parameters k∗ and ω have also been calculated according to the above method. The
critical parameters are calculated from the condition (Re s j ), where s j—roots of the equation det(Ĥ−s Î ) = 0.
The determinant equation det(Ĥ − s Î ) = 0 was solved using function Eigenvalues[Ĥ ] system Wolfram
Mathematica. The values of k∗ and ω parameters are shown in Fig. 4 in the form of points. As can be seen
from Fig. 4, the computational simulation and analytical approach give the same results for the considered
parameters. For example, the numerical simulation in the worst case scenario gives the following area of
instability for k∗ = 10, ω ∈ [12762, 14495], (2�2 /1 ∈ [12762, 14495]). Theoretical calculations give the
following area ω ∈ [12745, 14496]. The areas of instability for higher n parameters will be slightly different
when analysing the areas of instability in values (10) and (11). The analytical approach may not be capable of
calculating certain areas of instability for higher n parameters. In that case, one has to increase the dimension
of the Ĥ matrix.

Figure 5 shows areas of parametric resonance for n = 2. The three areas of parameter values k∗ and ω, for
which there is a parametric resonance and which include the appropriate values 2�2 /2, (�1+ �2)/2, 2�1 /2,
are the same.
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Fig. 5 The areas of stability of the Hill equation (1) with periodic coefficients determined according to (5) for n = 2

Fig. 6 The areas of stability of the Hill equation (1) with periodic coefficients determined according to (5) for n = 4

For example, for k∗ = 0.0 and k∗ = 0.5 there is a lack of parametric resonance. For k∗ = 1.0,
ω ∈ [5526, 5537], ω ∈ [5733, 5751], ω ∈ [5939, 5965] we obtain a parametric resonance �1 = 5511.15s−1;
�2 = 5914.85s−1.

Figure 6 shows areas of parametric resonance for n = 4. It can be seen that the area of parameter instability
exists only for k∗ = 4.0, ω ∈ [2797, 2801] and for k∗ = 5.0, ω ∈ [2803, 2806].

Figure 7 shows areas of parametric resonance for n = 5. The area of parameters for the value (�1+ �2)/5
for k∗ > 7 is shifted towards lower values ω.

It can be seen that for k∗ = 10, the values calculated according to the analytical approach are lower than
the values obtained during the computational simulation. For example, the computational simulation gives
values ω ∈ [2242, 2265], ω ∈ [2472, 2486], ω ∈ [2666, 2746], and calculations according to the analytical
approach give the following values: ω ∈ [2455, 2485], ω ∈ [2651, 2731]. In the worst case, this constitutes
0.7%. However, it should be noted that we cannot calculate the area of instability using the analytical approach
(Fig. 7 does not show any points from analytical calculations).

The total stiffness of the system increases when the system gets equipped with bearer rings (k12 = 5.09×
109 N m−1). The natural frequencies of the modified system are �1 = 5662.25 s−1 and �2 = 12044.6 s−1.
In this case, one cannot observe any parametric resonance [27].
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Fig. 7 The areas of stability of the Hill equation (1) with periodic coefficients determined according to (5) for n = 5

4 Conclusion

The paper presents a model of parametric vibrations in the system associated with the printing machine.
The periodically changing stiffness of the system was modelled.
The analysis of the proposed model is reduced to solving a set of Hill equations.
The peculiarity of the obtained equations is the relationship between the natural frequencies of the system

and modulation depth.
It was required to use a numerical simulation and the method of generalized Hill’s determinants to obtain

critical parameters of a parametric resonance.
Parametric resonances can occur within the system that is not equipped with bearer rings (k12 =0) only

when conditions (10) and (11) are met (Figs. 4, 5, 6 and 7). Conversely, when k12 > 0, i.e., when cylinders are
equipped with bearer rings,24 the stiffness of the system increases to a level at which the parametric resonance
may not occur.

As a future development, using the preliminary results presented here, we can design the elastic connec-
tions between the cylinders and the ground using metamaterials instead of conventional links. Specifically,
metamaterials can be designed with specific internal structures that dissipate energy and reduce the transmis-
sion of shock waves. Some common structures for doing that include: (1) Auxetic Metamaterials: these have
a negative Poisson’s ratio, meaning they become thicker perpendicular to the applied force [52]. This can
enhance their ability to absorb and dissipate energy. (2) Lattice Structures: these are periodic arrangements of
beams or struts that can deform in specific ways to absorb energy [53,54]. (3) Multilayered Metamaterials:
layers of materials with different mechanical properties can reflect and absorb shock waves more effectively
than a single layer [55–59].Moreover, advancedmanufacturing techniques are often used to create the complex
structures required for metamaterials: (i) 3D Printing (AdditiveManufacturing): allows for precise control over
the internal structure and can create intricate designs not possible with traditional manufacturing. (ii) Laser
Cutting and Etching: useful for creating detailed patterns in thin sheets of material. (iii) Microfabrication:
techniques used in semiconductor manufacturing can create very fine structures at small scales. The properties
of metamaterials can be tuned by altering their geometry and structure. Parameters such as unit cell size, shape,
and arrangement can be adjusted to achieve the desired level of shock absorption. In the considered application,
particular attention must be paid to dynamic performances [60–66]. Among them, the tuning of proper bang
gaps is of the utmost importance [67–70]. Moreover, microstructure causes nonlocality in vibrations [71] that
changes the inertia of the overall system [72]. Cyclic mechanical vibrations may lead to fatigue related damage
[73].

Finally, inverse analysis is needed for nonlinear viscoelastic material models [74].
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