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Abstract Experimental observations have revealed a change in the concavity of the resultant force-
displacement plot in the extension test for pantographic sheets. In this paper, we aim to relate these macroscop-
ically observed mechanical properties with the microscale properties of the hinges (or pivots) connecting the
pantographic fibers. The material constituting the hinges is modeled at the microscale as an isotropic elasto-
plastic 3D Cauchy continuum. The elastic regime is assumed to be linear, while the plastic regime exhibits
either saturating or non-saturating hardening. In the case of circular homogeneous cylindrical hinges, mono-
tonic loading is considered to derive a mesoscale constitutive relation linking the torsional angle to the total
applied torque. It is demonstrated that (non-)saturating hardening at the microscale results in (non-)saturating
hardening of the twist angle/torque plot at the mesoscale, which itself is responsible for the change of concavity
in bias extensional test of pantographic sheets.

Keywords Multiscale analysis · Plasticity · Pantographic structures · Torsional energy

1 Introduction

In the theory of meta materials one of the most interesting problems concerns the synthesis of microstructures
which at macro level have a certain well specified behavior [1–4]. This behavior is made precise by the choice
of an action functional and a dissipation functional [5–8]. In [9,10], it is proven that an essential property of
micro structures synthesizing second gradient continua consists in including elastic hinges and perfect pivots
interconnecting bendingfibres. Therefore, the technological problemoffinding a 3Dprinting process producing
perfect pivots and elastic hinges became relevant [11–14]. This problem seems to have found some usefully
solutions [15,16]: however, a deeper theoretical insight is necessary in order to give the demanded support
to such a complex technological demand. In the present paper, we start the modeling analysis necessary to
fully understand the already available experimental evidences [9,10,12,17–21]. This knowledge will be useful
in pursuing the important further step aiming to improve elastic range of hinges introduced in pantographic
structures [22].

Albeit one could believe that non-linear elastic phenomena occur in bias extension test of pantographic
sheets, here we prove that also plasticity at micro level does justify observed experimental evidences. The
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Fig. 1 ux �→ Rx experimental curve of a metallic pantographic sample in bias elongation test, where ux denotes the horizontal
displacement and Rx the corresponding reaction force

here postulated assumption is that elastic hinges reach, in some of their parts, plastic regime and therefore
that macroscopically observed non linearity finds its fundamental description in an elastoplastic model for the
material constituting the hinges. This is consistent with the specific materials used, up to now, to build using
3D printing techniques pantographic sheets. Of course, non linear elastic effects may need to be included in
the modeling when building specimens with other materials.

The major novelty in the present paper is that we demonstrate by a closed form analysis across micro and
mesoscale that the change of concavity observed in bias extensional test of pantographic sheets is explained
by elasto-plasticity in the hinges of such pantographic sheets.

Moreover, our analysis allows for the determination of the class of materials using which pantographic
microstructures producemacro second gradientmaterials [23–26]with largest elastic regime: in the conclusions
we present a comparison among different materials in this respect andwe give a qualitative rational explanation
of the high performances of the polyamid when compared to iron, aluminium and nickel.

2 Experimental evidences and constitutive meso modelling difficulties

Advancements in additive manufacturing and 3D printing techniques have enabled the production of panto-
graphic metamaterials with exceptionally finemicrostructures [9,10,27,28]. For experimental evidence related
to polyamide (PA) andmetallic (ME) pantographic sheets subjected to bias extensional test, we refer to [29,30].

These experimental results are used to calibrate a multi-scale model, introducing three distinct scales:
macroscopic, mesoscopic, and microscopic.

On the macroscale, the pantographic sheet subjected to a bias extension test results in a macroscopic
force-displacement relationship. In the particular case of a ME pantographic sheet [30], the length scale of the
macroscopic scale is characterized by the dimensions of the specimen which is 21cm long and 7cm wide. The
macroscopic force-displacement relationship is presented in Fig. 1. This curve shows a change in concavity
that is not observed in PA samples [29].

On the mesoscale, there are two main possible choices regarding the mesomodeling for describing the
behavior of such a medium: continuous or discrete. If a continuous mesomodeling is chosen, a second-gradient
continuum is typically used [31]. However, in this work, we will use a discrete meso-modeling approach.
Specifically, we will employ the Hencky-type discrete model [12,32–34]. Here, the pantographic material
is modeled as an assembly of extensional springs interconnected by rotational springs. Extensional springs
account for the elongation of pantographic fibers, while rotational springs account for both fiber bending (see
Fig. 2b) and torsion of interconnecting hinges (see Fig. 2c). The length scale of the mesoscopic scale is related
to the order of magnitude of the size of the structural elements from which the pantographic sheet is made
of (namely the length and diameter of hinges and the dimensions of the cross section of the fibers which are
approximately equal to 5mm in the pantographic sheets presented in this paper).

On the mesoscale, the constitutive law describing the torsional behavior of the interconnecting hinges is
the function α �→ M(α), where α is the twist angle of each hinge and M is the torsional moment. The strain
energy is expressed as the sum of stretching, bending, and shear contributions [12]. The axial, bending, and
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Fig. 2 Hencky-type model with: a axial extensional springs, b bending rotational springs and c torsional rotational springs

torsional specific energies, denoted as � �→ wa(�), β �→ wb(β), and α �→ ws(α), respectively, can be defined
by equations [22]:

wa(�) = 1

2
ka (� − �0)

2 wb(β) = kb (cosβ + 1) ws(α) = 1

2
ksα

c (1)

where M(α) = ∂ws(α)/∂α. The geometrical significance of β and γ = π/2 − α is illustrated in Fig. 2b and
c. Moreover, ka , kb, and ks represent the extensional, bending, and torsional stiffness, respectively. Symbols

�0 =
∥
∥
∥
−−−−→
Pi Pi+1

∥
∥
∥, � = ∥

∥−−−−→pi pi+1
∥
∥ denote the lengths of the beams in the initial and actual configurations, ‖·‖

represents the Euclidean norm. It has been observed in [30] that shear energy ws in Eq. (1) is unsuitable for
describing the pronounced change in the concavity of the force-elongation curve ofmetallic pantographic sheets
during a bias elongation test (see Fig. 1). Moreover, the second derivative of the specific energy function ws ,
defined in Eq.(1), tends to infinity for c < 2 and as α approaches 0, leading to numerical difficulties. Numerical
simulations reveal that altering the functions describing axial and bending energies,wa andwb, has a negligible
impact on the agreement between theoretical and experimental force-elongation curves obtained from a bias
elongation test when a large change of concavity of the curve occurs. An alternative phenomenological two-
parameter shear energy has been proposed in [30]. This new shear energy is defined by

ws(α) = ks

(

α arctan (aα) − log
(

a2α2 + 1
)

2a

)

(2)

and leads to the simple constitutive law α �→ M(α) for the interconnecting hinges defined by

M(α) = ∂ws(α)

∂α
= ks arctan (a α) , (3)

in which ks and a are the two parameters of the constitutive law. This formulation provides a suitable represen-
tation for the force-elongation curve during a bias elongation test, accounting for high changes in concavity,
with a single parameter a responsible for the concavity change. Using experimental results (see [30]), the
following values of ks and a have been identified:

• Polyamide pantographic sheet: a = 5 and ks = 1.66N mm (with hinge radius R = 4.5mm),
• Metallic pantographic sheet: a = 25 and ks = 8.84N mm (with hinge radius R = 5mm).

The associated graphs α �→ M(α) are presented in Fig. 3. Although this mesoscale model allows for the
identification of the bias extension test of polyamide and metallic pantographic sheets, the issue of the micro-
scopic origin of the mesoscale behavior leading to change of concavity on the macroscale remains an open
problem. Coming back to Fig. 1, in which two successive loadings are applied, it is evident that a permanent
displacement occurs after the first unloading, suggesting the occurrence of plasticity within the hinges. In this
work, we aim to shift from the mesoscale to the microscale.

As a 3D structure, the pantographic structure comprises an arrangement of 3D beams interconnected by 3D
cylinders (hinges). It has already been observed in the literature that the macroscopic behavior of pantographic
sheets depends mainly on their microstructure [35]. The length scale of the microscopic scale is about one
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Fig. 3 Graph of α �→ M(α) for a metallic and b polyamide pantographic sheets considering arctan laws obtained by assuming
a a = 25 and ks = 8.84 N mm and b a = 5 and ks = 1.66 N mm

hundredth of the smallest dimensions of hinges and beams, i.e. of the order of magnitude of 0.1 mm for
the pantographic sheets considered in this paper. At this microscale, the constitutive law governing the 3D
material behavior of the hinges will be represented in the present work as a 3D elastoplastic Cauchy medium.
The mesoscale constitutive law α �→ M(α) will be derived as an analytical closed-form solution from the
law (α, r) �→ τ(α, r) obtained by solving the 3D problem of a cylinder subjected to pure torsion made of an
elastoplastic material.

3 Mesoscopic constitutive equations via micro-meso analysis

This section is devoted to deriving an analytical relationship between torque M and twist angle α for a
cylindrical hinge. To do so, we will model the hinge as a cylinder of radius R and height h, while considering
the following boundary conditions expressed in cylindrical coordinates:

⎧

⎪⎪⎨

⎪⎪⎩

at z = 0 : u · er = 0 u · eθ = 0 (σ∼ · n) · z = 0

at z = h : u · er = 0 u · eθ = αr (σ∼ · n) · z = 0

at r = R : σ∼ · n = 0

(4)

3.1 Elastic cylinder

The elasticity problem reads:
⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

divσ∼ = 0

boundary conditions (4)

σ∼ = λ trε∼ + 2μ ε∼

ε∼(u) = 1

2

(

∇u + (∇u)T
)

(5)

Let consider the kinematically admissible displacements field:

u = αr z

h
eθ (6)

The associated strain field reads:

ε∼ = αr

2h
A∼ A∼ := eθ ⊗ ez + ez ⊗ eθ

Using the linear elastic constitutive law, the stress field reads:

σ∼ = μαr

h
A∼ (7)
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This stress field is statically admissible so we deduce that Eqs. (6) and (7) give the solution of the elastic
problem. The mesoscale constitutive law α �→ M(α) is obtained by:

M(α) = 2π
∫ R

0

μαr

h
r2dr = πR4μ

2h
α (8)

This solution is applicable in the pure elastic regime of the cylinder in torsion.

3.2 Elastoplasticity modeling at micro level

Elastoplasticity constitutive law considered in this paper will be part of generalized standard (isotropic) materi-
als with VonMises yield criterion and (isotropic or kinematic) hardening under the assumption of proportional
monotonic loading [36].

In this specific context, the elastoplastic constitutive law can be integrated into the so-called Hencky Mises
constitutive law:

ε∼
p = 3

2

g(σeq − σY )

σeq
σ∼
D (9)

in which σ∼
D is the deviatoric part of stress, ε∼

p is the plastic strain and

g(σeq − σY ) = ε
p
eq σeq − σY = R(ε

p
eq) g ◦ R = I d (10)

with

σeq =
√

3

2
σ∼
D : σ∼

D ε
p
eq =

√

2

3
ε∼
p : ε∼

p

The choice of plasticity model is thus related to the choice of an hardening law σeq �→ g(σeq − σY ) or
ε
p
eq �→ R(ε

p
eq).

3.3 Elastoplastic cylinder

The onset of plasticity is obtained for the angle α0 and the couple M0 such that σeq = σY , which are equal to:

α0 := 1√
3

h

R

σY

μ
M0 := π

2
√
3
R3σY (11)

Let now suppose that there exists an inner cylinder of radius R(e) in the elastic regime, while the outer part of
the cylinder (R(e) ≤ r ≤ R) is in the elastoplastic regime. Let us assume that the solution is of the form:

u = uθ (r)eθ σ∼ = τ(r)A∼ (12)

As A∼ · er = 0, the solution in the inner part of the cylinder (0 ≤ r ≤ R(e)) is the same as in the purely elastic

case, i.e.:

0 ≤ r ≤ R(e) : u = αr z

h
eθ σ∼ = μαr

h
A∼

The radius R(e) is obtained assuming continuity of the equivalent stress σeq which is equal to σY at the boundary
between elastic and plastic parts of the cylinder, i.e.:

√
3
μαR(e)

h
= σY R(e) = α0

α
R

Let us assume that the displacement solution in the inner part of the cylinder is valid in the entire cylinder:

0 ≤ r ≤ R : u = αr z

h
eθ ε∼ = αr

2h
A∼ (13)
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The elastic part of the strain is obtained using the linear elastic constitutive law:

ε∼
e = τ

2μ
A∼ (14)

so that the plastic strain is given by:

ε∼
p = ε∼ − ε∼

e = 1

2

(
αr

h
− τ

μ

)

A∼ (15)

With ε
p
eq = 1√

3

(
αr

h
− τ

μ

)

and σeq = √
3τ , Eq. (10) reads then

g(
√
3τ − σY ) = 1√

3

(
αr

h
− τ

μ

)

(16)

Using the property 2π
∫ R
0

μαr
h r2dr = M0

α0
α, the constitutive law at the mesoscale reads

M(α) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

M0

α0
α for α ≤ α0

2π
∫ α0

α
R

0

μαr

h
r2dr + 2π

∫ R

α0
α
R

τ(α, r) r2dr for α ≥ α0

(17)

in which τ is solution of (16):
μαr

h
− τ = √

3μ g(
√
3τ − σY ) (18)

.

4 Mesoscopic constitutive laws obtained by micro-meso analysis

On the microscale, classical hardening laws are:

• Linear (non-saturating) hardening:

R(ε
p
eq) = Cε

p
eq g(σeq − σY ) = σeq − σY

C
(19)

• Power law (non-saturating) hardening:

R(ε
p
eq) = K

(

ε
p
eq

) 1
M g(σeq − σY ) =

(
σeq − σY

K

)M

(20)

• Exponential (saturating) hardening:

R(ε
p
eq) = R∞

(

1 − exp(−bε p
eq)

)

g(σeq − σY ) = −1

b
log

(

1 − σeq − σY

R∞

)

(21)

In the case ofHenckyMises law, the plasticity model can also be defined by the direct choice of the function
g, even though the inverse function is not analytically available, e.g.

g(σeq − σY ) =
(

σeq − σY

C

)

+
(

σeq − σY

K

)M

(22)
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Fig. 4 Graph of α �→ M(α) for a metallic and b polyamide pantographic sheets considering linear hardening (Eq. (24)-solid
line) and arctan (Eq. (3)-dashed line) laws. The linear hardening laws are obtained by assuming a α0 = 0.1 rad, M0 = 18 N mm,
χ = 7.59 × 10−2, and b α0 = 0.25 rad, M0 = 2 N mm, χ = 7.14 × 10−1. The arctan laws are obtained by assuming a a = 25
and ks = 8.84 N mm and b a = 5 and ks = 1.66 N mm

Linear hardening

Introducing χ := C
3μ , the solution of Eq. (16), with the choice (19) reads

τ = 2

π

M0

(1 + χ)R3

(

1 + χ
r

R

α

α0

)

(23)

so that we obtain:

M(α) =

⎧

⎪⎪⎨

⎪⎪⎩

M0

α0
α for α ≤ α0

M0

1 + χ

(
4

3
− 1

3

(α0

α

)3 + χ
α

α0

)

for α ≥ α0

(24)

The case of Elastic-perfectly plastic micro constitutive law is obtained by setting χ = 0.
In Fig. 4 are presented the arctan laws (see Sect. 2) and the lawα �→ M(α) of Eq. (24)with fitted parameters

α0, M0 and χ .

Power law hardening

For the choices (20) or (22), (18) can only be solved analytically for M = 2, 3, 4 and Eq. (17) leads then to
very cumbersome analytical solutions, so that it is preferable to use the following exponential hardening law
instead.

Remark For (20) or (22), the case M = 1 corresponds to linear hardening.

Exponential hardening

The solution of (16), with the choice (21), reads:

τ = R∞ + σY√
3

−
√
3μ

b
W

[
bR∞
3μ

exp

[

b

(
R∞ + σY

3μ
− rα√

3h

)]]

(25)

in which the function W (x) is the Lambert W function.
Introducing ξ := b

3μ and ζ := ξ R∞, the previous equation reads:

τ = 2M0

πR3 + 1√
3ξ

(

ζ − W

[

ζ exp

[

ζ + 2
√
3

π

ξM0

R3 (1 − r

R

α

α0
)

]])

(26)
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Fig. 5 Graph of α �→ M(α) for a metallic and b polyamid pantographic sheets considering exponential hardening (solid line)
and arctan (Eq. (3)-dashed line) laws. The exponential hardening laws are obtained by assuming a α0 = 0.1 rad, M0 = 18 N mm,
ξ = 4× 10−3, ζ = 0.35, R = 0.5mm and b α0 = 0.25 rad, M0 = 2 N mm, ξ = 6× 10−2, ζ = 1.92, R = 0.45 mm. The arctan
laws are obtained by assuming a a = 25 and ks = 8.84 N mm and b a = 5 and ks = 1.66 N mm

so that, introducing ω [α] = 2
√
3

π
M0ξ

R3

(

1 − α
α0

)

, we obtain for α ≥ α0:

M(α) = M0

(α0

α

)3 + 2

9
(6M0ξ + √

3πζ R3)

(

1 −
(α0

α

)3
)

− π2

18

R6

M3
0 ξ

4
(6M2

0 ξ2 + 2
√
3πM0R

3ξ + π2R6)
(α0

α

)3
W

[

ζ eζ
]

− π2

144

R6

M3
0 ξ

4
(24M2

0 ξ2 + 12
√
3πM0R

3ξ + 7π2R6)
(α0

α

)3 (

W
[

ζeζ
])2

− π3

648

R9

M3
0 ξ

4
(12

√
3M0ξ + 11πR3)

(α0

α

)3 (

W
[

ζ eζ
])3

− π4

432

R12

M3
0 ξ

4

(α0

α

)3 (

W
[

ζ eζ
])4

+ π2

18

R6

M3
0 ξ

4

(

6M2
0 ξ2

(α0

α

)

+ 2
√
3πM0R

3ξ
(α0

α

)2 + π2R6
(α0

α

)3
)

W
[

ζeζ+ω[α]]

+ π2

144

R6

M3
0 ξ

4

(

24M2
0 ξ2

(α0

α

)

+ 12
√
3πM0R

3ξ
(α0

α

)2 + 7π2R6
(α0

α

)3
)(

W
[

ζeζ+ω[α]])2

+ π3

648

R9

M3
0 ξ

4

(

12
√
3M0ξ

(α0

α

)2 + 11πR3
(α0

α

)3
) (

W
[

ζeζ+ω[α]])3

+ π4

432

R12

M3
0 ξ

4

(α0

α

)3 (

W
[

ζeζ+ω[α]])4

(27)
In Fig. 5 are presented the arctan laws (see Sect. 2) and the lawα �→ M(α) of Eq. (27)with fitted parameters

α0, M0, ξ , ζ and R.

5 Phenomenological meso constitutive model inspired by micro-meso modeling

As described in Sect. 2, it was postulated in [30] a 2 parameters heuristic meso modelling of the M(α)
constitutive law at meso scale:

M(α) = K arctan(aα) (28)

This law, not related to a micro-meso modeling via the elasto-plastic analytical study, did not introduce the
definition of a boundary between elastic and plastic regimes. Moreover, for high initial slope, the arctan law
is always quickly saturating.
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In the previous section, we found, from a complete micro-meso analysis using exponential (or logarithmic)
hardening, a precise meso constitutive law capable of reproducing the arctan law and thus a bias test result.
Nevertheless, this law is made of 5 parameters and might be too cumbersome for efficient use in an numerical
optimization of pantographic structures, e.g. in inverse identification problem.

In this section we propose to introduce a new phenomenological meso-model constitutive law α �→ M(α)
with a limited number of parameters capable of removing the drawbacks of the arctan law.

To this purpose, we look for a constitutive law α �→ M(α) which

• should be made of two parts, one in a (linear) elastic regime, the second in a non-linear plastic regime,
• can be saturated or not in the plastic regime,
• has some consistency with an elastoplastic microscopic behavior,
• derive from an explicit elastic potential,
• is continuously differentiable.

Let introduce the following phenomenological mesoscopic constitutive law, with n > 0 and χ > 0:

M(α) =

⎧

⎪⎪⎨

⎪⎪⎩

M0

α0
α for α ≤ α0

M0

1 + χ

(
n + 1

n
− 1

n

(α0

α

)n + χ
α

α0

)

for α ≥ α0

(29)

This law:

• is saturating for χ = 0, and non-saturating for χ > 0,
• is consistent with the meso constitutive law analytically obtained with linear hardening for n = 3,
• derives from the potential

n = 1 ws(α) =

⎧

⎪⎪⎨

⎪⎪⎩

1

2

M0

α0
α2 for α ≤ α0

M0α

1 + χ

(
n + 1

n
+ 1

n(n − 1)

(α0

α

)n + χ

2

α

α0

)

+ C0 for α ≥ α0

n = 1 ws(α) =

⎧

⎪⎪⎨

⎪⎪⎩

1

2

M0

α0
α2 for α ≤ α0

M0

1 + χ

(

2 + χ

2

α

α0
− α0

α
log(α)

)

+ C1 for α ≥ α0

in which C0 = M0α0

2

(

1 − 2n + χ(n − 1)

(1 + χ)(n − 1)

)

and C1 = M0α0

2

(

1 − 4 + χ − 2log(α0))

α0(1 + χ)

)

,

• is continuously differentiable with

M(α0) = M0
∂M

∂α

∣
∣
∣
∣
α=α0

= M0

α0

This law introduces 4 parameters with the following physical meaning:

• M0 is the couple at the end of linear elastic regime,
• α0 is the angle at the end of linear elastic regime,
• χ

1+χ
is, for nonsaturating law, the ratio of slope of the asymptotic line in the plastic regime to elastic slope

M0
α0

,

• n+1
n is, for saturating law, the ratio of maximal couple to M0.

In Fig. 6 are presented the arctan laws (see Sect. 2) and the lawα �→ M(α) of Eq. (29)with fitted parameters
α0, M0, χ , n.
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Fig. 6 Graph of α �→ M(α) for a metallic and b polyamid pantographic sheets considering power n (Eq. (29))-solid line) and
arctan ((3)-dashed line) laws. The power n laws are obtained by assuming (a) α0 = 0.1 rad, M0 = 18 N mm, χ = 6× 10−3, and
n = 0.9, and b α0 = 0.25 rad, M0 = 2 N mm, χ = 0.1, and n = 10−2. The arctan laws are obtained by assuming a a = 25 and
ks = 8.84 N mm and b a = 5 and ks = 1.66 N mm

6 Conclusions

Generalized continua are themathematicalmodels used for precisely describing the exoticmechanical behavior
demanded to novel metamaterials [37,38]. The standard continuum mechanics usually associated to the name
of Cauchy, albeit very predictive of the behavior of many materials, cannot cover the whole range of possible
mechanical behavior. One is obliged to use the the principle of virtual work when she needs to introduce
continua models more general than Cauchy’s as the postulation scheme based on balance laws cannot be easily
extended.

Once the desired generalized continuum model is chosen, then the problem of synthesizing a micro struc-
ture governed by chosen generalized continuum arises. In [9,10], it is proven that in the synthesis problem
pantographic microstructures play a very relevant role.

The motivation of the analysis presented in this paper was twofold: (1) Understanding and describing the
mechanical phenomena occurring in the most important part of pantographic structure, e.g. deformable hinges
[39,40]. (2) Giving theoretical indications for designing and constructing pantographic metamaterials showing
the largest possible elastic regime [25,41–43].

Concerning point (1), we have obtained strong indications that the force displacement relationship observed
in extension bias elongation test is determined not only by elastic phenomena but also by plasticity occurring
in the hinge. We remark that we are aware of the limitations of the elastic plastic models at micro level
we have introduced. Clearly more sophisticated description of plastic phenomena are possible and desirable.
However we believe that at least for polyamide and metallic materials used, our description is satisfactory
enough. We found at mesolevel a closed form constitutive equation for torsional moment in function of shear
angle in the particular cases of linear or logarithmic hardening. For linear hardening, the mesoconstitutive
equation is satisfactory at least qualitatively while for logarithmic hardening, a perfect match with the arctan
law proves that the bias extension test can be identified with this particular elasto-plastic law on the micro
level. Moreover, the available micro-meso identifications with linear hardening allowed us to conjecture a
simple phenomenological relationship between couple and twist angle for pantographic hinges involving only
4 constitutive parameters which is suitable for deducing macro behavior, i.e. Force elongation curve in bias
extension test and overall deformed shape of the pantographic structure.

Concerning point (2), we remark that it was a lucky choice to use polyamide in the first bias elongation test
for pantographic structures while the choice the metals to be used in 3D printing was less happy: the onset of
irreversible plastic deformation is α0 = 14◦ for polyamide and α0 = 5◦ for metallic pantographs. Moreover,
the onset of irreversible plastic deformation occurring for the angle α0 = 1√

3
h
R

σY
μ
, better materials with respect

to late occurrence of plasticity for a given geometrical configuration are those with greater ratio σY
μ
.

The performed analysis indicates that some new building strategies and solutions may be required for
realizing perfect pivots and elastic hinges: the first proposed use of full cylinder being deformed in torsion
seems not completely efficient, albeit it can be exploited for the already used micro materials [22,39,44–46].

Finally, presented results will allow for the design of a novel experimental setup aimed at investigating the
micro mechanical properties determining meso saturation effects of couple angle dependence, and change of
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concavity inmacro force displacement dependence. In particular it seems very promising to use polymeric foam
for building pantographic microstructures: their elongation and elastic performances could be outstanding.
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