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Abstract Classical homogenization approaches applied to heterogeneous materials are suitable for the cases
where a scale-separation is eminent. As the length-scale at the effective continuum reaches the length-scale
of the microstructure of the material, classical homogenization approaches fail to be accurate. In such cases,
higher-gradient theories may be stimulated for multi-scale material modeling of complex structures in terms of
geometry and material. In this study, a multi-scale homogenization framework is presented for additively man-
ufactured (3-D printed) composite parts with specific infill design. The overall framework consists of twomajor
steps, namelymicro-to-material andmaterial-to-structure homogenization. In both steps, an asymptotic homog-
enization procedure is applied to determine constitutive parameters. In the micro-to-material homogenization,
the constitutive parameters of the composite material are first determined regarding the material composition.
Then, in the material-to-structure homogenization, the constitutive parameters are obtained regarding the infill
design of the additively manufactured part. The developed two-step homogenization framework is applied for
an off-the-shelf composite material commonly used in 3-D printers. Specifically, in this study, composite parts
printed with grid infills are investigated numerically considering different infill ratios.

Keywords Additive manufacturing · Particulate media · Composites · Computational homogenization ·
strain-gradient elasticity

1 Introduction

Over the past decade, additive manufacturing (AM), also referred to as 3-D printing, has revolutionized the
perspectives of designers and engineers, enabling fabrication of parts in terms geometric complexity, topology
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Fig. 1 a An illustration of composite filament extrusion by hot compression of PLA (Polylactic acid) particles and CB (carbon
black) particles. b Infill variation for grid microstructure

optimization, multifunctionality [1], and customization. Layer-wise fabrication approaches adapted in AM
considerably circumvent typical design and fabrication constraints encountered in conventional fabrication
techniques, allowing for the fabrication of parts with specific internal structural patterns such as [2]. In this
way, application-tailored parts can be precisely fabricated, leveraging design flexibility andmaterial efficiency.
Due to their distinctive properties, AM techniques are currently drawing great deal of interest in different fields
for novel industrial applications.

One of the exceptional advantages of AM is that topologically-optimized parts can be fabricated without
requiring extra complication, controlling infill pattern [3] during the tool planning process (i.e., slicing). In this
way, parts can be designed along with their internal structural hierarchy in detail to attain optimal performance
and properties. Here, the overall behavior is considerably affected not only due to the print material but also the
infill pattern and infill ratio. In AM applications, common print materials are thermoplastics like PLA, ABS,
PEEK and PETG. Besides, composite print materials like iron or carbon-filled PLA have recently become
popular in AM to enhance mechanical, thermal and electromagnetic properties of 3-D printed parts, especially
in material extrusion (MEX) based AM applications. To prepare such composite print materials for MEX
applications, PLA or any other thermoplastic polymer is mixed as pellets with an inclusion such as iron or
carbon particles and extruded as a filament described in Fig. 1, left.

The distribution of these inclusions are not controlled. Depending on their surface characteristics, some
agglomeration may occur and their distribution is assumed to be random. Then, the composite filament is used
in fabrication extracting the molten filament through a nozzle, which is the main mechanism in an MEX based
printer. To fabricate parts by such composite print materials, overall behavior needs to be predicted accordingly.
From a numerical modeling standpoint, this is a highly challenging task in terms of material properties and the
geometry of the infill design (i.e., structural hierarchy) as there are different microstructures for the printed part.
One microstructure is due to the composite material, randomly distributed particles embedded in a polymer.
Another microstructure is because of the infill pattern and infill ratio chosen by the user during tool planning
process that affects the material behavior [4]. Here, infill ratio is usually justified by weight optimization. In
a general sense, an ordered porosity is introduced by a cellular design that is also found in nature to a large
extent [5], inspiring researchers to develop biomimicking structures (for example, see [6,7]). Infill pattern,
on the other hand, characterizes the internal structural design of 3-D printed parts to control the mechanical
behavior which is one of the pattern types shown in Fig. 1, right. Also, it must be remarked that processing
parameters may play a vital role for the overall print quality and must be determined accordingly depending
on the print material [8].

To model and investigate overall behavior of heterogeneous media, homogenization techniques have been
extensively studied in the literature. An homogenization procedure is a mathematical method for examining
the behavior of materials at various length scales. The behavior of a heterogeneous material with small-scale
variability in its properties is accurately captured using effective macroscopic attributes that are derived using
homogenization procedures (e.g., see [9–12]). The central drawback of traditional homogenization is that it
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loses accuracy for materials with scale separation between their underlying heterogeneity’s size and spacing
[13–15]. As the analysis in [16] shows, the microstructure introduces additional effective coefficients at the
macro-scale during homogenization. Since these effective coefficients depend on the microstructure of the
material, their values vary depending on the scale [17] and type of analysis performed [18]. To overcome
such issues, micropolar, micromorphic [19], and strain gradient modeling approaches [20–23] may be used to
accurately capture phenomena related to “size effect” as focused in [24]. Such advanced modeling techniques
[25–28] are currently trending due to the recent advancements in material and manufacturing technologies
to design complex structures. Specifically, strain-gradient modeling approaches have come to prominence,
along with variational formulations [29–33], to model complex materials and applied into different fields.
Determining effective strain-gradient constitutive parameters by using homogenization is clearly challenging
[34–37]. In strain-gradient theory, hundreds of new coefficients need to be calculated. Yet for higher-order
formulations, an accurate model of the macroscopic behavior is feasible not only by considering the local
deformation but also the spatial variation of the deformation field namely incorporating into the homogenized
model some kind of nonlocal information as presented in [38–42]. Strain gradient elasticity defines materials
behavior as a continuous medium [43,44] rather than as a collection of discrete particles or pieces as studied in
[45–49]. The strain gradient elasticity theory introduces additional degrees of freedom that capture the effects of
microstructure on themechanical behavior of thematerial over a variety of length scales, extending the classical
theory of elasticity to include the effects of material microstructure [50,51] and non-local interactions [52,53].
According to the hypothesis, stress, and strain are influenced by both local deformation and the deformation
gradients at nearby sites. This non-locality is constructed by simple springs connecting the next neighbors and
homogenized to obtain a higher order continuum by Schödinger for the first time, we refer to [54].

In this study, we present a multi-scale homogenization framework based on strain-gradient modeling to
predict the overall mechanical behavior of 3-D printed parts fabricated by composite print materials. The
overall framework is divided into two parts. In micro-to-material homogenization, constitutive parameters
of the composite material is determined at material scale. Then, in material-to-structure homogenization,
constitutive parameters of the additively-manufactured part are determined according to its infill properties
(infill pattern and infill ratio) at structure scale. As there are different length-scales in the target problem, we
emphasize that the length-scales are in the same order of magnitude such that a scale separation is challenging
to justify. Hence, we model from the microscale to the macroscale with the least assumptions possible and
open up a discussion for a multiscale modeling by using generalized continua. In the developed framework,
we take 3 different length-scales into account: micro, meso, and macro. Microscale is the composite level
where the particles introduce a heterogeneous material behavior. Mesoscale represents the infill ratio related
heterogeneous material. Macroscale represents the functional part printed and modeled as a homogeneous
continuum. The two-step homogenization is performed based on the asymptotic homogenization procedure
presented by Abali and Barchiesi [55] to determine the effective strain-gradient parameters at each step. We
call the developed approach bottom-up as one begins at the composite level and use a modeling up to the
part level. To show the applicability of the developed framework, we present a select numerical experiment
involving parts fabricated by carbon black-filled PLA filaments with grid infill pattern.

The rest of the paper is outlined as follows. In Sect. 2, the adapted computational homogenization technique
is presented, followed by the details of the overall numerical framework in Sect. 3. Then, in Sect. 4, the select
numerical experiment is presented for parts printed by iron-filled PLA filaments with grid infill pattern. Finally,
conclusions are drawn in Section 5.

2 Multiscale homogenization framework

The two-step multiscale homogenization approach is performed utilizing the methodology presented in [55]
and verified with applications in [56–58]. The central theme of the adapted asymptotic homogenization is
the equivalence of the deformation energies between the considered length-scales. Here, to summarize the
formulation, the considered length-scales that the homogenization is applied between are referred to as micro
and macro, respectively. Displacement, strain, stress and even energy density may differ between micro- and
macro-scales on each position, but the external work remains the same for models at both scales. As the
deformation is purely elastic, the applied work is used for deformation such that the following assumption is
introduced ∫

�

wm dV =
∫

�

wM dV , (1)
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for thewhole body or repeatingmicrostructure,�, denoting aRepresentativeVolumeElement (RVE). Here, the
microstructure is denoted by a superscript “m” and its corresponding homogenized continuum is represented
as superscript “M.”We use the same computational domain,�, at both scales: at the microscale, the first-order
theory models the detailed microstructure; at the macroscale, a second-order theory models a homogenized
continuum. As a second-order theory, herein, we use strain-gradient elasticity.

The first-order theory is used to define a quadratic stored energy density at the microscale,

wm = 1

2
εmi j C

m
i jklε

m
kl , (2)

wherewe useEinstein’s summation convention over repeated indices andCm
i jkl is positive definitemeaning the

resulting scalar value for any non-zero strain value is strictly positive in each coordinate. The components are
given for the microstructure with the usual symmetry conditions, Cm

i jkl = Cm
j ikl = Cm

i jlk . In the homogenized
continuum, the simplest second-order model results from a Taylor expansion such that the deformation
energy density reads

wM = 1

2
εMi j C

M
i jklε

M
kl + εMi j G

M
i jklmεMkl,m + 1

2
εMi j,k D

M
i jklmnε

M
lm,n , (3)

with obvious restictions, CM
i jkl = CM

j ikl = CM
i jlk , D

M
i jklmn = DM

j iklmn = DM
i jkmln , G

M
i jklm = GM

j iklm =
GM

i jlkm , as well as some conditions similar to positive definiteness [59,60]. Comma notation indicates a partial

derivative in space. We emphasize that GM = 0 in the case of a centro-symmetric microstructure. For the sake
of simplicity in homogenization, linearized strain measure is used at both scales,

εmi j =
1

2

(
umi, j + umj,i

)
, εMi j =

1

2

(
uMi, j + uMj,i

)
. (4)

By following the asymptotic homogenization methodology as in [55], we introduce an expansion around

the value at the geometric center,
c
X= 1

V

∫
�
XdV , and involving quadratic terms as well. In conventional

homogenization approaches, only linear terms are involved; however, by increasing the complexity, we may
model the microstructure with the expense of higher gradients. Briefly, we solve first

∂

∂y j

(
Cm
i jkl Labkl

)
= 0, Labkl = δakδbl + ∂ϕabk

∂yl
.

where the unknown rank 3 tensor, ϕ, is computed for the RVE at the microscale with given Cm. After the
simulation, we construct

CM
abcd = 1

V

∫
�

Cm
i jkl Labi j Lcdkl dV (5)

whereCM are homogenized parameters of the first-order theory. Such an approach is the outcome of a classical
homogenization method used in laminate theory. We go beyond the first-order theory and compute a rank 4
tensor, ψ , as a solution to the following governing equation:

− CM
icab + Cm

ickl Labkl + ∂

∂y j

(
Cm
i jkl Nabckl

)
= 0

Nabckl = ϕabkδcl + ∂ψabck

∂yl
.

(6)

ϕ and ψ that are functions of y, representing spatial coordinates introduced as part of the decomposition. By
using ϕ and ψ , we obtain

Mabci j = ycLabi j + Nabci j (7)
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which is used to determine all strain gradient parameters

GM
abcde =

ε

V

∫
�

Cm
i jkl Labi j Mcdekl dV

DM
abcde f =

ε2

V

( ∫
�

Cm
i jkl Mabci j Mdef kl dV − CM

abde

∫
�

yc y f dV

)
.

(8)

We observe that CM, GM, and DM depend on ε0, ε1, and ε2, respectively.
In this methodology, with the known microscale material parameters, Cm, for a heterogeneous continuum;

we determine macroscale constitutive parameters, CM, GM, DM, for a homogenized continuum. Notably, the
numerical solution of Eqs. (5) and (6) follows the standard finite element method procedure. We use a finite-
dimensional Hilbertian Sobolev space for both the trial and test functions, employing the Galerkin method. The
structure is discretized using tetrahedral elements, and the discrete problem is solved by minimizing the weak
form. Thus, we solve the governing equations by converting them to a weak form, obtained by multiplying
by the corresponding test function and integrating by parts. For φ from Eq. (5), we obtain 6 different weak
forms and for ψ from Eq. (6) we obtain 18 different weak forms in the three-dimensional case, by separately
choosing a,b,c indices as 1,2,3, concretely,

∫
�

Cm
i jkl Labkl

∂δϕabi

∂y j
dV = 0, (9)

∫
�

(
− CM

icabδψabci + Cm
ickl Labklδψabci − Cm

i jkl Nabckl
∂δψabci

∂y j

)
dV = 0. (10)

We approximate all analytical functions by a discrete representation as usual in the Finite Element Method
(FEM) with form functions having a compact support [61]. Hence, monotonous convergence is guaranteed.
Specifically, we span a finite dimensional Hilbertian Sobolev space for trial and test functions. As known
as the Galerkin approach, the same space is used for trial and test functions. Trial functions, ϕ and ψ , and
their corresponding test functions, δϕ and δψ , are all approximated by linear form functions, also known
as linear Lagrange elements. The computational domain is the RVE and periodic boundary conditions are
applied on all boundaries. The domain is discretized by nodes and their connectivity by elements, this so-called
triangulation [62] has been established by NetGen algorithms in Salome CAD software. We stress that Salome
is allowing a Python script to build random distribution and mesh allowing an automatized preprocessing for a
study. Since micro-, meso-, and macroscales are all expressed in the same coordinate system, we use the same
discretized space within the domain. We use open-source packages known as FEniCS for matrix assembly and
solving by using PetSc packages (with a Mumps solver). We refer to [63] for engineering applications and
their implementation in FEniCS.

The developed two-step homogenization framework utilizes above-mentioned asymptotic homogenization
procedure and the overall framework is illustrated in Fig. 2. The homogenization is performed from the
composite level to the structure level to determine the constitutive parameters of the printed part. The first
step, referred to as micro-to-material homogenization, determines the constitutive parameters (CM,DM) of the
particulate print material according to particle volume fraction. In the subsequent analysis, which is referred
to as material-to-structure homogenization, constitutive parameters at the structure level (CS and DS) are
determined by employing constitutive materials at material level determined in the previous analysis. Here,
it should be remarked that only the constitutive parameters of first-order theory (CM) are considered in the
micro-to-material homogenization step as the parameters of second-order theory do not play a significant role.
The constitutive parameters CS and DS are determined according to the infill pattern and infill ratio of the
printable sample.

3 Numerical experiment

To show the applicability of the developed homogenization framework, additively-manufactured parts fabri-
cated by carbon black (CB)-filled PLA filament are considered in the numerical study. It is assumed that the
filament has 20% volume fraction of carbon black, where PLA is of Young’s modulus E1 = 3.5 GPa and
Poisson’s ratio ν1 = 0.3, and CB is of Young’s modulus E2 = 210 GPa and Poisson’s ratio ν2 = 0.3.
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Fig. 2 Two-step asymptotic homogenization

Fig. 3 Representative volume elements consisting of PLA (matrix) and 100 randomly distributed carbon blacks (inclusion) in
equal radius

The micro-to-material homogenization (Fig. 2) is performed by defining a cubic RVE of PLA with 100
randomly distributed CB particles. The radius of the spherical CB particles is 0.1 mm, which is an acceptable
size for commercial composite filaments. The number of particles has been determined by a pre-study to
set the minimum number of particles representing the randomized distribution, adequately. To this end, we
have used the same volume fraction and increased the number of particles systematically, say, 10, 20, 30...
With 100 particles, 5 simulations, each with a different (random) distribution, result the “same” solution. In
each simulation, a different RVE is generated in terms of particle distribution with linear tetrahedral elements,
assigning a characteristic length of 0.05 mm of maximum size. Also, the number of nodes (degrees of freedom)
for five different representative volume elements (RVEs) are as follows: 31957 (89169), 34154 (95760), 31671
(88311), 29032 (80394), and 33918 (95052). Importantly, as periodic boundary conditions are applied for the
homogenization, the opposite faces of RVE are constrained to have the same discretization. Also, we have
used less than 5% difference as a rule of thumb to accept that solutions are the same. Roughly speaking, the
numerical (discretization) error has been fixed to below 1% by a standard convergence analysis. In the end,
when 100 particles are randomly distributed, the solution is within the set tolerance. We construct the particles
by allowing them to touch each other at a maximum of 5% volume. In reality, such a condition is generated by
a surface functionalization to prevent agglomeration in manufacturing. But around 5% of allowance to touch
has been found reasonable by observing microscopic images of commercially available filaments. During RVE
generation, each run results in different unit cells since the distribution is random with conditions of volume
fraction and contact allowance. Five generated domains, each with side lengths of 1.28 mm - resulting from
the assigned particle radius of 0.1 mm and a volume fraction of 20%-are depicted in Fig. 3.
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Fig. 4 Convergence analysis regarding constitutive parameters for one randomly generated RVE composed of PLA and CB on
the ordinate and the total number of degrees of freedom on the abscissa

In Fig. 4, the performed convergence analysis is presented according to the number of degrees of free-
dom(DOFs) to determine all non-zero constitutive parameters (CM and DM) at the material scale. The con-
vergence analysis was conducted using five different discretizations. As expected, we observe a monotonous
convergence for parameters at the material scale. Also, all parameters in GM are numerically zero. Here, we
circumvent ourselves from predicting the outcome and compute all these parameters.

A further analysis reveals that DM may be neglected for the micro-to-material homogenization. Regarding
the components of the calculated rank 4 tensor, CM, and rank 6 tensor, DM, we conclude that higher-order
constitutive parameters are unnecessary for the chosen RVE length. The SI unit of the parameters in the rank 6
tensor is N and the SI unit of the parameters in the rank 4 tensor is Nmm−2. The square root of the ratio of the
units of these components is mm, which is the length-scale where the higher-order parameters start dominating
the result. The square root of the ratio between the maximum value of the rank 6 tensor and the maximum
value of the rank 4 tensor is approximately 0.13mm, which is one order of magnitude smaller than the RVE
size of 1.28mm. Thus, strain-gradient parameters are not necessary, and only the constitutive parameters of
CM are considered effective at the material scale. The averaged and rounded effective constitutive parameters
of CB-PLA composite are as follows:

CM =

⎛
⎜⎜⎜⎜⎜⎝

7300± 58 2600± 33 2600± 32 0 0 0
2600± 33 7400± 114 2600± 22 0 0 0
2600± 32 2600± 22 7400± 101 0 0 0

0 0 0 2300± 49 0 0
0 0 0 0 2300± 76 0
0 0 0 0 0 2300± 58

⎞
⎟⎟⎟⎟⎟⎠

MPa (11)

where we use the standard Voigt notation. Calculated constitutive parameters in the Voigt notation fit the
isotropic symmetry class as verified in [64,65] and explained in detail in [57].

For the material-to-structure homogenization, it is assumed that the additively manufactured parts have
grid-type infill pattern, and different infill ratios are considered as shown in Fig. 5.

Each RVE to perform material-to-structure homogenization consists of CB-PLA and void. For CB-PLA,
we use the parameters given in Eq. (11), and we define a dummy material with a modulus of 0.001MPa for
the void part of RVE. Numerically, the void part cannot be chosen as a zero stiffness in order to obtain an
FEM matrix that is solvable. Here, we repeated practically the same approach using the strain-gradient theory
to determine the constitutive parameters (CS and DS). At least 3 RVE of 1.28mm is necessary to achieve a
homogenized continuum [66], thus, we have selected in all the simulations, cubic RVEs of side length 5mm. In
Fig. 6, the performed convergence analysis at the structure scale is presented for 70% infill ratio, considering
five levels of discretization. The discretization level for a 70% infill ratio results in varying numbers of nodes
(linear tetrahedral elements) across five levels: 4581 nodes (21199 elements), 10846 nodes (53427 elements),
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Fig. 5 Grid pattern and resulting RVE for computed infill ratios, transparency is used to show the material (light blue) and void
(dark blue) parts

Fig. 6 Mesh convergence of an RVE with 70% infill ratio for the computed macroscale parameters, CS, DS

21485 nodes (105094 elements), 39195 nodes (196263 elements), and 76526 nodes (422738 elements). The
corresponding degrees of freedom are 11139, 27528, 54411, 100713, and 205656, respectively. It is clear that
all the non-zero constitutive parameters converge at the structure scale.

Importantly, the ratio of rank 6 tensor parameters, DS, to rank 4 tensor parameters, CS, are around 1mm,
therefore, the strain gradient is not negligible for an RVE of side length 5mm. The effect of second-gradient is
weaker than the first-gradient components. This result is often the case, unless a special type of microstructure
with mechanisms are constructed [33,67–70].

In Fig. 7, all the predicted non-zero constitutive parameters (those of CS ad DS) are presented as functions
of infill ratio. The chosen RVE has a cubic symmetry class, yet we compute all parameters without taking any
symmetry class assumptions and obtain results matching the expected number of independent components for
a cubic symmetry. In the cubic symmetry, the number of rank 6 tensor’s independent constitutive parameters
is 11 while there are 3 rank 4 tensor parameters. Also all rank 5 tensor parameters are computed but they are
numerically zeros as expected from this cubic symmetry that is centro-symmetric.

We emphasize that limit cases of 0% or 100% infill ratio creates an already homogenized continuum such
that the microstructure vanishes such as DS = 0. Therefore, the values between 0-100% have an optimum
(maximum or minimum) value. This feature is quite important for a tailored material design at the structure
scale. In the case of a monotonous change, an optimization is more topological but not microstructural. For
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Fig. 7 Computed macroscale parameters for varying infill ratio

Table 1 Coefficients of polynomial fit functions for all parameters in the formof P(α) = Aα6+Bα5+Cα4+Dα3+Eα2+Fα+G
regarding the infill ratio, α

A B C D E F G

CS
1111 0 0 8.00 · 103 −1.05 · 104 6.26 · 103 3.50 · 103 2.86

CS
1122 0 0 4.55 · 103 −5.52 · 103 3.33 · 103 2.13 · 102 2.99

CS
2323 0 0 7.69 · 102 5.91 · 102 8.94 · 10 8.53 · 102 −1.77

DS
111111 −1.79 · 104 3.51 · 104 −2.23 · 104 3.47 · 10 −2.74 · 10 5.17 · 10 −1.10

DS
111221 8.33 · 103 −3.30 · 104 4.15 · 104 −2.22 · 104 5.62 · 103 −2.01 · 102 0.72

DS
111122 0 0 −1.21 · 103 2.63 · 103 −1.50 · 103 6.75 · 10 0.01

DS
221221 0 −3.09 · 104 5.50 · 104 −3.86 · 104 6.60 · 103 7.99 · 103 3.87

DS
221122 0 −1.62 · 104 2.48 · 104 −1.36 · 104 5.25 · 103 −3.10 · 102 1.54

DS
221331 0 −1.34 · 104 2.22 · 104 −1.46 · 104 3.77 · 103 2.04 · 103 0.54

DS
221133 −2.41 · 103 3.11 · 103 −2.31 · 103 1.92 · 103 −3.64 · 102 5.22 · 10 −0.04

DS
122122 2.82 · 104 −8.27 · 104 8.4 · 104 −3.64 · 104 7.37 · 103 −4.41 · 102 1.14

DS
122133 0 9.66 · 103 −1.50 · 104 8.52 · 103 −3.30 · 103 1.13 · 102 −0.79

DS
231231 0 5.45 · 103 −2.04 · 104 1.65 · 104 −5.27 · 103 3.74 · 103 −3.96

DS
231132 8.33 · 103 −2.63 · 104 2.74 · 104 −1.21 · 104 2.98 · 103 −2.26 · 102 0.50

example, rank 4 tensor parameters increase monotonously with the infill ratio. Hence, a topological weight
reduction is possible as already implemented in commercial software solutions. But rank 6 tensor parameters
behave differently. They present a peak around 60–80% infill ratio meaning that their dominance is maximized
at this value. More importantly, the peak value of DS

111111 (around 65%) and DS
221221 (around 80%) are

different. The former is a normal strain gradient along the same axis and the latter is the strain gradient along
the orthogonal axis. In this way, dominance of the second gradient effect may be manipulated by choosing
the infill ratio according to the loading scenario in an application. In general, the contribution of DS is much
weaker than CS due to the fact that the microstructure fails to introduce a mechanism such as in a pantographic
structure [45]. Therefore, second gradient is less pronounced; however, for a length scale near to the grid size,
their contribution starts dominating. However, the optimization is more microstructural that is also possible
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Fig. 8 Determined constitutive parameters (dots) and infill ratio dependent functions (lines) fitting them, a for rank 4 and b–f for
rank 6 parameters, due to the cubic symmetry only independent components are shown
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Fig. 9 A conceptual presentation of a functionally gradient metamaterial design that is possible to analyze with the determined
constitutive parameters of rank 4 and 6 tensors as a continuous function in infill ratio

with a topology optimization at the material scale, yet with a very high computational cost, in general not
feasible for 3-D structures.

Furthermore, we proposed to fit the rank 4 and 6 tensors’ parameters to the infill ratio, α, to reduce the
complexity as well as allow for a study or an optimization of infill ratio within a structure. Therefore, we
utilized the simplest polynomial function adequately describing all parameters. A 6-order polynomial fit has
been successful, for a generic function for parameters, P , in the form:

P(α) = Aα6 + Bα5 + Cα4 + Dα3 + Eα2 + Fα + G . (12)

Coefficient values are compiled in Table 1 and their fit to the simulation results are demonstrated in Fig. 8.
Since the fit functions represent the variation adequately, we conclude that a reduction of themicrostructural

effect to the scalar variable α is suitable. Such a variable is of utmost importance, not only because of being a
manufacturing parameter but also due to its simplicity. One scalar variable represents the whole design space in
additive manufacturing with infill ratio. In this way, an accurate prediction is possible with a computationally
feasible simulation.

4 Conclusion

A strain gradient method is established as a multi-scale homogenization approach that is applied for an
engineering composite material used in additive manufacturing. For a composite material, a homogenization
needs to be used in order to decrease the computational cost. In 3-D printing, mostly for reducing weight, infill
ratio is used as a standard manufacturing parameter in slicer that is preparing the G-code for the print. The
methodology based on asymptotic homogenization is a useful strategy to increase the accuracy of predictions
in a homogenized model without implementing ad-hoc assumptions.

For the investigated compositematerialwithCarbonBlack (CB)filled PolyLacticAcid (PLA),with realistic
geometric dimensions, we found out that the composite material is homogenized adequately with a first-order
theory (first-gradientmaterialmodel) at themillimeter length-scale.However, at least for an increased accuracy,
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infill ratio needs to be homogenized by incorporating a second-order theory (second-gradient material model).
We have used the strain gradient elasticity and determined all parameters for several infill ratio. The complete
design space is covered by reducing the complexity to the scalar variable called infill ratio, α, which is the
manufacturing parameter such that we have demonstrated, probably for the first time in the literature, an
accurate predictive material model with all parameters to be used in 3-D printing.

Consider a part in a product development phase. The part is designed with some restrictions such as
connections to other parts. An engineer has a draft of the part that is functional and possible to manufacture,
for example by 3-D printing. Yet a topology optimization may be needed to decrease the weight. Even if
there are well-established methodologies, topology optimization is challenging to incorporate manufacturing
restrictions. Instead, for the same CAD file and mesh, an infill ratio study may be done by using a strain
gradient elasticity simulation [71–75].

Another possibility is to use such a varying infill ratio within the body. Functionally Graded Materials
(FGM) [76,77] are widely used in product development [78], where their moduli varies in the product. Namely,
rank 4 tensor parameters are a function in space. The same idea is possible to extend for a varyingmicrostructure
in order to develop a so-called programmable material for a specific loading scenario. We demonstrate an
improvable discovery as a tailored material properties and focus on compositional graded structure whose
grades are linearly changed in Fig. 9.

The application of porous structures has been adopted in biomedical engineering for implants and scaffolds.
The porous structure has been prepared byZhao et al [79] to increase the adsorption andmetabolicmovement of
cells, promoting the growth of bone tissue cells. The designed femoral prosthesis by Perez-Boerema et al. [80]
is characterized by periodic unsteady filling employing changing the gradient over the prosthesis additionally
using unit cells having different characteristics. In mechanical engineering applications, functionally graded
composites provide lightweight and gain crashworthiness during the designing of vehicles e.g in [81], Zhang
et al. came up with a structural design having gradient porous to be used for bumper shock absorbers.
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