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Abstract Liquid crystal elastomers (LCEs) are a class of materials which exhibit an anisotropic behavior in
their nematic state due to the main orientation of their rod-like molecules called mesogens. The reorientation
of mesogens leads to the well-known actuation properties of LCEs, i.e. exceptionally large deformations as a
consequence of particular external stimuli, such as temperature increase. Another key feature of nematic LCEs
is the capability to undergo deformation by constant stresses while being stretched in a direction perpendicular
to the orientation of mesogens. During this plateau stage, the mesogens rotate towards the stretching direction.
Such characteristic is defined as semisoft elastic response of nematic LCEs. We aim at modeling the semisoft
behavior in a dynamic finite element method based on a variational-based mixed finite element formulation.
The reorientation process of the rigid mesogens relative to the continuum rotation is introduced by micropolar
drilling degrees of freedom. Responsible for the above-mentioned characteristics is an appropriate free energy
function. Starting from an isothermal free energy function based on the small strain theory, we aim to widen
it into the framework of large strains by identifying tensor invariants. In this work, we analyze the isothermal
influence of the tensor invariants on the mechanical response of the finite element formulation and show that
its space-time discretization preserves mechanical balance laws in the discrete setting.

Keywords Nematic liquid crystal elastomer · Micropolar continuum · Semisoft elasticity · Momentum-
conserving time stepping scheme

1 Introduction

Liquid crystal elastomers (LCEs) are a class of materials, which is capable of remarkable deformations and
actuation properties as a consequence of particular external stimuli, such as temperature change or electric
fields. These charachteristics are due to the reorientation of the mesogens, i.e. the rodlike molecules which
are linked to the backbone chains of the elastomer. The continuum theories included the main direction of the
mesogens as a nematic director unit vector [1]. Another main feature of nematic LCEs is the experimentally
observed semisoft elastic behavior of LCEs. The stress–strain plot of a stretched specimen, whose nematic
director lies orthogonally to the direction of stretch, is characterized by a plateau of constant stress [2] due
to the reorientation of the nematic director. Verwey et al. [3] distinguished between the ideal soft-elastic and
semisoft elastic response: by the former, the rotation of the mesogens is achieved at a stress equal to zero
[4,5], whereas by the latter, the reorientation of the mesogens is accompanied by a slight increase of the stress,
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which was described by Urayama et al. [6] as quasi-plateau and it is preceded and followed by another stage
without reorientation of the mesogens, i.e. the hard regime [3]. Both ideal softness and semi-softness were
observed in experiments [1,7]. The main reason for deviation from ideal softness lies in the thermomechanical
history of the specimen [1]: if crosslinking occurred in the isotropic phase, the specimen will behave as ideally
soft, whereas crosslinking occurred in the nematic phase leads to a semisoft response. A particular aspect
which causes the diverting from ideal softness is the finite extensibility of polymer chains [8]: concerning
this issue, Mao et al. [8] corrected the trace formula of Warner and Terentjev [1] by a variational approach
starting from the Bogoliubov–Feynman inequality. Furthermore, if the specimen is stretched orthogonal to
the original orientation of the nematic director, the reorientation of the mesogens is observed experimentally
with the arise of a striped pattern in the elastomer [9]. In two adjacent stripes, the mesogens rotate in opposite
directions [3]. Among the other remarkable properties, nematic elastomers also exhibit excellent damping
properties by virtue of their softness [10], therefore the investigation on models which couple the exceptional
features of nematic LCEs with dynamics is essential. A recent contribution to this topic was given by Wang
et al. [11], who considered the additive split of the deformation gradient into the elastic and viscous part, and
subsumed the latter under the internal variables, along with the deformation gradient, the nematic director and
its gradient. In this way, they separated the dissipations due to the rotations of the mesogens and to the inherent
viscoelasticity of the elastomer and compared their model with experimental results of Martin Linares et al.
[12] in terms of rate-dependency. Liang and Li [13] explored the tunability of metamaterials by exploiting
the semisoft elasticity of nematic LCEs. Semisoft elasticity was modeled by adding a term depending on
fluctuations in the ordering of the nematic LCE to the trace formula of Warner and Terentjev [1,14]. They
performed simulations by changing the shape and size of pores and ligaments in the metamaterial, as well
as by considering several anisotropy fluctuations parameters and ratios between step lenghts. Selingen et al.
[15] modeled the elastodynamics starting from the Hamiltonian of the system [16] and widening it into finite
strains by considering the Green–Lagrange strain tensor; the authors were able to mimic complex motions,
such as peristalsis and crawling of an earthworm made of nematic elastomer. Mbanga et al. [17] used the same
approach and focused on the semisoft elasticity and the rise of the striped pattern in monodomain nematic
elastomers. Zhang et al. [18] considered distinct dissipations for the symmetric part of the spatial velocity
gradient and the objective rate of the director, in order to model semisoftness in LCEs by the free energy of
Verney and Warner [14] at different loading rates.

In the present work, we describe the numerical framework for reproducing semisoft elasticity of nematic
LCEs. Firstly, the continuum model is taken from the work of Concas and Groß [19] and improved with
the mesogen rotation mapping β as further independent variable, which is also included in the strain energy
function along with the previous continuum rotation mapping α; secondly, the mesogen rotation mapping β
is defined by describing the reorientation of mesogens as dissipative process with subsequent application of
the Coleman–Noll procedure to the other internal variables in the Clausius–Planck inequality; afterwards, the
dissipation related to the reorientation of the nematic director is included as a functional in the principle of
virtual power and the weak forms and corresponding momentum and moment of momentum balances are
obtained. Finally, virtual experiments involving stretched films of nemating elastomers prove the preservation
of balance laws, as well as the capability of our approach in reproducing semisoftness (Table 1).

2 The finite element formulation

2.1 Continuum model

The LCE material is considered as a continuum body with two distinct mappings [20], i.e. the orientation
mapping χ between the nematic director n0 in the reference configuration B0 at time t = 0 and the nematic
director nt in the current configuration Bt and the deformation mapping ϕ, which maps a position vector
X ∈ B0 to a position vector x ∈ Bt . The continuum configuration was depicted by Concas and Groß [19]. In
order to formulate the free energy density, we introduce the deformation gradient F, the right and left Cauchy–
Green strain tensors, C = FT F and B = FFT , respectively. The velocity vector v (X, t) := ϕ̇ (X, t) = ẋ,
the linear momentum vector p := ρ0v relating to the deformation mapping ϕ are considered as variables along
with the orientational velocity vector vχ (X, t) := χ̇ (X, t) = ṅt and the orientational momentum vector
pχ := ρ0l2χvχ for the orientation mapping χ [19]. In contrast to the work of Concas and Groß [19], in this
work rotations of the nematic director have been separated from rotations occuring in the bulk elastomer. The
distinction is made according to De Gennes [21], who introduced distinct rotations for the nematic director
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Table 1 List of symbols

˙(•) Time derivative
δ∗ (•) Variation with respect to the functional variable (•)
B0 Initial configuration
Bt Current configuration
Dint Internal dissipation
∂TB0 Surface load boundary ofB0
∂WB0 Orientational surface load boundary ofB0
∂ϕB0 Boundary ofB0 for Dirichlet conditions
P int Internal power
T Time set
Tn Time step
T Deformational kinetic energy functional
Tn Orientational kinetic energy functional
B Left Cauchy–Green strain tensor
Bϕ Volume load vector related to the deformation mapping
Bχ Orientational volume load vector
C Right Cauchy–Green strain tensor
E Young’s modulus
F Deformation gradient
I Second-order identity tensor
J Jacobian determinant
J (tn) Moment of momentum vector at time t
Jn (tn) Moment of orientational momentum vector at time t
lχ Radius of gyration
L (tn) Linear momentum vector at time t
Ln (tn) Orientational momentum vector at time t
N Generalized first Piola–Kirchhoff stress tensor
n0 Nematic director inB0
nt Nematic director inBt
p Momentum vector related to the deformation mapping
pχ Momentum vector related to the orientation mapping
r Ratio between lengths of step
R Reaction force vector related to the deformation mapping
t Time
T Surface load related to the deformation mapping
v Velocity vector related to the deformation mapping
vχ Velocity vector related to the orientation mapping
Vβ Rotational viscosity parameter
W Orientational surface load vector
wτ Double axial vector of τ skw
X Position vector inB0
x Position vector inBt
α Continuum rotation mapping
β Mesogen rotation mapping
ε Third-order Levi-Civita tensor
λ Second Lamé constant
μ Shear modulus
ν Poisson’s ratio
�ext Functional of the external energy related to the deformation mapping
�ext

n Functional of the external energy related to the orientation mapping
�int Functional of the internal energy related to both mappings
ρ0 Specific density
�β Rotational non-equilibrium stress
τχ Reorientation stress vector
τ skw Second-order Kirchhoff skew-symmetric stress tensor
ϕ Deformation mapping
χ Orientation mapping
ψe Elastic energy density
ψi Translational interactive energy density
ψr Rotational interactive energy density
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Fig. 1 Illustration of the rotation mappings α = α (X) e3 and β = β (X) e3 in case of a two-dimensional motion: the nematic
director n0 and a line element dX in the reference configurationB0 (left), the nematic director nt and the line element dx in the
current configurationBt with the respective absolute rotations β = β (X) and α = α (X) (right)

and the solids as two additive terms of the energy density. The first term consists in the squared Euclidean
norm of cross product between the difference of both rotations (α − β)with the nematic director in the current
configuration nt ; the second term is the scalar contraction of both indices of the deformation tensor with the
nematic director and the aforesaid cross product. Since both parts of this rotational free energy are dependent
on the relative rotations of the nematic director with respect to rotation occurring in the solids, the free energy
is invariant for simultaneous rotations of the nematic director and of the solid. Warner and Terentjev [1] added
two further cubic parts to the free energy of De Gennes. The second-order deformation tensor is defined within
the linear elasticity limit [1]. Motivated by Groß et al. [22], we define the continuum rotation α, which maps
a material point described by the position vector X ∈ B0 to its three-dimensional rotation γ = α (X) in the
current configurationBt . Analogously, themesogen rotation β maps X ∈ B0 to its absolute three-dimensional
rotationω = β (X) in the current configurationBt . Since themesogens are embedded in the bulk elastomer, the
mesogen rotation mapping β refers to the material point X in the reference configurationB0. The micropolar
rotations are shown in Fig. 1, inspired by the representation ofWarner and Terentjev [1]. Whereas the mesogen
rotation mapping β relates to the absolute rotation of the nematic director, the continuum rotation mapping α
is directly linked to rotations of line elements [23] in the current configuration Bt . The continuum rotation
mapping α is described through its time derivative as the axial vector of the spatial velocity gradient

α̇ = −1

2
ε : ḞF−1 . (1)

The motion of the nematic director is outlined as a rigid-body rotation [24], in which the time derivative of
the nematic director in the current configuration, that corresponds to the time derivative of the orientational
mapping, is given by the cross product between the relative rotation of the director with respect to the solid
and the orientational mapping

χ̇ = (
α̇ − β̇

) × χ . (2)

By applying the principle of virtual power, Eqs. (1–2) are constraints, which have to be included into the
functionals through scalar contraction with the corresponding Lagrange multipliers, i.e. the stress vector wτ

wτ = τ T
skw : ε (3)

as double axial vector of the skew-symmetric Kirchhoff stress tensor τ skw for the constraint of Eq. (1) and the
reorientation stress vector τχ for the constraint of Eq. (2) [19]. Both rotation mappings appear in the strain
energy density

ψ = ψe + ψi + ψr . (4)
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ψe = c1 (I : C − 3 − 2 log (J )) + λ

2

([
log (J )

]2 + (J − 1)2
)

+ c3n0 · Cn0, (5)

ψi = c3 (I : (nt ⊗ nt ) − 1) + c9‖FT nt‖2 + c10
(
n0 · FT nt

)2
, (6)

ψr = c11
2
tr[BWα−β (nt ⊗ nt )Wα−β ] + c12

2
[(α − β) × nt ]2 . (7)

By defining three types of the strain energy density, we follow the approach of Anderson et al. [20]. The elastic
strain energy density in Eq. (5) consists in the sum between the Neo-Hookeanmodel and the double contraction
of the right Cauchy–Green strain tensor with the dyad of the nematic director in the reference configuration
n0. In contrast with the work of Concas and Groß [19], the translational interactive energy density in Eq. (6)
contains a further termwith c3 as prefactor, in order to fulfill the stress-free reference configuration [25], which
is discussed in more detail in the Appendix A of this work. In Eqs. (5–6), the trace formula of Warner and
Terentjev [1] appears as sum of invariants, i.e. the first term with prefactor c1 and the last term with prefactor
c3 of Eq. (5), along with the last two terms of Eq. (6) with prefactors c9 and c10. This representation of the
trace formula was also used by other authors, e.g. Anderson et al. [20]. By this notation of the trace formula,
we assumed that the ratio r between lengths of step is the same in the reference and current configuration [19].
The remaining terms in Eq. (5) belong to the Neo-Hookean model and to the penalty functions for enforcing
incompressibility with the second Lamé constant λ as penalty term. We define Eq. (7) as rotational interactive
energy density, which includes two terms depending on the relative rotation (α − β): the first one is another
representation of one of the cubic relative energy density terms described by Warner and Terentjev [1], in
which the prefactor D22 and the small strain tensor have been replaced with the constant value c11 and the left
Cauchy–Green strain tensor, respectively; the second term is the already-mentioned squared Euclidean norm
of De Gennes [21] with the constant c12 instead of D1 as prefactor. Such term penalizes relative rotation of the
nematic director with respect to the bulk elastomer [1]. Among all the strain energy density terms described
by De Gennes [21] and Warner and Terentjev [1], only the terms of Eq. (7) have been taken for the large strain
formulation, since the strain energy density must be invariant by sign changes of all variables χ , α and β.
For instance, the strain energy density term of De Gennes [21] with D2 as prefactor is a quadratic form of
nt , and hence it is invariant for positive and negative nt , but not for positive or negative (α − β). The cubic
term with the prefactor D33, that were described by Warner and Terentjev [1], is discussed in Sect. 3. All
terms of the rotational interactive energy density are invariant according to Zheng [26]. Wα−β is the skew-
symmetric tensor associated with the cross product between the relative rotation and the nematic director.1

Since Wα−β is a skew-symmetric tensor, the dot productWα−β (nt ⊗ nt )Wα−β is a symmetric second-order
tensor and its double contraction with the left Cauchy–Green strain tensor B is invariant. This term allows the
mutual influence between deformations occurring in the bulk elastomer, which are represented by B, and the
reorientation of the nematic director induced by the relative rotation.
It is worth mentioning that the introduction of the mesogen rotation mapping β is necessary for simulating the
semisoft elastic behavior by using the present dynamic numerical framework, which includes the constraints
of Eqs. (1–2) on the continuum rotation mapping α and the nematic director, respectively. The relative rotation
(α − β) of the nematic director with respect to the bulk elastomer was described by Warner and Terentjev [1]
as a suitable physical variable for the free energy density function. If rotations of the nematic director is driven
only by rotations occurring in the bulk elastomer, e.g. as in the work of Concas and Groß [19], our dynamic
numerical framework cannot reproduce the rotation of the nematic directors towards the stretching direction.
The values of the prefactors λ, c1, c3, c9, c10, as well as the reasoning concerning the usage of the same ratio
r for the reference and current configuration, are described and explained in the work of Concas and Groß
[19] and references therein. The newly added prefactors c11 = −0.05μ and c12 = 0.05μ of the aforesaid
invariants have been evaluated from preliminary simulations for the purpose of ensuring numerical stability.
The invariance of the free energies in Eqs. (5–7) for rotations of the reference and the current configuration is
proved in the Appendix B of this work.

1 Wα−βnt = [−ε · (α − β)] nt = (α − β) × nt
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2.2 Reorientation of the nematic director

The time evolution of the mesogen rotation mapping β is described as a dissipative process. By following the
same approach of Oates and Wang [27], the isothermal Clausius-Planck inequality reads

Dint := N : Ḟ + η · χ̇ − ψ̇ ≥ 0 , (8)

where N is a generalized first Piola–Kirchhoff stress tensor, since it includes any stress work-conjugated to
the deformation gradient F. The vector η is a conservative internal micro-stress vector [27]. According to
Eqs. (4–7), the free energy density is a function of the deformation gradient, the nematic director nt , i.e. the
relating orientation mapping χ , and both rotation mappings α and β. In contrast to the work of Wang et al.
[11], we introduce here both independent rotations α and β as internal variables, we also leave out the gradient
of the nematic director and neglect viscoelastic effects on the bulk elastomer. The time derivative of the free
energy density ψ̇ is

ψ̇ = ∂ψ

∂F
: Ḟ + ∂ψ

∂χ
· χ̇ + ∂ψ

∂α
· α̇ + ∂ψ

∂β
· β̇ . (9)

By inserting Eq. (9) in Eq. (8), we obtain the new Clausius-Planck inequality as

Dint :=
(
N − ∂ψ

∂F

)
: Ḟ + η · χ̇ − ∂ψ

∂χ
· χ̇ − ∂ψ

∂α
· α̇ − ∂ψ

∂β
· β̇ ≥ 0 . (10)

In Eq. (1), the rate of the continuum rotation of the solid α depends on the axial vector of the spatial velocity
gradient, and its contribution can thus be inserted2 into the definition of the generalized first Piola–Kirchhoff
stress tensor by applying the Coleman–Noll procedure

N := ∂ψ

∂F
− 1

2

∂ψ

∂α
· ε · F−T . (11)

The definition of the conservative micro-stress vector η

η = ∂ψ

∂χ
(12)

is also obtained through the Coleman–Noll procedure. Hence, the internal dissipation is

Dint := −∂ψ

∂β
· β̇ ≥ 0. (13)

We impose on the internal dissipation to have a specific formulation

Dint != �β · β̇ with �β = Vβ β̇ , (14)

where �β and Vβ denote the rotational non-equilibrium stress and the rotational viscosity parameter, respec-
tively [28]. We consider a simple linear form for �β , but a tensorial form of the viscosity might be chosen
as well and possibly investigated in a future work. Our approach is different from the one followed by Zhang
et al. [18], who set to zero most of the viscosity coefficients and obtained a liquid-crystal-related dissipation
term depending only on the Jaumann rate of the nematic director. Our approach is comparable to the one of
Garikipati et al. [29], who dealt with remodeling of biological tissue. Since the rotation of the collagen fibrils
has to overcome the resistance offered by the surrounding gel, their relative rotation with respect to the gel is
considered as dissipative process. Analogously, the relative rotation of the mesogens with respect to the bulk
elastomer corresponds to an energy cost. In the work of Garikipati et al. [29], the dissipation is modeled as
square of the Euclidean norm of the angular velocity of the fibrils similar to Eq. (14).

2 − ∂ψ

∂α
· α̇ = 1

2

∂ψ

∂α
· ε : ḞF−1 = 1

2

∂ψ

∂α
· ε · F−T : Ḟ
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2.3 Variational-based weak formulation

In order to formulate the weak forms, we apply the principle of virtual power as in the work of Concas and
Groß [19]. We start from the total energy balance, as described by Groß et al. [30], in which the sum of the
functionals of the time rates of the kinetic energy, the external energy and internal energy is equal to zero. The
sum of the virtual energy rates, which is integrated over any time step Tn := [

tn, tn+1
]
is

∫ tn+1

tn

[
δ∗Ṫ (ϕ̇, v̇, ṗ) + δ∗Ṫn

(
χ̇ , v̇χ , ṗχ

) + δ∗�̇ext (ϕ̇, R) + δ∗�̇ext
n (χ̇)

+ δ∗�̇int (ϕ̇, χ̇ , α̇, β̇, τχ , wτ

)]
dt := 0 . (15)

Distinct kinetic energies and external energies for the deformation mapping ϕ and the orientation mapping χ
are considered [20]. The deformational and orientational kinetic powers and the corresponding variations, i.e.
the Gateaux derivatives with respect to the variables ϕ̇, v̇, ṗ, χ̇ , v̇χ and ṗχ are

Ṫ (ϕ̇, v̇, ṗ) :=
∫

B0

v̇ · ρ0v dV −
∫

B0

ṗ · [v − ϕ̇] dV −
∫

B0

p · [v̇ − ϕ̈] dV , (16)

Ṫn
(
χ̇ , v̇χ , ṗχ

) :=
∫

B0

v̇χ ·
[
ρ0l

2
χ

]
vχ dV −

∫

B0

ṗχ · [vχ − χ̇
]
dV

−
∫

B0

pχ · [
v̇χ − χ̈

]
dV , (17)

δ∗Ṫ (ϕ̇, v̇, ṗ) :=
∫

B0

ṗ · δ∗ϕ̇ dV +
∫

B0

(ρ0v − p) · δ∗v̇ dV

−
∫

B0

[v − ϕ̇] · δ∗ṗ dV , (18)

δ∗Ṫn
(
χ̇ , v̇χ , ṗχ

) :=
∫

B0

ṗχ · δ∗χ̇ dV +
∫

B0

(
ρ0l

2
χvχ − pχ

)
· δ∗v̇χ dV

−
∫

B0

[
vχ − χ̇

] · δ∗ṗχ dV , (19)

respectively. The second and third terms of Eq. (16) relate to the definitions v = ϕ̇, v̇ = ϕ̈ for the deformational
velocity and its time rate. Analogously, the second and third terms of Eq. (17) refer to the identities vχ = χ̇ ,
v̇χ = χ̈ for the orientational velocity field and its time rate. The first term of Eq. (17) depends on the square
of the radius of gyration lχ , whose description can be found in our previous work [19] and references therein.
Kinetic energies and their variations are identical to those of the work of Concas and Groß [19], as well as the
external deformational power and its variation with respect to the variables ϕ̇ and R

�̇ext (ϕ̇, R) := −
∫

B0

ρ0Bϕ · ϕ̇ dV −
∫

∂TB0

T · ϕ̇ dA

−
∫

∂ϕB0

R · (
ϕ̇ − ˙̄ϕ)

dA (20)

δ∗�̇ext (ϕ̇, R) := −
∫

B0

ρ0Bϕ · δ∗ϕ̇ dV −
∫

∂TB0

T · δ∗ϕ̇ dA −
∫

∂ϕB0

R · δ∗ϕ̇ dA

−
∫

∂ϕB0

δ∗R · [
ϕ̇ − ˙̄ϕ]

dA , (21)

where ˙̄ϕ is the prescribed velocity on the Dirichlet boundary ∂ϕB0 and R is the reaction force vector, i.e.
the Lagrange multiplier for the constraint ϕ̇ = ˙̄ϕ [19]. The functional of the dissipation is included into the
external orientational power

�̇ext
n

(
χ̇ , β̇

) := −
∫

B0

ρ0Bχ · χ̇ dV −
∫

∂WB0

W · χ̇ dA +
∫

B0

�β · β̇ dV , (22)
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δ∗�̇ext
n

(
χ̇ , β̇

) := −
∫

B0

ρ0Bχ · δ∗χ̇ dV −
∫

∂WB0

W · δ∗χ̇ dA

+
∫

B0

�β · δ∗β̇ dV . (23)

The internal power contains both contributions of the deformational and orientational mapping and the con-
straints of Eqs. (1–2)

�̇int (ϕ̇, χ̇ , α̇, β̇, τχ , wτ

) :=
∫

B0

[
∂ψ

∂F
: Ḟ + ∂ψ

∂χ
· χ̇ + ∂ψ

∂α
· α̇ + ∂ψ

∂β
· β̇

]
dV

+
∫

B0

τχ · [
χ̇ − (α̇ × χ) + (

β̇ × χ
)]

dV

+
∫

B0

wτ ·
[
1

2
ε : ḞF−1 + α̇

]
dV . (24)

The corresponding virtual internal power reads

δ∗P int :=
∫

B0

∂ψ

∂F
: ∂F

∂ϕ
· δ∗ϕ̇ dV +

∫

B0

1

2
wτ · ε · F−t : ∂F

∂ϕ
· δ∗ϕ̇ dV

+
∫

B0

∂ψ

∂χ
· δ∗χ̇ dV +

∫

B0

τχ · δ∗χ̇ dV

+
∫

B0

∂ψ

∂α
· δ∗α̇ −

∫

B0

δ∗α̇ · (
χ × τχ

)
dV +

∫

B0

wτ · δ∗α̇ dV dV

+
∫

B0

∂ψ

∂β
· δ∗β̇ dV +

∫

B0

δ∗β̇ · (
χ × τχ

)
dV

+
∫

B0

δ∗τχ · [
χ̇ − (α̇ × χ) + (

β̇ × χ
)]

dV

+
∫

B0

δ∗wτ ·
[
1

2
ε : ḞF−1 + α̇

]
dV, (25)

where P int is an abbreviation for �̇int
(
ϕ̇, χ̇ , α̇, β̇, τχ , wτ

)
. We point out that the functional of the dissipation

is included into the external power, because it is a non-conservative process. The choice to include the internal
dissipation into Eq. (22) is in line with the procedure of Groß et al. [28]. By considering Eq. (15), the variations
with respect to all variables are gathered in order to obtain theweak forms. Summarizing the integrals contracted
with the variation δ∗ϕ̇ yields to the weak balance of linear momentum

∫ ∫

Tn×B0

δ∗ϕ̇ · [ṗ − ρ0Bϕ

]
dV dt +

∫ ∫

Tn×B0

1

2
wτ · ε · F−T : ∂F

∂ϕ
· δ∗ϕ̇ dV dt

+
∫ ∫

Tn×B0

∂ψ

∂F
: ∂F

∂ϕ
· δ∗ϕ̇ dV dt −

∫ ∫

Tn×∂TB0

δ∗ϕ̇ · T dA dt

−
∫ ∫

Tn×∂ϕB0

δ∗ϕ̇ · R dA dt = 0 , (26)

as well as the weak balance of orientational momentum for the variation δ∗χ̇
∫ ∫

Tn×B0

δ∗χ̇ · [ṗχ − ρ0γ
]
dV dt +

∫ ∫

Tn×B0

∂ψ

∂χ
· δ∗χ̇ dV dt +

∫ ∫

Tn×B0

δ∗χ̇ · τχ dV dt

−
∫ ∫

Tn×∂WB0

δ∗χ̇ · W dA dt = 0 , (27)
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the weak balances of the orientation rates for the variation δ∗τχ

∫ ∫

Tn×B0

δ∗τχ · [χ̇ − (α̇ × χ) + (
β̇ × χ

)]
dV dt = 0, (28)

the weak continuum rotation equation for the variation δ∗wτ

∫ ∫

Tn×B0

δ∗wτ ·
[
α̇ + 1

2
ε : ḞF−1

]
dV dt = 0 (29)

and finally the weak balances of the reorientation stress τχ

∫ ∫

Tn×B0

δ∗α̇ ·
[
wτ − (

χ × τχ

) + ∂ψ

∂α

]
dV dt = 0, (30)

∫ ∫

Tn×B0

δ∗β̇ ·
[(

χ × τχ

) + ∂ψ

∂β
+ �β

]
dV dt = 0 (31)

for the variations δ∗α̇ and δ∗β̇. The weak forms for the other variations δ∗ṗ, δ∗v̇ and δ∗R are shown in the
work of Groß et al. [30] in their discrete form and weak forms for δ∗ṗχ and δ∗v̇χ can be deduced in the same
way. The reorientation stress is determined by the weak forms in Eq. (30–31) and is thereby dependent on the
skew-symmetric Kirchhoff stress tensor and on the rotational non-equilibrium stress. By this procedure, the
rotational non-equilibrium stress �β has a direct influence on the reorientation rate χ̇ by driving the Lagrange
multiplier τχ .

2.4 Balance laws

The balance laws are obtained from the weak equations in Eqs. (25–31) replacing the test functions, i.e. the
variations with another function, since the test function may assume any value except 0. For instance, by
replacing the variation δ∗ϕ̇ of Eq. (26) with the arbitrary constant vector c in the weak balance of the linear
momentum in Eq. (26), the following linear momentum balance is obtained

L (tn+1) − L (tn) =
∫ ∫

Tn×B0

ρ0Bϕ dV dt +
∫ ∫

Tn×∂TB0

T dA dt

+
∫ ∫

Tn×∂ϕB0

R dA dt. (32)

Analogously, by replacing the test function δ∗χ̇ with the arbitrary constant vector c in the weak balance of the
orientational momentum in Eq. (27), the orientational momentum balance reads

Ln (tn+1) − Ln (tn) =
∫ ∫

Tn×B0

ρ0Bχ dV dt +
∫ ∫

Tn×∂WB0

W dA dt

−
∫ ∫

Tn×B0

[
τχ + ∂ψ

∂χ

]
dV dt . (33)

In order to formulate the balance of the moment of linear momentum, the test functions are set to δ∗ϕ̇ = c×ϕ,
δ∗α̇ = c and δ∗β̇ = c and inserted in the Eq. (26), Eqs. (30) and (31), respectively. Afterwards, Eqs. (30–31)
are inserted in Eq. (26) that gives back the following balance of the moment of linear momentum

J (tn+1) − J (tn) = −
∫ ∫

Tn×B0

(
F × ∂ψ

∂F

)
dV dt +

∫ ∫

Tn×B0

[
ϕ × ρ0Bϕ

]
dV dt
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+
∫ ∫

Tn×∂TB0

[ϕ × T ] dA dt +
∫ ∫

Tn×∂ϕB0

[ϕ × R] dA dt

+
∫ ∫

Tn×B0

∂ψ

∂α
dV dt +

∫ ∫

Tn×B0

∂ψ

∂β
dV dt

+
∫ ∫

Tn×B0

�β dV dt. (34)

Inserting the test function δ∗χ̇ = c×χ in Eq. (27) yields the balance of themoment of orientational momentum

Jχ (tn+1) − Jχ (tn) = −
∫ ∫

Tn×B0

(
χ × ∂ψ

∂χ

)
dV dt −

∫ ∫

Tn×B0

(
χ × τχ

)
dV dt

+
∫ ∫

Tn×B0

[
χ × ρ0Bχ

]
dV dt

+
∫ ∫

Tn×∂WB0

[χ × W ] dA dt (35)

By summing up Eqs. (34–35) the following balance is obtained

J (tn+1) − J (tn) + Jn (tn+1) − Jn (tn) = −
∫ ∫

Tn×B0

(
F × ∂ψ

∂F

)
dV dt

−
∫ ∫

Tn×B0

(
χ × ∂ψ

∂χ

)
dV dt +

∫ ∫

Tn×B0

�β dV dt −
∫ ∫

Tn×B0

(
χ × τχ

)
dV dt

+
∫ ∫

Tn×B0

[
χ × ρ0Bχ

]
dV dt +

∫ ∫

Tn×∂WB0

[χ × W ] dA dt

+
∫ ∫

Tn×B0

[
ϕ × ρ0Bϕ

]
dV dt +

∫ ∫

Tn×∂TB0

[ϕ × T ] dA dt

+
∫ ∫

Tn×∂ϕB0

[ϕ × R] dA dt . (36)

The terms with the partial derivative of the free energy with respect to α and β have been canceled in Eq. (36),
since the following identity

∂ψ

∂α
= −∂ψ

∂β
(37)

is valid and it will be discussed in the Appendix A, whereas the identity

F × ∂ψ

∂F
= −χ × ∂ψ

∂χ
(38)

is not satisfied for any invariant of Eq. (7).
In order to ensure stability and accuracy of our numerical framework, the weak forms and all the balance

laws have to be fulfilled for each time step, hence Eqs. (27–31) and Eqs. (32–36) are represented as a double
integral over the time domain Tn := [

tn, tn+1
]
and the space domain (either volume or boundary).
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2.5 Space and time discretization

Consistently with the work of Concas and Groß [19], different fields of variables are considered: the time rate
variables φ̇ ∈ {

ϕ̇, α̇, β̇, χ̇ , ṗ, v̇, ṗχ , v̇χ

}
are discretized in space and time as follows

φ̇
e = 1

hn

k+1∑

I=1

M ′
I (ξJ )

nn∑

A=1

NA (ζB)φeA
I ; (39)

whereas the stress variables and variations ε ∈ {
τχ , wτ , R, δ∗ϕ̇, δ∗α̇, δ∗β̇, δ∗χ̇ , δ∗τχ , δ∗wτ , δ∗R,

δ∗ṗ, δ∗v̇, δ∗ṗχ , δ∗v̇χ

}
are discretized as

εe =
k∑

I=1

M̃I (ξJ )

nn∑

A=1

NA (ζB) εeAI , (40)

where φeA
I and εeAI are the spatial and temporal nodal values of each variable fields and NA (ζB) is the spatial

shape function with the Gauss points ζB with B = 1, .., nn . According to the continuous Galerkin method,
different temporal shape functionsM ′

I (ξJ ) and M̃I (ξJ ) are used for the time rate fields and the fields including
stress variables and variations [31]. M ′

I (ξJ ) and M̃I (ξJ ) are Lagrange polynomials of degree k and k − 1,
respectively. ξJ denotes the temporal Gauss points with J = 1, ..., k for M ′

I (ξJ ) and J = 1, ..., k − 1 for
M̃I (ξJ ). Consistently again with Concas and Groß [19], the fields φ ∈ {

ϕ, α, β, χ , p, v, pχ , vχ

}
without

time derivative are discretized in space and time as follows

φe =
k+1∑

I=1

MI (ξJ )

nn∑

A=1

NA (ζB)φeA
I (41)

The temporal shape functions MI (ξJ ) and M̃I (ξJ ) can be found in the work of Groß et al. [30]. The temporal
shape function M ′

I (ξJ ) is the derivative of the shape function MI (ξJ ) with respect to the normalized time α
[30]

α := t − tn
hn

(42)

where hn := tn+1 − tn is the time step size. Further details relating to the space and time discretizations are
reported by Concas and Groß [19] and references therein.

3 Numerical results

We aim to validate our model by simulating the stretch on both ends of a LCE film. Since the stretching
direction is perpendicular to the nematic director in the reference configuration, the semisoft elastic response
is observed. In all simulations, we used the density ρ0 = 1760 kg/m3, the Young’s modulus E = 0.914 MPa
and the Poisson’s ratio is ν = 0.493 [32]. The radius of gyration and the ratio between step lengths are set to
lχ = 28 · 10−10 m [1] and r = 1.88 [33] for the temperature of 60 ◦C, respectively. As in the work of Concas
and Groß [19], we describe a numerical framework, which takes into account only isothermal processes. The
system of weak equations is solved by using UMFPACK [34]. The value of the rotational viscosity parameter
is set to Vβ = 200 Pas based on preliminary numerical tests. We implemented the model described in the
Sects. 2.1–2.2 and the relating numerical framework in our in-house dynamic finite element software. All
numerical experiments are performed within a time span of 0.1 s [32] with the time step size of 0.005 s. The
scope of this work is to provide a numerical framework for semisoftness of nematic LCEs, hence we do not
take into account any rate effect and our outcomes, such as stress–strain curves of stretched specimens, can be
compared with experimental or numerical results from the literature only qualitatively. Concerning the space-
time discretization, we have considered a degree k = 2 for the Lagrangian polynomials of the temporal shape
functions and a hexahedral element with eight nodes [19]. We use the same convergence criteria as Concas and
Groß [19], but in this work we used a tolerance of 10−5 in order to deal with possible instabilies of the mesh
that are due to the nematic directors rotating in opposite directions. In our virtual experiments, we consider a
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Fig. 2 Stretch ( ˙̄ϕ = 0.4 m/s) of nematic LCE film with a length to width ratio of 10. The nematic directors are depicted as black
arrows every 60 nodes in the front side of the geometry

thin film (0.0125×0.125×0.0005 m) stretched in the x-direction and whose nematic directors are oriented in
the y−direction in the reference configuration. The geometry and the boundary conditions are shown in Fig. 2.
The only one boundary condition is the prescribed speed ˙̄ϕ = 0.4 m/s, which acts simultaneously on both ends
of the geometry. Dirichlet boundary conditions are imposed in our numerical framework through the Lagrange
multiplier R, i.e. the reaction force vector. We avoid to use any other Dirichlet boundary conditions, which
may influence R. The variable R determines engineering stresses in our stress–strain plots. Since no further
boundary conditions are applied at the ends of the specimen, a dogbone shape for avoiding the influence
of the clamps on the specimen is not needed. The geometry has a length to width ratio of 10 in order to
increase the length of the plateau stage [1] and the corresponding mesh has 10000 linear hexahedral elements.
Exploiting the symmetries of the geometry, as in the work of Conti et al. [4], would need a fewer number of
elements and thereby reduce the computational burden, but in that case symmetry boundary conditions for the
orientation mapping should be implemented, which is beyond the scope of this work. Moreover, asymmetrical
deformations or rotations of the specimen can be detected only by modeling the whole geometry. In Fig. 3,
the engineering stress—engineering strain curves are plotted for three different interactive energy densities:
in the first case, the rotational interactive energy density is zero, i.e. c11 = c12 = 0; in the second case, only
the first term ψc11 of the rotational interactive energy density in Eq. (7) is considered (with c12 = 0) and in
the third case, only the second term ψc12 is regarded (c11 = 0). Keeping both prefactors c11 	= 0 and c12 	= 0
leads to numerical instabilities, hence both terms of the rotational interactive energy density must be analyzed
separately. The engineering stresses is given by the average of the reaction force R nodal values on the right
end of the specimen and dividing it by its cross-sectional area in the reference configuration. The reaction
force has only a component in the x-direction, since the prescribed Dirichlet boundary condition ϕ̇ = ˙̄ϕ acts
parallel to the x-direction. According to our preliminary analysis, trends are the same if nodes on the left end
of the specimen were considered, instead of the right end, except with a few negligible deviations during the
quasi-plateau stage. All curves in Fig. 3 exhibit the same drop of the engineering stresses between the linear
elastic stage and the quasi-plateau stage. All trends are qualitatively comparable to the numerical simulations
ofWang et al. [11], especially in terms of the pronounced drop in the engineering stresses, but not quantitatively
due to e.g. the different strain rates. Therefore, it may be deduced that the semisoft elastic response is guided
mainly by the dissipation rather than by the invariants of the rotational interactive energy density. Nonetheless,
the trend of the quasi-plateau stage is steeper if c11 = c12 = 0 and at least one of the invariants in ψc11 or
ψc12 is thus needed for reducing the steepness of the plateau. A common feature of all curves is a pronounced
saw-tooth-like trend in the linear elastic stage, which might be due to fluctuations in the nodal values of the
reaction force R, since nematic directors do not rotate at all during this stage.

In Fig. 4a, the engineering stress–strain curve is shown for the virtual experiment, in which the rotational
interactive strain energy is set to zero. Figure4b–f shows the specimen with the nematic directors and the
distribution of the magnitude of the reorientation stress vector τχ for five different steps: the first step (b)
during the linear elastic stage; the stages (c) and (d) at the peak of the engineering stress and at its drop,
respectively; the fourth (e) and the fifth (f) step during the quasi-plateau stage. The nematic directors are
shown only on the front surface of the specimen every 60 nodes for the sake of clarity. The orientation of the
nematic director is strongly related to the trend of the engineering stress: in the stage (b) nematic directors
keep their orientation of the reference configuration and begin to rotate once the peak of stress (c) is reached.
The beginning of the rotation can be noticed in the upper corners of the specimen in Fig. 4c. The sudden
decrease of the engineering stress is achieved due to the pronounced rotation of the nematic directors in some
areas of the specimen. By approaching either the right end or the left end of the specimen in Fig. 4d, nematic
directors which are rotating in opposite directions are noticeable and the domains can be compared with the
microstructure of Conti et al. [4]. Inhomogenities in the rotation of the nematic directors are accompanied by
an increase in the magnitude of the reorientation stress vector τχ and by distortions of elements, which make
the usage of a mesh with 10000 elements unavoidable. In Fig. 4e, rotations of the nematic directors continue
up to the stage (f), in which all nematic directors are mainly horizontal and no further reorientation occurs.
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Fig. 3 Engineering stresses—engineering strain curve for three different interactive energy density: without any rotational inter-
active energy density, with only the rotational energy density ψc11 and the rotational energy density ψc12

Figure5 shows the trends of the momenta, angular momenta and relating normalized errors for the simu-
lation of the LCE film under stretch with c11 = c12 = 0. In Fig. 5a the linear momentum is given by Eq. (32)
and since all the volume loads and surface loads are zero, it depends only on the reaction force R, whereas
the moment of linear momentum is also dependent on the first Piola–Kirchhoff stress tensor and the rotational
non-equilibrium stress (see Eq. (34)). The x-component of the linear momentum is zero up to the time step,
where the stress drop from the peak begins, after which the linear momentum assumes an oscillating trend. The
sudden decrease of the engineering stress leads to changes in the trends of the components of the moment of
linear momentum, the orientational momentum and the moment of orientational momentum (see also Fig. 5b).
Figure5c, d shows the normalized errors, i.e. the difference between left- and right-hand sides of Eqs. (32–35)
divided by the tolerance 10−5 for the linear momentum, the moment of linear momentum, the orientational
momentum and the moment of orientational momentum, respectively. The normalized errors are well below
1, hence our numerical framework preserves all balances of the momentum and the angular momentum.

Figures6 and 8 show the stress–strain curve and the specimenwith the nematic directors and the distribution
of the magnitude of the reorientation stress vectors τχ for a rotational interactive energy density equal to ψc11

and ψc12 , respectively. The distribution of τχ is consistent with the case of the rotational interactive energy
density equal to zero, with a higher magnitude of τχ for nodes of adjacent elements, in which the nematic
director rotates in opposite directions. However, the complete rotation of the directors is not achieved in the
Fig. 6e, as in the middle of the specimen some nematic directors do not rotate at all and are still oriented
in the y−direction. Furthermore, the specimen shows a cusp-like contour in the middle due to the presence
of nematic directors with opposite orientations in adjacent elements. A cusp-like deformation also occurs by
lower stretches for the cases in which the rotational interactive energy density is zero or equal toψc12 , although
the relating images of the specimen are not depicted in Figs. 4 and 8. It may thus be deduced that ψc11 leads to
a slower reorientation, which would be completed if a longer time span were analyzed. The coupling between
deformations in the bulk elastomer and reorientation of the nematic director is strengthened if only ψc11 is
taken into account as rotational interactive strain energy density, since the left Cauchy–Green strain tensor B
is double contracted with the dyad of the vector (α − β) × nt . Based on our preliminary investigation, the
reorientation of the nematic director might be even more restrained if another strain energy density described
by Warner and Terentjev [1] with the prefactor D33 is considered. This further part of the free energy density
consists in the product of two scalar: the first scalar is the invariant of ψc12 , i.e. the square of the Euclidean
norm of the vector (α − β) × nt (see also the second term of Eq.7); the second scalar is given by the double
contraction of the strain tensor with the dyad of the nematic director in the current configuration. In this
case, the prefactor D33 must also be replaced in order to ensure numerical stability in the large strain regime.
However, in order to achieve the complete reorientation of the nematic directors as in e.g Fig. 4e, a longer time
span must be observed and hence the widening of the free energy density of Warner and Terentjev [1] to the
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Fig. 4 Engineering stress—engineering strain curve (a) for the simulation of a nematic LCE without rotational interactive energy
density (c11 = c12 = 0) under stretch. The images show the nematic directors and the distribution of the reorientational stress
vector on the LCE film for five different stages (b–f) of the virtual experiment

large strain regime might be the subject of a future work. In Figs. 7 and 9 linear and orientational momenta,
the moments of linear momentum and orientational momentum are shown along with the relating normalized
errors. The drop of the reaction force and thus of the engineering stress causes the increase in the absolute
value of the momenta from the zero value. By comparing Figs. 7a, b with 9a, b, trends over time are different
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Fig. 5 Linear momentum and moment of momentum (a), orientational momentum and moment of orientational momentum (b),
normalized errors of the linear momentum balance and of the moment of linear momentum balance (c), normalized errors of the
orientational momentum balance and of the moment of orientational momentum balance (d) over time for the LCE film under
stretch without rotational interactive energy density (c11 = c12 = 0). In all of the plots, the left y-axis refers to the momenta and
the right y-axis to the moments of momentum

for the linear momentum, the moment of linear momentum and the moment of orientational momentum, but
the peak in the trend of the y−component of the orientational momentum occurs for all the invariants of Eq. (7)
and also if the rotational interactive energy density is zero. The peak arises in correspondence of the drop of
the engineering stress and begin of the quasi-plateau stage. All the normalized errors, which are depicted in
Figs. 7c, d with 9c, d, are below 1, therefore the momenta and moments of momentum are preserved.
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Fig. 6 Engineering stress—engineering strain curve (a) for the simulation of a nematic LCE with rotational interactive energy
density ψc11 (c12 = 0) under stretch. The images show the nematic directors and the distribution of the reorientational stress
vector on the LCE film for five different stages (b–f) of the virtual experiment

4 Conclusion

In this work, our dynamic numerical framework for reproducing semisoft elasticity in nematic LCEs has been
described. We have started from the approach of Concas and Groß [19] and have included separate variables



Dynamic large strain formulation for nematic liquid crystal elastomers 985

Fig. 7 Linear momentum and moment of momentum (a), orientational momentum and moment of orientational momentum (b),
normalized errors of the linear momentum balance and of the moment of linear momentum balance (c), normalized errors of the
orientational momentum balance and of the moment of orientational momentum balance (d) over time for the LCE film under
stretch with only the rotational interactive energy density ψc11 (c12 = 0). In all of the plots, the left y-axis refers to the momenta
and the right y-axis to the moments of momentum

[21] as rotationmappingsβ andα in order to distinguish between rotations of the nematic director and rotations
occuring into the bulk elastomer, respectively. We have considered terms of the free energies of Warner and
Terentjev [1] and De Gennes [21], which are defined for small strains and are invariants with respects to the
above-mentioned variables. We have adapted these terms in order to make them suitable for simulations in the
large strain regime and thus include them in our dynamic numerical framework: we have replaced the small
strain tensor, which was double contracted with the dyad of the vector (α − β)× nt [1], with the left Cauchy–
Green strain tensor B and we have also applied prefactors c11 and c12, that are dependent only on the shear
modulusμ. We have defined the evolution of the mesogen rotation mapping β as dissipative process. Based on
the results discussed in this work, our numerical framework, which is based on the principle of virtual power,
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Fig. 8 Engineering stress—engineering strain curve (a) for the simulation of a nematic LCE with rotational interactive energy
density ψc12 (c11 = 0) under stretch. The images show the nematic directors and the distribution of the reorientational stress
vector on the LCE film for five different stages (b–f) of the virtual experiment

is able to reproduce semisoftness of nematic LCEs in the dynamic regime and to preserve mechanical balance
laws. Furthermore, the usage of the energy densities ofWarner and Terentjev [1] and De Gennes [21] improves
the steepness of the quasi-plateau stage. In our simulations, we observed the arise of adjacent domains, where
nematic directors rotate in opposite directions and the boundaries between domains are marked by a higher
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Fig. 9 Linear momentum and moment of momentum (a), orientational momentum and moment of orientational momentum (b),
normalized errors of the linear momentum balance and of the moment of linear momentum balance (c), normalized errors of the
orientational momentum balance and of the moment of orientational momentum balance (d) over time for the LCE film under
stretch with only the rotational interactive energy density ψc12 (c11 = 0). In all of the plots, the left y-axis refers to the momenta
and the right y-axis to the moments of momentum

magnitude of the reorientation stress vector τχ . This feature can be enhanced in a future work for modeling the
striped pattern occuring in nematic LCE under stretch. The model must be also improved under the aspect of
the plateau length, since the described results show a fast rotation of the nematic director during the considered
time span. A possible way to deal with the reduced length of the plateau stage might involve the free energy
density of Warner and Terentjev [1] with D33 as prefactor. In a future work, we also aim to extend our dynamic
numerical framework to modelling fundamental features of nematic LCEs, such as their actuation response
to light as a consequence of the isotropic-nematic transition, which was recently modelled by Brighenti and
Cosma [35] by using a staggered scheme.
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Appendix A

The conditions for the stress-free reference configuration [25] have to be fulfilled not only for the free energy
of Eqs. (5–7) and the first Piola–Kirchhoff stress tensor, but also for the stresses, that are work-conjugated to
the other variables χ , α and β, i.e.

ψ = 0,
∂ψ

∂F
= 0,

∂ψ

∂χ
= 0,

∂ψ

∂α
= 0,

∂ψ

∂β
= 0 (A1)

must be valid in the reference configuration with

F = I, nt = n0, α = β . (A2)

The stress-free reference configuration is checked as first for Eq. (6) alongwith the last term of Eq. (5). The sum
of the other terms in Eq. (5) is the Neo-Hookean model, for which the conditions for the stress-free reference
configuration can be easily demonstrated. In order to check whether the reference configuration is stress-free,
Eq. (A2) is inserted in the above-mentioned part of the energy density and in the following stresses, which are
work conjugated to F

∂ψ

∂F
= 2c3F (n0 ⊗ n0) + 2c9 (nt ⊗ nt ) F + 2c10

(
n0FT nt

)
(nt ⊗ n0) (A3)

and χ

∂ψ

∂χ
= 2c3nt + 2c9Bnt + 2c10

(
n0FT nt

)
(Fn0) (A4)

respectively. The free energy densities in Eqs. (5–6) are independent of the variables α and β and the relating
work conjugated stresses are thus zero. Replacing the prefactors c3, c9 and c10 with their functions3 and using
another representation for ‖FT nt‖2 4 yields

ψ = μ

2
(r − 1) [n0 · n0 + n0 · n0 − 1] + μ

2

(
1

r
− 1

)
n0 · n0

+ μ

2

(
2 − 1

r
− r

)
(n0 · n0)2 = 0 (A5)

for the free energy density,

∂ψ

∂F
= 2

μ

2
(r − 1) (n0 ⊗ n0) + 2

μ

2

(
1

r
− 1

)
(n0 ⊗ n0)

+ 2
μ

2

(
2 − 1

r
− r

)
n0 · n0 (n0 ⊗ n0) = 0 (A6)

3 c3 = μ (r − 1)

2
, c9 = μ

2

(
1

r
− 1

)
and c10 = μ

2

(
2 − 1

r
− r

)

4 ‖FT nt‖2 = B : (nt ⊗ nt )

http://creativecommons.org/licenses/by/4.0/
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for the first Piola–Kirchhoff stress tensor and

∂ψ

∂χ
= 2

μ

2
(r − 1) n0 + 2

μ

2

(
1

r
− 1

)
n0 + 2

μ

2

(
2 − 1

r
− r

)
(n0 · n0) n0 = 0 (A7)

for the stress vector, which is work conjugated to χ . The rotational interactive energy density of Eq. (7) is also
dependent on α and β, therefore the relating work conjugated stress vectors are

∂ψc11

∂α
= c11 (ε · nt ) B [(ε · β) − (ε · α)] nt (A8)

and

∂ψc11

∂β
= c11 (ε · nt ) B [(ε · α) − (ε · β)] nt . (A9)

for the energy density ψc11 with c11 as prefactor and

∂ψc12

∂α
= −c12 (ε · nt ) (ε · nt ) (α − β) (A10)

and

∂ψc12

∂β
= −c12 (ε · nt ) (ε · nt ) (β − α) . (A11)

for the energy density ψc12 with c12 as prefactor. The work conjugated to χ are

∂ψc11

∂χ
= c11Wα−β BWα−βnt . (A12)

∂ψc12

∂χ
= −c12Wα−βWα−βnt . (A13)

The first Piola–Kirchhoff stress is

∂ψc11

∂F
= c11Wα−β (nt ⊗ nt )Wα−β F (A14)

forψc11 .ψc12 is independent of F and itswork conjugated stress is thus zero. Sinceα = β (seeEq. (A2)) is valid
in the reference configuration, and all of the rotational interactive energy densities in Eq. (7) and of the stresses
in Eqs. (A8–A14) are dependent on the skew-symmetric second-order tensorWα−β or its other representation
[(ε · β) − (ε · α)], the condition for the stress-free reference configuration is satisfied. Furthermore, due to the
invariants of the rotational interactive free energy densities of Eq. (7), in which the continuum rotationmapping
α appears always with the mesogen rotation β as a difference of both variables, the identity in Eq. (37) is also
satisfied.

Appendix B

In nematic LCEs, the free energy densities in Eqs. (5–7) must be invariant for rotations in the reference
configurations B0 and the current configuration Bt [36]. In order to proof their invariance, we follow the
approach of Steinmann [37] and introduce a second-order orthogonal tensor5 Q for indicating a rotation of the
reference configurationsB0, which transforms the initial nematic director n0 and the deformation gradient F
as follows

n0 ∗ = QT n0 (B1)

F∗ = FQ. (B2)

5 QQT = QT Q = I
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Vectors and tensors with the symbol ’∗’ as subscript denote the transformed terms for rotations occurring on
the reference configurationB0. On the other hand, terms with the superscript ’∗’ are transformed for rotations
of the current configuration Bt , e.g. the nematic director nt transforms as

n∗
t = Qnt (B3)

and the deformation gradient F as
F∗ = QF . (B4)

using the same orthogonal second-order tensor Q. In order to check the invariance of the free energy densities
of Eqs. (5–7), one must take into account that the initial nematic director n0 and the right Cauchy–Green
strain tensor C are inherently invariant for rotations of the current configuration, whereas the current nematic
director nt and the left Cauchy–Green strain tensor B are inherently invariant for rotations of the reference
configuration. Being equal to zero in the undeformed state, the relative rotation vector (α − β) is inherently
invariant in the reference configuration and must be affected only by rotations of the current configuration [38]
as

(α − β)∗ = Q (α − β) . (B5)

The terms of Eq. (5) involving J result to be invariant for rotations of both reference and current configurations6

[24]. By writing the rotational energy density ψc11 as

ψc11 = c11
2
tr[BWα−β (nt ⊗ nt )Wα−β ] = −c11

2
[(α − β) × χ] B [(α − β) × χ] , (B6)

the transformed free energy density for rotations of the reference configuration is

ψ∗ = c1 (I : C∗ − 3 − 2 log (J∗)) + λ

2

([
log (J∗)

]2 + (J∗ − 1)2
)

+ c3n0 ∗ · C∗n0 ∗ + c3 (I : (nt ∗ ⊗ nt ∗) − 1)

+ c9nt ∗ · B∗nt ∗ + c10
(
n0 ∗ · FT∗ nt ∗

)2

− c11
2

[
(α − β)∗ × nt ∗

]
B∗

[
(α − β)∗ × nt ∗

] + c12
2

[
(α − β)∗ × nt ∗

]2

= c1
((

QQT
)

: C − 3 − 2 log (J )
)

+ λ

2

([
log (J )

]2 + (J − 1)2
)

+ c3n0 · QQTC QQT n0 + c3 (I : (nt ⊗ nt ) − 1)

+ c9nt · Bnt + c10
(
n0 · QQT FT nt

)2

− c11
2

[(α − β) × nt ] B [(α − β) × nt ] + c12
2

[(α − β) × nt ]2 , (B7)

in which we consider the following identity

I :
(
QTC Q

)
=

(
QQT

)
: C , (B8)

is identical as the sum of Eqs. (5–7). The transformed free energy density for rotations of the current configu-
ration

ψ∗ = c1
(
I : C∗ − 3 − 2 log

(
J ∗)) + λ

2

([
log

(
J ∗)]2 + (

J ∗ − 1
)2)

+ c3n∗
0 · C∗n∗

0 + c3
(
I : (

n∗
t ⊗ n∗

t

) − 1
)

+ c9n∗
t · B∗n∗

t + c10
(
n∗
0 · F∗ T n∗

t

)2

+ c11
2

[
(α − β)∗ × n∗

t

]
B∗ [

(α − β)∗ × n∗
t

] + c12
2

[
(α − β)∗ × n∗

t

]2

= c1 (I : C − 3 − 2 log (J )) + λ

2

([
log (J )

]2 + (J − 1)2
)

6 J∗ = det
[
FQ

] = det [F] = J and J ∗ = det
[
QF

] = det [F] = J
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+ c3n0 · Cn0 + c3
((

QT Q
)

: (nt ⊗ nt ) − 1
)

+ c9nt · QT QBQT Qnt + c10
(
n0 · FT QT Qnt

)2

+ c11
2

[(α − β) × nt ] · QT QBQT Q [(α − β) × nt ]

+ c12
2

[(α − β) × nt ] · QT Q [(α − β) × nt ] , (B9)

with the identities [38]
Q (α − β) × Qnt = Q [(α − β) × nt ] (B10)

and

I : (Qnt ⊗ Qnt ) =
(
QT Q

)
: (nt ⊗ nt ) , (B11)

is also identical as the sum of Eqs. (5–7). Hence, the invariance is fulfilled for rotations of both the reference
and current configurations.
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