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Abstract In this work, we aim to model the reorientation process of mesogens in nematic liquid crystal
elastomers within the context of dynamics. We consider a continuum model with separate mappings for the
deformation of the monolithic material and the orientation of the nematic director, where the latter describes
the inclination of the mesogens. We achieve the inextensibility of the nematic director through the introduction
of drilling degrees of freedom.We combine this approach with the application of the principle of virtual power
and a mixed finite element formulation, in order to formulate distinct momentum and angular momentum
balance laws for the two separate mappings. Furthermore, we include in our continuum model a volume load
and a surface load associated only with the orientation mapping. We show in the presented three numerical
examples that our formulation enables the fulfillment of all momentum and angular momentum balance laws.

Keywords Nematic liquid crystal elastomer · Momentum-conserving time stepping scheme · Variational
principle · Micropolar continuum

1 Introduction

Liquid crystal elastomers (LCEs) are under investigation since a few decades due to their capability to respond
with large deformations to external stimuli, such as heating and the application of electric fields. Because of this
feature, a LCE can perform motion actuation and is thus evaluated as a suitable material for the development
of artificial muscles. The behavior of LCEs is related to their instrinsic structure, as the characteristics of
rubber are integrated with the orientational properties of liquid crystals [1–3]. Based on the grade of ordering
of molecules, LCEs can be categorized into three classes: smectic, nematic and cholesteric [4]. The isotropic
state of LCEs is achieved by heating above the transition temperature. In this work, we focus on nematic
LCEs, in which rodlike parts of the molecule called mesogens are linked to the polymer backbone. In case
of a monodomain microstructure, the mesogenic rods are aligned toward a unique nematic director [5] and
LCEs are thus manufactured as thin films in order to keep the alignment of the nematic director through the
whole thickness of the specimen [6]. Due to their unique features, nematic LCEs are currently the subject of
intensive research and several works deal with the modeling of their behavior. In the works of Leslie [7,8],
a continuum theory for liquid crystals was formulated from balance laws by including volume and surface
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forces related to the director in the former, and by introducing a viscous dissipation in the latter. As one of the
main features of LCEs, the modeling of soft elastic response was the subject of several works, e.g., [9–12].
More recently, Agostiniani and DeSimone [13] developed a model for thin films at large strains by considering
different nematic textures. Another crucial issue concerns the modeling of LCEs subjected to external stimuli,
along with the experimental validation, e.g., [14] which leads to the model for the prediction of the actuation
[15–17]. In this work, we present a variational-based approach for model the dynamic behavior of nematic
LCEs. We have introduced two separate mappings for describing the bulk material and the nematic directors
[18], whose reorientation is modeled through drilling degrees of freedom [19]. A list of the used symbols is
reported in Table1

2 The finite element formulation

2.1 Continuum model

We take into account the LCE material as a continuum (see Fig. 1); therefore, we consider the reference
configuration B0 at initial time t = 0 with the corresponding nematic director n0, which is a function of the
material point X . We introduce two distinct mappings: the deformation mapping ϕ (X, t) : B0 × T → Bt
and the orientation mapping χ (X, t) : B0×T → R

ndim give back the spatial point x and the nematic director
nt in the current configuration Bt , respectively. Furthermore, the two mappings fulfill the conditions related
to the reference configuration, i.e., ϕ (X, 0) = X and χ (X, 0) = n0. In order to deal with dynamic problems,
two further variables must be included: the velocity vector v (X, t) := ϕ̇ (X, t) = ẋ as time derivative of
the deformation mapping and the linear momentum vector p := ρ0v. Since we aim to formulate a distinct
momentumbalance for eachmapping function [18], an orientational velocity vectorvχ (X, t) := χ̇ (X, t) = ṅt
as time derivative of the orientation mapping and an orientational momentum vector pχ := ρ0l2χvχ have been
introduced, where lχ is the radius of gyration. Anderson et al. [18] defined the term ρ0l2χ as referential
orientational inertia density and it keeps consistency with the units of the parameter, since the nematic director
is a unit vector [18]. For a detailed description of the radius of gyration, we refer to the book of Warner and
Terentjev [1]. Another approach for taking into account the inertia of the LCE continuum has been presented
by Groß et al. [20].

From the deformationmappingϕ, we introduce the deformation gradient F := Grad [ϕ], the right Cauchy–
Green strain tensor C := FT F and the Jacobian determinant J := det[F], which are needed for formulating
the Neo-Hookean material model. Anderson et al. [18] divided the strain energy into three parts: the elastic
energy density, which is a function of C and of the nematic director in the reference configuration n0, the
nematic energy density as a function of the orientation gradient G := Grad [χ] and the interactive energy
density, depending on the invariant FT nt . In this work, we let out the terms depending on the orientation
gradient, consistently with the strain energy density formulations which were described in other works, e.g.,
[2,21]. Therefore, the strain energy is described as the sum of elastic energy density ψe and interactive energy
density ψi

ψ = ψe + ψi (1)

ψe = c1 (I : C − 3 − 2 log (J )) + λ

2

([
log (J )

]2 + (J − 1)2
)

+ c3n0 · Cn0 (2)

ψi = c9‖FT nt‖2 + c10
(
n0 · FT nt

)2
(3)

with the following parameters

c1 = μ

2
, c3 = μ (r − 1)

2
, c9 = μ

2

(
1

r
− 1

)
and c10 = μ

2

(
2 − 1

r
− r

)
. (4)

μ is the shear modulus and r is the ratio between lengths of steps parallel �‖ and perpendicular �⊥ to the
nematic director [1,18]. The terms with prefactors c3, c9 and c10 in Eqs. (2–3) couple the orientation mapping
χ with the deformation mapping ϕ, i.e., the nematic directors both in the reference n0 and in the current
configuration nt are coupled with the deformation gradient F and both right and left Cauchy–Green strain
tensors C and B, where the latter can be easily obtained from the term of the interactive strain energy density
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Table 1 List of symbols

˙(•) Time derivative
δ∗ (•) Variation with respect to the functional variable (•)
B0 Initial configuration
Bt Current configuration
∂TB0 Surface load boundary ofB0
∂WB0 Orientational surface load boundary ofB0
∂ϕB0 Boundary ofB0 for Dirichlet conditions
Cori Reorientation function
H Total energy functional
Iskw Fourth-order skew-symmetric projection tensor
�‖ Length of step parallel to the nematic director inBt
�⊥ Length of step perpendicular to the nematic director inBt
�0‖ Length of step parallel to the nematic director inB0
�0⊥ Length of step perpendicular to the nematic director inB0
P int Internal power
T Time set
Tn Time step
T Deformational kinetic energy functional
Tn Orientational kinetic energy functional
B Volume load vector related to the deformation mapping
Bχ Orientational volume load vector
C Right Cauchy–Green strain tensor
F Deformation gradient
H Sum of all energy functionals
I Second-order identity tensor
J Jacobian determinant
J (tn) Moment of momentum vector at time t
Jn (tn) Moment of orientational momentum vector at time t
lχ Radius of gyration
L (tn) Linear momentum vector at time t
Ln (tn) Orientational momentum vector at time t
n0 Nematic director inB0
nt Nematic director inBt
p Momentum vector related to the deformation mapping
pχ Momentum vector related to the orientation mapping
r Ratio between lengths of step inBt
r0 Ratio between lengths of step inB0
R Reaction force vector related to the deformation mapping
t Time
T Surface load related to the deformation mapping
v Velocity vector related to the deformation mapping
vχ Velocity vector related to the orientation mapping
W Orientational surface load vector
wτ Double axial vector of τ skw
X Position vector inB0
x Position vector inBt
α Continuum rotation
ε Third-order Levi-Civita tensor
λ Second Lamé constant
μ Shear modulus
ν Poisson ratio
�ext Functional of the external energy related to the deformation mapping
�ext

n Functional of the external energy related to the orientation mapping
�int Functional of the internal energy related to both mappings
ρ0 Specific density
τχ Reorientation stress vector
τ skw Second-order Kirchhoff skew-symmetric stress tensor
ϕ Deformation mapping
χ Orientation mapping
ψi Interactive energy density
ψe Elastic energy density
ω Axial vector of τ skw
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Fig. 1 Continuum configuration for a LCE with the deformation mapping ϕ, the orientation mapping χ and the associated
orientational volume load Bχ and orientational surface load W (color figure online)

with prefactor c9 just by using few simple rules of tensor algebra. In contrast with the work of Anderson et al.
[18], we assume that the ratio r is the same for both reference and current configurations, i.e.,

�0‖ = �‖, �0⊥ = �⊥, r0 = r = �‖
�⊥

. (5)

This assumption ismotivated by thework ofWarner and Terentjev [1]: they expressed the ratio r as a function of
the orientational order parameter as well as the square of the ratio between the radii of gyration of the ellipsoid,
which represents the chain distribution. Since our model aims to describe only isothermal loading cases, the
changes in the orientational order are of minor importance [10]. Hence, it can be deduced that the ellipsoid
keeps its shape with the same ratio between the radii of gyration parallel and perpendicular to the nematic
director. Furthermore, the sum of the first two terms of the elastic strain energy density with the prefactor c1 in
Eq. (2) with the further terms having c3, c9 and c10 as prefactors corresponds to the well-known trace formula
ofWarner and Terentjev [1], if the assumptions of Eq. (5) aremade and some rules of tensor algebra are applied.
In the scientific literature, the LCE material has been modeled either as incompressible, e.g., [4], or as nearly
incompressible, e.g., [16]. We apply the Neo-Hookean model for compressible elastomers [22] and the nearly
incompressibility is fulfilled by using suitable values for the shear modulus μ and the Poisson ratio ν, which
define the second Lamé constant λ.1 The rotation of the nematic director, i.e., its reorientation, is described by
means of the drilling degrees of freedom, which are depicted in Fig. 2 for a single linear hexahedral element.
The time derivative of the continuum rotation α̇ is defined as the axial vector of the current velocity gradient

α̇ = −1

2
ε : ḞF−1 (6)

in order to model the kinematic reorientation process of the nematic director, where ε is the third-order Levi-
Civita tensor and Ḟ is the time derivative of the deformation gradient. In the finite element formulation, the
introduction of the time derivative of the continuum rotation α̇ as a variable offers the advantages related to
the potential applications of related Dirichlet boundary conditions; nonetheless, no boundary conditions for α̇
have been imposed in this work. Moreover, α̇ is needed for describing the time derivative of the orientation
mapping as follows:

χ̇ = α̇ × χ . (7)

Equation (7) is the widely known formula for describing rigid-body dynamic rotations [23], which we impose
as a constraint in our variational formulation (see Eq. (21)) for the purpose of forcing the orientation mapping
and thus the nematic director to rotate without any stretching. The spin tensor of such rigid rotation is expressed

1 λ = 2

3
μ

(
1 + ν

1 − 2ν
− 1

)
.



Principle of virtual power and drilling degrees of freedom for dynamic modeling 1985

Fig. 2 Eight-noded hexahedral element with the drilling degrees of freedom for each node: the displacement with three directions
u, v andw, the nematic director with its three components r , s and t and three rotation angles β, γ and δ [19] (color figure online)

in Eq. (7) as a cross-product with the corresponding axial vector α̇. The constraints of Eqs. (6–7) are imposed
through Lagrange multipliers. The Lagrange multiplier for Eq. (6) is the double axial vector

wτ = 2ω = τ T
skw : ε (8)

of the skew-symmetric Kirchhoff stress tensor τ skw. According to Eq. (8), the Lagrange multiplierwτ contains
the third-order Levi-Civita tensor, which must be single-contracted with the third-order Levi-Civita tensor in
the right-hand side of Eq. (6), and with the time rate of the continuum rotation α̇ in the left-hand side. Hence,
the spin tensor, i.e., the skew-symmetric part of the spatial velocity gradient ḞF−1, is constrained to be equal
to the skew-symmetric second-order tensor associated with the time rate of the continuum rotation −ε · α̇ by
means of the Lagrange multiplier2 wτ . The Lagrange multiplier for Eq. (7) is the reorientation stress vector
τχ associated with the nematic director.

2 τ T
skw : ε ·

(
1

2
ε : ḞF−1 + α̇

)
= τ T

skw :
(
1

2
ε · ε : ḞF−1 + ε · α̇

)
= τ T

skw : (
Iskw : ḞF−1 + ε · α̇

)
.
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2.2 Variational-based weak formulation

The weak forms are obtained starting form the principle of virtual power [19]
∫ tn+1

tn
δ∗Ḣ

(
ϕ̇, ṗ, v̇, χ̇ , ṗχ , v̇χ , α̇, wτ , τχ , R

)
dt := 0 (9)

where fields with continuous time evolution, i.e., the time derivatives ϕ̇, ṗ, v̇, χ̇ , ṗχ , v̇χ , α̇ and discontinuous
time evolution wτ , τχ , R appear. Equation (9) is valid for any time step Tn := [

tn, tn+1
]
and the functional

H is given by the sum of the internal energy �int, both kinetic energies T and Tn , as well as both external
energies �ext and �ext

n , associated with the deformation mapping ϕ and the orientation mapping χ

H := T + Tn + �ext + �ext
n + �int. (10)

Hence, the fulfillment of Eq. (9) is associated with
∫ tn+1

tn

(
δ∗Ṫ + δ∗Ṫn + δ∗�̇ext + δ∗�̇ext

n + δ∗�̇int) dt := 0. (11)

The distinction between kinetic energies T and Tn and external energies�ext and�ext
n for the two mappings is

made according toAnderson et al. [18].We start bypresenting each functional and calculating the corresponding
variation. The functional of the deformational kinetic power depending on the fields ϕ̇, v̇ and ṗ reads

Ṫ (ϕ̇, v̇, ṗ) :=
∫

B0

v̇ · ρ0v dV −
∫

B0

ṗ · [v − ϕ̇] dV −
∫

B0

p · [v̇ − ϕ̈] dV . (12)

The variations with respect to the fields ϕ̇, v̇ and ṗ are calculated by means of the Gateaux derivative

δ∗Ṫ (ϕ̇, v̇, ṗ) :=
∫

B0

ṗ · δ∗ϕ̇ dV +
∫

B0

(ρ0v − p) · δ∗v̇ dV

−
∫

B0

[v − ϕ̇] · δ∗ṗ dV . (13)

The functional of the orientational kinetic power, which depends on the fields χ̇ , v̇χ and ṗχ is given by

Ṫn
(
χ̇ , v̇χ , ṗχ

) :=
∫

B0

v̇χ ·
[
ρ0l

2
χ

]
vχ dV −

∫

B0

ṗχ · [vχ − χ̇
]
dV

−
∫

B0

pχ · [
v̇χ − χ̈

]
dV (14)

and the corresponding virtual orientational kinetic power

δ∗Ṫn
(
χ̇ , v̇χ , ṗχ

) :=
∫

B0

ṗχ · δ∗χ̇ dV +
∫

B0

(
ρ0l

2
χvχ − pχ

)
· δ∗v̇χ dV

−
∫

B0

[
vχ − χ̇

] · δ∗ṗχ dV . (15)

Consistently, again with the work of Anderson et al. [18], we define as deformational and orientational the
energies that are associated with the deformation mapping ϕ and the orientation mapping χ , respectively. The
deformational and orientational kinetic powers in Eqs. (12) and (14) are obtained by summing up the integral
of the time derivative of the kinetic energy density on B0 with the integrals of the following constraints:
v = ϕ̇ and v̇ = ϕ̈ for the deformational kinetic power and vχ = χ̇ and v̇χ = χ̈ for the orientational kinetic
power. Constraints are satisfied by means of the Lagrange multiplier method with ṗ, p, ṗχ and pχ as Lagrange
multipliers. This procedure has been taken from Großet al. [24].

In the functional of the deformational external power, the external loads such as the volume load B and
the surface load T occur, which act upon the whole bodyB0 and the Neumann boundary ∂TB0, respectively.
The reaction force R is a Lagrange multiplier, which acts on the Dirichlet boundary ∂ϕB0 = ∂B0\∂TB0
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for enforcing the constraint related to the Dirichlet boundary condition ϕ̇ = ˙̄ϕ, which is expressed as time
derivative [24]

�̇ext (ϕ̇, R) := −
∫

B0

ρ0B · ϕ̇ dV −
∫

∂TB0

T · ϕ̇ dA −
∫

∂ϕB0

R · (
ϕ̇ − ˙̄ϕ)

dA. (16)

The virtual deformational external power with respect to the variations of the time derivative of the deformation
mapping ϕ̇ and the reaction force R reads

δ∗�̇ext (ϕ̇, R) := −
∫

B0

ρ0B · δ∗ϕ̇ dV −
∫

∂TB0

T · δ∗ϕ̇ dA

−
∫

∂ϕB0

R · δ∗ϕ̇ dA −
∫

∂ϕB0

δ∗R · [
ϕ̇ − ˙̄ϕ]

dA. (17)

We introduce the functional of the external power and the virtual orientational external power in Eq. (19)
associated with the time derivative of the orientation mapping χ̇ with the relating volume load Bχ and surface
load W , with the latter acting on the Neumann boundary ∂WB0. In this work, we do not introduce any
Dirichlet boundary condition for the orientation mapping; therefore, a corresponding orientational reaction
force as Lagrange multiplier is not needed.

�̇ext
n (χ̇) := −

∫

B0

ρ0Bχ · χ̇ dV −
∫

∂WB0

W · χ̇ dA (18)

δ∗�̇ext
n (χ̇) := −

∫

B0

ρ0Bχ · δ∗χ̇ dV −
∫

∂WB0

W · δ∗χ̇ dA. (19)

The time derivative of the internal energy �̇int, as it appears in Eq. (10), is the internal power

P int := �̇int (ϕ̇, χ̇ , α̇, τχ , wτ

)
. (20)

In the internal power, we include the strain energy densities of Eqs. (1–3), the constraints for the time rates
of the continuum rotation α̇ and the orientation mapping χ̇ and the two stress vectors wτ and τχ as Lagrange
multipliers. The internal power reads

P int :=
∫

B0

[
∂ψ

∂F
: Ḟ + ∂ψ

∂χ
· χ̇

]
dV +

∫

B0

τχ · [χ̇ + ε : χ ⊗ α̇] dV

+
∫

B0

wτ ·
[
1

2
ε : ḞF−1 + α̇

]
dV . (21)

The virtual internal power is obtained by calculating the variations with respect to the five fields ϕ̇, χ̇ , α̇,
τχ and wτ , considering that the time derivative of the deformation mapping ϕ̇ occurs in the internal power as
time derivative of the deformation gradient Ḟ := Grad [ϕ̇]

δ∗P int :=
∫

B0

∂ψ

∂F
: ∂F

∂ϕ
· δ∗ϕ̇ dV +

∫

B0

1

2
wτ · ε · F−T : ∂F

∂ϕ
· δ∗ϕ̇ dV

+
∫

B0

∂ψ

∂χ
· δ∗χ̇ dV +

∫

B0

τχ · δ∗χ̇ dV +
∫

B0

δ∗α̇ · (τχ × χ
)
dV

+
∫

B0

wτ · δ∗α̇ dV +
∫

B0

δ∗τχ · [χ̇ + χ × α̇] dV

+
∫

B0

δ∗wτ ·
[
1

2
ε : ḞF−1 + α̇

]
dV . (22)

By summarizing all variations from the virtual powers, we obtain five weak forms which are solved by a
monolithic approach. The deformation mapping is obtained from the weak balance of the linear momentum

∫ tn+1

tn

∫

B0

δ∗ϕ̇ · [
ṗ − ρ0B

]
dV dt +

∫ tn+1

tn

∫

B0

1

2
wτ · ε · F−T : ∂F

∂ϕ
· δ∗ϕ̇ dV dt
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+
∫ tn+1

tn

∫

B0

∂ψ

∂F
: ∂F

∂ϕ
· δ∗ϕ̇ dV dt −

∫ tn+1

tn

∫

∂TB0

δ∗ϕ̇ · T dA dt

−
∫ tn+1

tn

∫

∂ϕB0

δ∗ϕ̇ · R dA dt = 0 , (23)

whereas the orientation mapping χ is given by the weak balance of the orientational momentum

∫ tn+1

tn

∫

B0

δ∗χ̇ · [
ṗχ − ρ0Bχ

]
dV dt +

∫ tn+1

tn

∫

B0

∂ψ

∂χ
· δ∗χ̇ dV dt

+
∫ tn+1

tn

∫

B0

δ∗χ̇ · τχ dV dt −
∫ tn+1

tn

∫

∂WB0

δ∗χ̇ · W dA dt = 0. (24)

Theweak balance of the reorientation stress expresses the reorientation stress τχ as a function of the orientation
mapping χ and the stress vector wτ of Eq. (8)

∫ tn+1

tn

∫

B0

δ∗α̇ · [
τχ × χ + wτ

]
dV dt = 0. (25)

The weak continuum rotation
∫ tn+1

tn

∫

B0

δ∗wτ ·
[
α̇ + 1

2
ε : ḞF−1

]
dV dt = 0 (26)

and the weak balance of the orientation rate
∫ tn+1

tn

∫

B0

δ∗τχ · [χ̇ − α̇ × χ] dV dt = 0 (27)

correspond to the two constraints of Eqs. (6) and (7), respectively.

2.3 Balance laws

The weak forms of Eqs. (23–27) fulfill balance laws, which are obtained by using particular types of test
functions. By substituting the test function δ∗ϕ̇ = c = const. in the weak balance of the linear momentum,
we obtain

∫ tn+1

tn

∫

B0

ṗ · c dV dt = −
∫ tn+1

tn

∫

B0

1

2
wτ · ε · F−T : Grad[c] dV dt

−
∫ tn+1

tn

∫

B0

∂ψ

∂F
: Grad[c] dV dt

+
∫ tn+1

tn

∫

B0

ρ0B · c dV dt

+
∫ tn+1

tn

∫

∂TB0

T · c dA dt

+
∫ tn+1

tn

∫

∂ϕB0

R · c dA dt, (28)

where the derivative of the deformation gradient with respect to the deformation mapping occurring in Eq. (23)
can be expressed as

∂F
∂ϕ

· δ∗ϕ̇ = ∂Grad[ϕ]
∂ϕ

· δ∗ϕ̇ = Grad[δ∗ϕ̇] = Grad[c]. (29)
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Since the gradient of the constant term c is equal to zero, we determine the balance of the linear momentum
by canceling the constant c from the other integrals

L (tn+1) − L (tn) =
∫ tn+1

tn

∫

B0

ρ0B dV dt +
∫ tn+1

tn

∫

∂TB0

T dA dt

+
∫ tn+1

tn

∫

∂ϕB0

R dA dt. (30)

Analogously, we formulate the balance law of the orientational momentum by inserting the test function
δ∗χ̇ = c = const. in Eq. (24)

Ln (tn+1) − Ln (tn) =
∫ tn+1

tn

∫

B0

ρ0Bχ dV dt

+
∫ tn+1

tn

∫

∂WB0

W dA dt −
∫ tn+1

tn

∫

B0

[
τχ + ∂ψ

∂χ

]
dV dt. (31)

By summing up both balances fromEqs. (30–31), we obtain the following totalmomentumbalance depend-
ing on the external loads, the reorientation stress vector τχ and the partial derivative of the strain energy with
respect to the orientation mapping

L (tn+1) − L (tn) + Ln (tn+1) − Ln (tn)

= +
∫ tn+1

tn

∫

B0

ρ0B dV dt +
∫ tn+1

tn

∫

∂TB0

T dA dt

+
∫ tn+1

tn

∫

B0

ρ0Bχ dV dt +
∫ tn+1

tn

∫

∂WB0

W dA dt

+
∫ tn+1

tn

∫

∂ϕB0

R dA dt −
∫ tn+1

tn

∫

B0

[
τχ + ∂ψ

∂χ

]
dV dt. (32)

In order to determine the balance law for the moment of linear momentum, we insert the test functions
δ∗ϕ̇ = c× ϕ and δ∗α̇ = c in the weak forms of Eqs. (23) and (25), respectively, with c as constant term

J (tn+1) − J (tn) = −
∫ tn+1

tn

∫

B0

(
F × ∂ψ

∂F

)
dV dt

+
∫ tn+1

tn

∫

B0

(
χ × τχ

)
dV dt +

∫ tn+1

tn

∫

∂TB0

[ϕ × T ] dA dt

+
∫ tn+1

tn

∫

B0

[ϕ × ρ0B] dV dt +
∫ tn+1

tn

∫

∂ϕB0

[ϕ × R] dA dt. (33)

The balance law of the moment of orientational momentum results from employing the test function
δ∗χ̇ = c× χ in Eq. (24)

Jn (tn+1) − Jn (tn) = −
∫ tn+1

tn

∫

B0

(
χ × ∂ψ

∂χ

)
dV dt

−
∫ tn+1

tn

∫

B0

(
χ × τχ

)
dV dt +

∫ tn+1

tn

∫

B0

[
χ × ρ0Bχ

]
dV dt

+
∫ tn+1

tn

∫

∂WB0

[χ × W ] dA dt. (34)

The space-time integration of the cross-product between the orientationmapping and the reorientation stress
vector appears in both balance laws with opposite signs. Furthermore, based on the strain energy functions in
Eqs. (3–4), the following identity is valid:

∫ tn+1

tn

∫

B0

(
F × ∂ψ

∂F

)
dV dt = −

∫ tn+1

tn

∫

B0

(
χ × ∂ψ

∂χ

)
dV dt, (35)
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which is demonstrated in theAppendix. Consequently, by summing upEqs. (33–34)we obtain the totalmoment
of momentum, which is depending only on the external loads

J (tn+1) − J (tn) + Jn (tn+1) − Jn (tn) = +
∫ tn+1

tn

∫

∂ϕB0

[ϕ × R] dA dt

+
∫ tn+1

tn

∫

∂TB0

[ϕ × T ] dA dt +
∫ tn+1

tn

∫

∂WB0

[χ × W ] dA dt

+
∫ tn+1

tn

∫

B0

[
χ × ρ0Bχ

]
dV dt +

∫ tn+1

tn

∫

B0

[ϕ × ρ0B] dV dt. (36)

A further balance related to the orientation mapping results by inserting the test function δ∗τχ = χ in the
weak form of Eq. (27)

∫ tn+1

tn

∫

B0

χ · χ̇ = 0, (37)

since the cross-product of a vector with itself is equal to zero, i.e., α̇ · (χ × χ) = 0. It leads to a further aspect
of the reorientation process for the nematic director: given that Eq. (37) is valid, the two vectors χ and χ̇ are
perpendicular to each other and the nematic director is thus forced to rotate without undergoing any elongation
or shortening. The inextensibility of the nematic director is linked to its length, which must be equal to one;
therefore, we introduce the following weak balance of the reorientation function:

Cori (tn+1) − Cori (tn) =
∫ tn+1

tn

∫

B0

[‖χ‖2 − 1
]
dV dt. (38)

2.4 Space and time discretization

In order to implement our model, we discretize the five variables ϕ̇, α̇, χ̇ , wτ and τχ in the weak forms of
Eqs. (23–27) and the balance laws of Eqs. (30–31) and Eqs. (33–34) in space and time.

ϕ̇e = 1

hn

k+1∑
I=1

M ′
I (ξJ )

nn∑
A=1

NA (ζB)ϕeA
I (39)

α̇e = 1

hn

k+1∑
I=1

M ′
I (ξJ )

nn∑
A=1

NA (ζB)αeA
I (40)

χ̇e = 1

hn

k+1∑
I=1

M ′
I (ξJ )

nn∑
A=1

NA (ζB)χeA
I (41)

wτ
e =

k∑
I=1

M̃I (ξJ )

nn∑
A=1

NA (ζB) wτ
eA
I (42)

τχ
e =

k∑
I=1

M̃I (ξJ )

nn∑
A=1

NA (ζB) τχ
eA
I . (43)

Equations (39–43) show the time and space approximations of all variables for the eth finite element in
space with ϕeA

I , αeA
I , χeA

I , wτ
eA
I and τχ

eA
I as spatial and temporal nodal values. We used the same space

approximation with the shape function NA (ζB) and nn = 8 spatial Gauss points ζB with B = 1, . . . , 8 for all
variables, whereas we applied the continuous Galerkin method for the time discretization with k = 2 temporal
Gauss points ξJ with J = 1, 2 for all variables. The time discretization is carried out in different ways based
on the type of the single variable. For variables which are time derivative, such as ϕ̇, α̇ and χ̇ , we use Lagrange
polynomials M ′

I (ξJ ) of degree k, whereas variables which are Lagrange multipliers, such as wτ and τχ , are
approximated by Lagrange polynomials M̃I (ξJ ) of degree k−1. Approximated time derivative variables must
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be divided by the chosen time step size hn in Eqs. (39–41). The variables ϕ̇ and χ̇ occur in the weak forms
without time derivative, e.g., in the weak balance of the reorientation stress of Eq. (25) and the weak continuum
rotation of Eq. (26). In this case, the variables ϕ and χ are discretized as follows:

ϕe =
k+1∑
I=1

MI (ξJ )

nn∑
A=1

NA (ζB) ϕeA
I (44)

χe =
k+1∑
I=1

MI (ξJ )

nn∑
A=1

NA (ζB) χeA
I (45)

where MI (ξJ ) are Lagrange polynomials of degree k. Lagrange polynomials M̃I (ξJ ), MI (ξJ ) have been
reported in the work of Groß et al. [24] and the Lagrange polynomials M ′

I (ξJ ) are the time derivatives of the
Lagrange polynomialsMI (ξJ ). According to the continuous Galerkinmethod, all test functions δ∗ϕ̇, δ∗α̇, δ∗χ̇ ,
δ∗wτ and δ∗τχ must be discretized with Lagrange polynomials M̃I (ξJ ) of degree k − 1 as in Eqs. (42–43).
A complete and concise description of the continuous Galerkin method can be found in the work of Erler and
Groß [25]. Rules for time discretization must be of course strictly followed for the implementation of residuals
and tangents, and the corresponding discretized equations are not reported in this work for the sake of brevity,
but our approach has been partially described again in the work of Groß et al. [24].

3 Numerical results

We describe the results of the simulations on a LCE film. We consider the same geometry of LCE film for
all simulations as a film of size 0.0125 × 0.075 × 0.0003 m [20] with 1500 hexahedral elements (H1). A
quadrilateral element with drilling degrees of freedom could be considered as an alternative to the hexahedral
element (see, e.g., [26]), but we refrain from using plane finite elements, since we would like to include
three-dimensional motion in a future work. Moreover, we employ for all simulations a finite element method
and the continuous Galerkin method with a degree k = 2 for the Lagrange polynomial of the time shape
functions, which have been implemented in our in-house finite element software. For a detailed description on
the time discretization for fields having either a continuous time evolution or a discontinuous time evolution,
we refer to the work of Groß et al. [19]. The time step size is 0.0005s from 0 up to 0.1 s, which corresponds
to 200 time steps. We have considered the infinity norm of the global residual as convergence criterion, i.e.,
the highest value in the residuals of the weak forms from Eqs. (23–27) must be lower than the prescribed
tolerance of 10−8. We have taken into account the data reported from de Luca et al. [2] for the shear modulus
μ = 3.43 × 104 N/m2 and the ratio between polymer step lengths r = 1.88. Although these data are referred
to a temperature of 60 ◦C, in this work the temperature does not influence in any other way the mechanical
response of the LCE. We have taken the radius of gyration lχ = 28 × 10−10 m from the book of Warner and
Terentjev [1] in the direction parallel to the nematic director for the temperature of 60 ◦C. Since the radius of
gyration perpendicular to the nematic director is equal to 23 × 10−10 m, the difference between the two radii
of gyration in both directions is negligible. The density is ρ0 = 1760 kg/m3 [20] and the Poisson ratio is set
to ν = 0.49 in order to lend a quasi-incompressible behavior to the material.

3.1 LCE film under initial rotation

In the first simulation, the LCE film is subjected to an initial rotation ω0 = 25 rad/s about an axis parallel to
the z-axis (direction +ez), passing through the center of mass of the considered geometry, as shown in Fig. 3a,
b. In the reference configuration, the nematic director is oriented in the direction ey . Neither Dirichlet nor
Neumann boundary conditions are applied in this case; therefore, all momenta and moments of momenta (both
linear and orientational) must be conserved. In Fig. 3c, d, the distribution of the magnitude of the reorientation
stress vector on the LCE film surface is shown for the time step in the middle, i.e., t = 0.05 s and the final time
step, i.e., t = 0.1 s, along with only one nematic director every 20 nodes, whereas a single nematic director is
depicted every 40 nodes in figures representing the reference configuration for the sake of understandability. As
Lagrange multiplier of the constraint in Eq. (7), the reorientation stress vector corresponds to the stress which
makes the nematic director rotate about the direction describing the time rate of the continuum rotation and thus
impedes the nematic director from stretching. The nematic directors rotate uniformly keeping their orientation
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Fig. 3 Reference configuration with the nematic directors depicted as a single black arrow every 40 nodes and the initial rotation
vector depicted as double blue arrow in the plane x–y (a) and z–x (b), and distribution of the magnitude of the reorientation stress
vector with the nematic directors for t = 0.05 s (c) and t = 0.1 s (d) for a LCE film subject to the prescribed initial rotation
(color figure online)

with respect to the specimen. The magnitude of the reorientation stress vector increases from both ends of
the LCE film up to the end of the simulation, when a spot-like pattern for the magnitude of the reorientation
stress arises and the highest magnitude is finally reached over the whole specimen. Figure4a refers to the
total momentum in the left y-axis and the total moment of momentum in the right y-axis over time. The total
momentum in the current time step LT (tn+1) = L (tn+1)+Ln (tn+1) is given by the balance in Eq. (32) as a sum
between momenta in the previous time step L (tn) + Ln (tn) and the terms in the right-hand side of Eq. (32).
Analogously, the total moment of momentum in the current time step JT (tn+1) = J (tn+1) + Jn (tn+1) is
given by the balance in Eq. (36) as sum between the total moment of momentum in the previous time step
J (tn) + Jn (tn) and the terms in the right-hand side of Eq. (36). Figure4a shows that the total momentum
and total moment of momentum are conserved, as expected. In Fig. 4b, the orientational momentum and the
moment of orientational momentum are shown, given by the balances in Eqs. (31) and (34), respectively. The
orders of magnitude of the orientational momentum and its moment are much lower by comparison with
the total moment and total angular momentum, which includes also the linear momentum and its moment.
This is due to the orientational momentum pχ being determined by the square of the radius of gyration, as
shown in Eq. (15). The orientational momentum and the moment of orientational momentum are conserved
as well, but an abnormal trend can be observed by approaching the end of the numerical test. The sum of the
orientation stress vector with the partial derivative of the strain energy with respect to the orientation mapping
mainly affects the trends of the orientational momentum and its moment. The trend might be linked to energy
consistency issues, which have been not addressed in this work. Figure4c shows the error of the balances for the
linear momentum (Eq. (30)) and its moment (Eq. (33)), whereas Fig. 4d shows the error of the balances for the
orientational momentum (Eq. (31)) and its moment (Eq. (34)). All errors are lower than the prescribed tolerance
and all momentum balances are thus fulfilled. In Fig. 4d, each error exhibits a trend which is symmetrical to
the associated orientational momentum and its moment with respect to the x-axis. Since the error is given by
the left-hand side of Eq. (34) subtracted by its right-hand side and then divided by the prescribed tolerance,
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Fig. 4 Total momentum and total moment of momentum (a), orientational momentum and moment of orientational momentum
(b), error of the linear momentum balance and error of the moment of linear momentum balance (c), error of the orientational
momentum balance and error of the moment of orientational momentum balance (d) over time for a LCE film subject to the
prescribed initial rotation. In all plots, the left y-axis is referred to the momenta and the right y-axis to the moments of momentum

the terms have opposite signs. The orders of magnitude for the orientational momentum and its moment are
much lower than those of the correlated errors because the latter are divided by the tolerance of 10−8.

3.2 LCE film under volume load

The second representative simulation consists in the LCE film specimen being clamped in its left side as
Dirichlet boundary condition (See Fig. 5a). The Neumann boundary condition is a constant orientational
volume load over time equal to 0.1 m2/s2 in direction −ey . In the reference configuration, the nematic director
is oriented in direction ex . In Fig. 5c, d the distribution of the magnitude of the reorientation stress vector
and the nematic directors are shown for the same time steps as in the previous example. The rotation of the
nematic director is more pronounced by moving away from the clamping in the left end of the LCE film. The
greatest rotations of the nematic director occur noticeably at the right end of the specimen. The rotation of
the nematic directors is accompanied by the deformation of the embedding bulk elastomer. Figure6a displays
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Fig. 5 Reference configuration with the nematic directors depicted as a single black arrow every 40 nodes, clamping of the surface
highlighted in red as Dirichlet boundary condition and green arrows for representing the direction of the orientational volume
load as Neumann boundary condition (a). Distribution of the magnitude of the reorientation stress vector for t = 0.05 s (b) and
t = 0.1 s (c) for a LCE film undergoing the prescribed orientational volume load (color figure online)
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Fig. 6 Total momentum and total moment of momentum (a), orientational momentum and moment of orientational momentum
(b), error of the linear momentum balance and error of the moment of linear momentum balance (c), error of the orientational
momentum balance and error of the moment of orientational momentum balance (d) over time for a LCE film undergoing the
prescribed volume load. In all plots, the left y-axis is referred to the momenta and the right y-axis to the moments of momentum

the total momentum and total angular momentum over time. A decreasing trend for the momenta in the x-
and y-direction is observed along with the decrease in the angular momentum in the z-direction. The decrease
in the trends is due to the term associated with the reaction forces, the term L (tn) in Eq. (32) and the term
J (tn) in Eq. (36), since no other Neumann boundary condition is active, e.g., gravity. In all other directions,
the total momentum and total moment of momentum are constant. We notice an analogous response for the
orientational momentum and moment of orientational momentum in the same directions, although the trend
appears scattered with a significantly smaller order of magnitude. The balance laws for momenta and moments
of momentum are fulfilled, as shown in Fig. 6c, d. The increasing trend for the error of the moment of linear
momentum, which is noticeable in Fig. 6c, is related to the decreasing trend of the total moment of momentum
in Fig. 6a.
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Fig. 7 Reference configuration with the nematic directors depicted as a single black arrow every 40 nodes, clamping of the
surface highlighted in red on the LCE film as Dirichlet boundary condition and blue arrows for representing the direction of the
orientational surface load as Neumann boundary condition (a) Distribution of the magnitude of the reorientation stress vector for
t = 0.05 s (c) and t = 0.1 s (d) for a LCE film undergoing the prescribed orientational surface load (color figure online)



Principle of virtual power and drilling degrees of freedom for dynamic modeling 1997

Fig. 8 Total momentum and total moment of momentum (a), orientational momentum and moment of orientational momentum
(b), error of the linear momentum balance and error of the moment of linear momentum balance (c), error of the orientational
momentum balance and error of the moment of orientational momentum balance (d) over time for a LCE film undergoing the
prescribed surface load. In all plots, the left y-axis is referred to the momenta and the right y-axis to the moments of momentum

Fig. 9 Error of the reorientation function over time
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3.3 LCE film under surface load

As third example,we consider the same specimen ofLCEfilmbeing clamped in its left sidewith an orientational
surface load acting upon the very thin surface in the right end of the specimen. The orientational surface load
is 3 × 10−7 Nm−1 in direction −ey . We do not impose any other Neumann boundary condition. The nematic
director in the reference configuration is oriented in direction ex in this case too. The Dirichlet boundary
condition is shown in Fig. 7a, which is the same as considered for the LCE film under orientational volume
load. In Fig. 7a, the blue arrows refer to the direction of the orientational surface load. Figure7b, c depicts
the reorientation stress distribution and the nematic directors for the two considered time steps. The response
of the LCE film to the orientational surface load is similar to the one observed for the orientational volume
load, but the rotation of the nematic director is much lower and the highest magnitude of the reorientation
stress vector is detected near the narrow area subjected to the Neumann boundary condition. Accordingly, the
resulting deformation of the LCE film is significantly lower as compared to the deformation of the LCE film
subjected to an orientational volume load (cf. Figs. 5c, 7c). Concerning the total momentum and total moment
of momentum of Fig. 8a, we observe a remarkable decrease in the y-direction of the total momentum and
the z-direction of the moment of momentum. Such trends are influenced in the same way as the LCE film
under the orientational volume load. In Fig. 8b, the trends of the orientational momentum and the moment of
orientational momentum appear concentrated because the orientational surface load acts only in a restricted
region of the specimen. Figure8c, d shows that the balance laws for momenta and moments of momentum are
fulfilled.

For all representative simulations, the balance law of the reorientation function of Eq. (38) has been proven
as well. The error of the reorientation function over time is shown in Fig. 9 for the case of the LCE film under
initial rotation, but all presented loading cases exhibit an identical response for this error.

4 Conclusion

The goal of our work was the modeling of the reorientation process of mesogens in a LCE film under dynamic
loads or free motion. For this reason, we considered a continuum model with two separate mappings for
describing the deformation and the nematic director, where the latter represents the unique direction of the
mesogens. The introduction of two separate mappings led to distinct formulations for the energy, consistently
with the work of Anderson et al. [18]. The reorientation of the nematic directors was accomplished through
the drilling degrees of freedom and the related Lagrange multipliers as independent variables, for the purpose
of ensuring the inextensibility of the nematic director. We simulated the response of a nematic LCE film
subjected to orientational volume load and surface load [18], as well as to free rotation. The weak forms and
the balance lawswere determined by using the principle of virtual power, and all presentedmomentumbalances
were preserved thanks to the usage of the continuous Galerkin method. This work lays the foundations for
the prediction of the motion actuation, which is the most remarkable characteristic of LCEs. Moreover, the
formulation could be improved by considering further variables, which were let out in this work, such as the
orientation gradient. A future work should also deal with the issue of energy consistency.
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Appendices A

In order to demonstrate the identity in Eq. (35), the following rule for the cross-product between second-order
tensors must be introduced [19]

A × B := ε :
[
ABT

]
. (A1)

In the elastic strain energy density, only the deformation gradient appears and hence only the left-hand side of
Eq. (35) is involved. In this case, the cross-product between the deformation gradient and the derivative of all
Neo-Hookean terms must be zero, in order to fulfill the identity in Eq. (35), as shown in Eqs. (A2)–(A7)))

F × ∂ [c1 (I : C − 3)]

∂F
= 2c1F × F = 2c1ε :

(
FFT

)
= 0 (A2)

F × ∂
[−c1 (2 log (J ))

]

∂F
= −2c1F × det[F]F−T

det[F] = −2c1ε : (
FF−1) = 0 (A3)

F ×
∂

[
λ

2

[
log (J )

]2]

∂F
= 2

λ

2
F × log (det[F])

det[F] det[F]F−T (A4)

= λ log (det[F]) ε : (
FF−1) = 0

F ×
∂

[
λ

2
(J − 1)2

]

∂F
= 2

λ

2
F × [det[F] − 1] det[F]F−T (A5)

= λ [det[F] − 1] det[F]ε : (
FF−1) = 0

F × ∂ [c3n0 · Cn0]
∂F

= 2c3F × F (n0 ⊗ n0) (A6)

= 2c3ε :
[
F (n0 ⊗ n0)T · FT

]
= 0,

since the double axial vector of symmetric second-order tensors, such as FFT and F (n0 ⊗ n0)T FT , is equal
to zero.
We calculate the left-hand side of Eq. (35) also for the interactive energy as

F × ∂
[
c9‖FT nt‖2

]

∂F
= 2c9F × [(nt ⊗ nt ) F] (A7)

= 2c9ε :
[
FFT (nt ⊗ nt )T

]

and

F ×
∂

[
c10

(
n0 · FT nt

)2]

∂F
= 2c10F ×

[(
n0 · FT nt

)
(nt ⊗ n0)

]
(A8)

= 2c10F × [F : (nt ⊗ n0) (nt ⊗ n0)]
= 2c10 [F : (nt ⊗ n0)] ε : [F (n0 ⊗ nt )] .

In Eq. (A8), the left Cauchy–Green strain tensor B = FFT appears analogously to the free energy density
described by Conti et al. [21]

‖FT nt‖2 =
[(

FT nt
)

·
(
FT nt

)] 1
2 2 =

(
FFT

)
: (nt ⊗ nt ) . (A9)
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However, in Eq. (A8) the double contraction between the second-order tensors F and nt ⊗ n0 [23] gives back
a scalar, which is factored out from the cross-product. We calculate also the right-hand side of Eq. (35) for the
interactive energy density by substituting the orientation mapping nt = χ (n0, t) as the nematic director in
the current configuration

χ × ∂
[
c9‖FT nt‖2

]

∂χ
= 2c9nt ×

(
FFT nt

)
(A10)

= 2c9ε :
(
nt ⊗ FFT nt

)

= −2c9ε :
[
FFT (nt ⊗ nt )

]

χ ×
∂

[
c10

(
n0 · FT nt

)2]

∂χ
= 2c10nt ×

[(
n0 · FT nt

)
(Fn0)

]

= 2c10nt × [F : (nt ⊗ n0) (Fn0)]
= −2c10 [F : (nt ⊗ n0)] ε : [F (n0 ⊗ nt )] . (A11)

Equation (A11) is equal to Eqs. (A8) and Eq. (A10) is equal to Eq. (A7) with opposite signs and thus the identity
of Eq.35 has been proven.
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