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Abstract In this paper we formulate and solve the initial-boundary value problem of accreting circular cylin-
drical bars under finite extension. We assume that the bar grows by printing stress-free cylindrical layers on
its boundary cylinder while it is undergoing a time-dependent finite extension. Accretion induces eigenstrains,
and consequently residual stresses. We formulate the anelasticity problem by first constructing the natural
Riemannian metric of the growing bar. This metric explicitly depends on the history of deformation during the
accretion process. For a displacement-control loading during the accretion processwefind the exact distribution
of stresses. For a force-control loading, a nonlinear integral equation governs the kinematics. After unloading
there are, in general, a residual stretch and residual stresses. For different examples of loadings we numerically
find the axial stretch during loading, the residual stretch, and the residual stresses. We also calculate the stress
distribution, residual stretch, and residual stresses in the setting of linear accretion mechanics. The linear and
nonlinear solutions are numerically compared in a few accretion examples.

Keywords Accretion mechanics · Surface growth · Nonlinear elasticity · Residual stress · Universal
deformations · Geometric mechanics

1 Introduction

There are many examples of accretion (surface or boundary growth) in nature, e.g., the growth of biological
tissues and crystals, the build-up of volcanic and sedimentary rocks, of ice structures, the formation of planets,
etc., and in engineering applications, e.g., additive manufacturing (3D printing), metal solidification, the build-
up of concrete structures in successive layers, the deposition of thin films, and ice accretion on an aircraft
wing that leads to degradation of aerodynamic performance, etc. Accretion can be visualized in terms of
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the formation of non-Euclidean solids—a term that was coined by by Poincaré [29]—through a continuous
joining of infinitely many two-dimensional layers [47,48]. This is mathematically described by a foliation
of the material manifold [33]. The first theoretical study of accretion mechanics is due to Southwell [31].
One of the first problems that was solved in the setting of linear accretion mechanics is the problem of a
growing planet subject to self-gravity [6]. Metlov [24] proposed the first finite deformation theory of accretion
and introduced a time of attachment map. There are many more works in the literature of the mechanics of
accretion [1,2,4,5,10,11,13,16,18–22,28,32–34,36,37]. For a detailed literature review of the mechanics of
accretion see [25,32].

In nonlinear accretion mechanics one is interested in the state of deformation and stress of a body under-
going large deformations while new material is being added on part of its boundary. Accretion is a source of
anelasticity (in the sense of Eckart [12]), and hence, residual stresses. There are recent geometric formula-
tions that model the accretion-induced anelasticity by a Riemannian material manifold whose metric explicitly
depends on the history of deformation during accretion [32–34,45]. In this paper we consider symmetric
accretion of a finite solid circular cylinder made of an arbitrary incompressible isotropic solid. We construct
the material manifold of an accreting bar that is under a time-dependent finite extension and calculate its
stresses and deformation during accretion. We consider both displacement and force-control loadings during
accretion. Next, the residual stretch and residual stresses are calculated. Finally, the same analysis is repeated
in the setting of linearized accretion mechanics.

The examples discussed in this paper are motivated by problems encountered in additive manufacturing of
cylindrical-shaped samples under axial loads during accretion. Themethods introduced in the present paper for
accretion analysis provide theoretical insights for additive manufacturing applications. More specifically, in
additivemanufacturing controlling the residual stress field induced during layers deposition is crucial. It should
be noted that residual stresses can potentially affect the service integrity of additively-manufactured products
in different ways. For instance, residual tensile stresses can cause the corrosion onset and subsequent stress-
corrosive crack propagation in additively-manufactured metallic parts [26]. Tensile residual stresses can also
increase the pores size in 3D-printed samples [8] and have a detrimental effect on their fatigue life [17]. Several
techniques have been proposed to manage the residual stress development, prevention, and compensation in
additive manufacturing [7]. Some of such techniques are based on applying external mechanical forces during
accretion. Such forces can be locally applied e.g., the waves generated by laser shock peening to improve
the product quality of selective laser melting [17]. External forces can also be globally applied during layer
deposition, e.g., the bulk deformation using punch rolling techniques [8,35]. Application of such global forces
can provide significant benefits including reducing residual stresses and distortion, and improving the quality of
the additively-manufactured parts. The effect of bulk deformation on themitigation of distortion due tomaterial
shrinkage and residual stresses induced during an additivemanufacturing process has been a subject of research
in recent years. As an example, a computational model involving a pre-distortion of the design geometry based
on 3D optical scanningmeasurement data was implementedwith reported benefits on achievable compensation
of residual stresses in [3]. To our knowledge, in the literature there are no models that can predict the effects of
time-dependent bulk deformation treatments during accretion. Similar to pre-stretching treatments to reduce
the residual stresses deriving from quenching processes [46], application of external forces during an additive
manufacturing process affects the distribution of residual stresses. A quantitative understanding of such effects
is crucial in the design of additively manufactured structures.

This paper is organized as follows. In Sect. 2, we formulate and solve the initial-boundary-value problem of
accretion of a circular cylindrical bar under a time-dependent finite extension.We show that kinematics is fully
determined by the axial stretch function. We consider both displacement-control and force-control loadings.
Calculation of residual stresses is discussed in Sect. 2.1. The accretion analysis in the setting of linearized
accretion mechanics is presented in Sect. 2.2. For a few examples of force-control loadings during accretion
we compare the axial stretch calculated using the linear and nonlinear theories. Conclusions are given in Sect. 3.

2 Finite extension of an accreting circular cylindrical bar

In this section we formulate and solve the initial-boundary value problem of symmetric accretion of a circular
cylindrical bar made of an incompressible1 isotropic hyperelastic solid that is undergoing a time-dependent
finite extension while stress-free cylindrical layers are added to its boundary cylinder (see Fig. 1).

1 The accretion formulation presented in this paper is not restricted to incompressible solids. However, incompressibility
simplifies the kinematics.
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Kinematics and the material metric. Let us consider a circular cylindrical bar with initial length L and radius
R0 that is made of a homogeneous isotropic and incompressible material (I3 = 1) with an energy function
W = W (I1, I2), where I1, I2, I3 are the principal invariants of the right (or left) Cauchy-Green tensors [27].We
use the cylindrical coordinates (R, �, Z) and (r, θ, z) in the reference and current configurations, respectively.
The metrics of the reference and current configurations of the initial body (0 ≤ R ≤ R0) have the following
representations

G =
⎡
⎣
1 0 0
0 R2 0
0 0 1

⎤
⎦ , g =

⎡
⎣
1 0 0
0 r2 0
0 0 1

⎤
⎦ . (2.1)

Let us consider a time-dependent extension of the circular cylindrical bar such that it is slow enough for the
inertial effects to be negligible. Finite extensions of a circular cylindrical bar are represented by the following
family of maps:2

r = r(R, t) , θ = � , z = λ2(t)Z , t ∈ [0, ta] , (2.2)

where λ2(t) is the axial stretch.3 We can assume that this is a displacement-control loading for which λ(t) is
given. Alternatively, one can assume that the applied axial force is given and in that case λ(t) is an unknown
function to be determined. The deformation gradient reads

F = F(R, t) =
⎡
⎣
r ′(R, t) 0 0

0 1 0
0 0 λ2(t)

⎤
⎦ , (2.3)

where r ′(R, t) = ∂r(R,t)
∂R . The deformation tensors c� and b� (the Finger deformation tensor) are defined as

c� = ϕ∗G , cab = (
F−1)A

a
(
F−1)B

b GAB ,

b� = ϕ∗G� , bab = Fa
A Fb

B GAB .
(2.4)

Notice that bac ccb = bam cmb = δab , i.e., b = c−1.
The incompressibility condition is written as

J =
√

det g
detG

det F = r(R, t)

R
r ′(R, t) λ2(t) = 1 . (2.5)

This condition, together with r(0, t) = 0, gives us

r(R, t) = R

λ(t)
, 0 ≤ R ≤ R0 . (2.6)

We assume that while the cylindrical bar is under the time-dependent deformation (2.2) cylindrical layers
of stress-free material are printed continuously on its boundary (see Fig. 1). The growth velocity is assumed to
be normal to the boundary in the current configuration and has magnitude ug(t). This means that in the time
interval [t, t +dt] a stress-free circular cylindrical shell of thickness ug(t) dt is attached to the deformed body
(see Fig. 2). We also assume that this accretion process is continuous in the time interval t ∈ [0, ta]. Let us
assign a time of attachment τ(R) to the layer with the radial coordinate R in the reference configuration. For
0 ≤ R ≤ R0, τ(R) = 0. We assume that there is no ablation during the accretion process, and hence τ(R)
is invertible for R > R0. Its inverse is denoted by s = τ−1 and assigns to the time t the radial coordinate
of the accreted cylinder in the reference configurations. The growth surfaces in the reference and the current
configuration are defined as

�t = {(s(t), �, Z) : 0 ≤ � < 2π , 0 ≤ Z ≤ L} ,

ωt = {
(r(s(t), t), � + τ(t)Z , λ2(t)Z) : 0 ≤ � < 2π , 0 ≤ Z ≤ L

}
.

(2.7)

2 The set of finite extensions of circular cylindrical bars is a subset of Family 3 deformations that are universal for incompressible
isotropic solids [14]. They are universal for certain inhomogeneous and anisotropic bars as well [38,42,43]. In this paper, we
restrict our calculations to isotropic and homogeneous bars. However, our analysis can be extended to certain inhomogeneous
and anisotropic bars.

3 We assume that maximum of λ(t) for t ∈ [0, ta] is small enough such that radial deformations are the only possible
deformations, i.e., we are not considering instabilities either during loading or unloading.
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λ̃

λ(0) = 1

F (t), λ(t)

t ≥ tat = 0

(a) (b)

Fig. 1 a An accreting circular cylindrical bar undergoing finite extensions. b The initial bar, the accreting bar at time t , and the
residually-stressed accreted bar after the completion of accretion and removal of the external forces

Note that
d

dt
r(s(t), t) = ∂r

∂R
(s(t), t)ṡ(t) + ∂r

∂t
(s(t), t) = r ′(s(t), t) Ug(t) + Vr (s(t), t), (2.8)

where Ug(t) = ṡ(t), and Vr = ∂r
∂t is the radial component of the material velocity on the growth surface. In

the absence of accretion, the spatial velocity of the material points lying on the boundary is Vr (s(t), t), and
this implies that

ug(t) = r ′(s(t), t)Ug(t) . (2.9)

Following [32], we choose Ug(t) = ug(t). Sozio and Yavari [32] showed that other choices for Ug(t) result
in isometric material metrics (see also [45]). In other words, this choice will not affect the calculation of
deformation and stresses. From (2.9), the choice Ug(t) = ug(t) imposes the following constraint on r(R, t):

r ′(s(t), t) = 1 , or r ′(R, τ (R)) = 1 . (2.10)

We also have s(t) = R0 + ∫ t
0 ug(ξ)dξ . In order to simplify the calculations, let us assume that the spatial

growth velocity is constant, i.e., ug(t) = u0 > 0. However, our formulation is not restricted to this choice.
Thus

s(t) = R0 + u0t , or τ(R) = R − R0

u0
. (2.11)

The constraint (2.10) is simplified to read

r ′(R0 + u0t, t) = 1 , or r ′(R,
R − R0

u0

)
= 1 . (2.12)

For the initial body (0 ≤ R ≤ R0), the material metric has the representation (2.1)1. For the secondary
body (R0 ≤ R ≤ s(t)), we assume that the accreted cylindrical layer at any instant of time t is stress-free. This
implies that the material metric at R = s(t) is the pull-back of the metric of the (Euclidean) ambient space,
i.e.,

G(s(t)) = ϕ∗
t g(r(s(t), t)) , or G(R) = ϕ∗

τ(R) g(r(R, τ (R))). (2.13)

In components, GAB(s(t)) = GAB(R) = Fa
A(R, τ (R)) Fb

B(R, τ (R)) gab(r(R, τ (R))). Therefore
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Fig. 2 Cross section of a circular cylindrical bar undergoing symmetric accretion and finite extension simultaneously. a The
material manifold (B,G). The radial coordinate of the accreting bar at time t is s(t). At a later time t + dt the radial coordinate
changes to s(t) + Ug(t) dt . b The deformed bar under finite extension with a layer of stress-feee material of thickness ug(t) dt
joining its boundary during the time interval [t, t +dt]. c The residually-stressed accreted bar after the removal of external forces

G(R) =
⎡
⎣
r ′2(R, τ (R)) 0 0

0 r2(R, τ (R)) 0
0 0 λ4(τ (R))

⎤
⎦ =

⎡
⎣
1 0 0
0 r2(R, τ (R)) 0
0 0 λ4(τ (R))

⎤
⎦ , (2.14)

where use was made of (2.10), and τ(R) is given in (2.11)2.
For this accretion problem, the material manifold is an evolving Riemannian manifold (Bt ,G), where

Bt = {(R, �, Z) : 0 ≤ � < 2π , R0 ≤ R ≤ s(t) = R0 + u0t , 0 ≤ Z ≤ L} , (2.15)

and

0 ≤ R ≤ R0 : G =
⎡
⎣
1 0 0
0 R2 0
0 0 1

⎤
⎦ ,

R0 ≤ R ≤ R0 + u0t : G =
⎡
⎣
1 0 0
0 r̄2(R) 0
0 0 λ4(τ (R))

⎤
⎦ , r̄(R) := r(R, τ (R)) = r

(
R,

R − R0

u0

)
.

(2.16)

Remark 2.1 The Riemman curvature tensor in a local coordinate chart {X A} for the material manifold (B,G)
has the following components

RA
BCD = ∂�A

BD

∂XC
− ∂�A

BC

∂XD
+ �A

CE�E
BD − �A

DE�E
BC , (2.17)

where the Christoffel symbols are defined as

�A
BC = 1

2
GAK (

GK B,C + GKC,B − GBC,K
)

. (2.18)

The Ricci curvature R is a symmetric second-order tensor that is defined as RCD = RA
CAD . In dimension

three, the Ricci curvature completely determines the Riemann curvature of the metric. For 0 ≤ R ≤ R0,
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R = 0, while for R0 ≤ R ≤ R0 + u0t it is diagonal with the following components:4

RRR(R, t) = − r̄ ′′(R)

r̄(R)
− 2

λ(τ(R)) λ′′(τ (R)) + λ′2(τ (R))

u20 λ2(τ (R))
,

R��(R, t) = r̄(R)

[
−r̄ ′′(R) − 2

r̄ ′(R) λ′(τ (R))

u0 λ(τ(R))

]
,

RZ Z (R, t) = −2λ2(τ (R))
λ(τ (R))

[
u0 r̄ ′(R) λ′(τ (R)) + r̄(R) λ′′(τ (R))

] + r̄(R) λ′2(τ (R))

u20 r̄(R)
.

(2.19)

Notice that Ricci curvature does not vanish, in general. This implies that the material metric is, in general,
non-flat, and hence, the presence of residual stresses. In other words, we expect the accreted bar to be residually
stressed after the completion of the accretion process and removal of the applied forces.

The incompressibility constraint for R ≥ R0 is written as

J =
√

det g
detG

det F = r(R, t)

r(R, τ (R)) λ2(τ (R))
r ′(R, t) λ2(t) = 1 . (2.20)

Thus

r(R, t) r ′(R, t) = r̄(R)
λ2(τ (R))

λ2(t)
. (2.21)

Hence

r2(R, t) = R2
0

λ2(t)
+ 2

λ2(t)

∫ R

R0

r̄(ξ) λ2(τ (ξ)) dξ, R0 ≤ R ≤ R0 + u0t , (2.22)

where use was made of (2.6). Thus

λ2(t) r2(R, t) = R2
0 + 2

∫ R

R0

r̄(ξ) λ2(τ (ξ)) dξ . (2.23)

The right-hand side is time independent, and hence, λ2(t) r2(R, t) is independent of time. In particular,
λ2(t) r2(R, t) = λ2(τ (R)) r2(R, τ (R)), and therefore

r(R, t) = λ(τ(R))

λ(t)
r̄(R) . (2.24)

The constraint (2.10) gives the following ordinary differential equation (ODE) for the unknown function r̄(R):

r̄ ′(R) + λ′(τ (R) τ ′(R))

λ(τ (R))
r̄(R) = 1 , (2.25)

which has the following solution:

r̄(R) = 1

λ(τ(R))

[
R0 +

∫ R

R0

λ(τ(ξ)) dξ

]
. (2.26)

Therefore

r(R, t) = 1

λ(t)

[
R0 +

∫ R

R0

λ(τ(ξ)) dξ

]
. (2.27)

It is observed that the function λ(t) completely determines the kinematics.

4 All the symbolic computations in this paper were performed usingMathematica Version 12.3.0.0, Wolfram Research, Cham-
paign, IL.
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Fig. 3 Radial deformation distribution during the accretion process at four different instances of time for the displacement-control
loading λ(t) = 1 + sin2

( 2π t
ta

)

Example 2.2 Let us consider the special case of λ(t) = 1, i.e., accretion with no extension. From (2.6), for
0 ≤ R ≤ R0, r(R, t) = R. For R ≥ R0, from (2.27) we have r(R, t) = R0 + ∫ R

R0
dξ = R. In particular,

r̄(R) = r(R, τ (R)) = R. Therefore, from (2.16) for 0 ≤ R ≤ R0 + u0t

G =
⎡
⎣
1 0 0
0 R2 0
0 0 1

⎤
⎦ , (2.28)

i.e., the material metric is Euclidean, and hence, as expected accretion in the absence of external stretch induces
no residual stresses.

Example 2.3 Let us assume that Ra = 2R0, u0 = 1, and ta = 1, and consider a displacement-control loading
λ(t) = 1 + sin2

( 2π t
ta

)
. In Fig. 3 the distributions of radial deformation r(R, t) for four instances of time are

shown.

Stresses and equilibrium equations.Next we calculate the stresses in the accreting bar. The principal invariants
are defined as I1 = tr b = baa = bab gab, I2 = 1

2

(
I 21 − tr b2

) 1
2

(
I 21 − bab bba

) = 1
2

(
I 21 − babbcd gac gbd

)
,

and I3 = det b [27]. For 0 ≤ R ≤ R0:

b�(R, t) =
⎡
⎢⎣

1
λ2(t)

0 0

0 1
R2 0

0 0 λ4(t)

⎤
⎥⎦ , c�(R, t) =

⎡
⎢⎣

λ2(t) 0 0

0 λ4(t)
R2 0

0 0 1
λ4(t)

⎤
⎥⎦ . (2.29)

The principal invariants of b read

I1(R, t) = 2 + λ6(t)

λ2(t)
, I2(R, t) = 1 + 2λ6(t)

λ4(t)
. (2.30)
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Recall that the Cauchy stress for an incompressible isotropic solid has the following representation [9,30]

σ = −p g� + 2W1 b� − 2W2 c� , σ ab = −p gab + 2W1 b
ab − 2W2 c

ab , (2.31)

where p is the Lagrange multiplier associated with the incompressibility constraint J = √
I3 = 1, and

Wi = ∂W
∂ Ii

, i = 1, 2. The deformation tensors c� and b� are given in (2.4). Thus, the nonzero components of
the Cauchy stress are

σ rr (R, �, Z , t) = −p(R, �, Z , t) + α(R, t)

λ2(t)
− β(R, t) λ2(t) ,

σ θθ (R, �, Z , t) = − p(R, �, Z , t) λ2(t)

R2 + α(R, t)

R2 − β(R, t) λ4(t)

R2 ,

σ zz(R, �, Z , t) = −p(R, �, Z , t) + α(R, t) λ4(t) − β(R, t)

λ4(t)
,

(2.32)

where α = 2W1 and β = 2W2. Using the circumferential and axial equilibrium equations one concludes that
p = p(R, t). The radial equilibrium equation reads

∂σ rr

∂r
+ 1

r
σ rr − rσθθ = 0 . (2.33)

This can be rewritten in terms of the referential coordinates as ∂σ rr

∂R = 0. Thus, σ rr (R, t) = σ0(t). This implies
that for the initial body one has

−p(R, t) = σ0(t) − α(R, t)

λ4(t)
+ β(R, t) λ4(t) . (2.34)

For R0 ≤ R ≤ R0 + u0t :

b�(R, t) =

⎡
⎢⎢⎣

λ2(τ )

λ2(t)
0 0

0 1
r̄2(R)

0

0 0 λ4(t)
λ4(τ )

⎤
⎥⎥⎦ , c�(R, t) =

⎡
⎢⎢⎣

λ2(t)
λ2(τ )

0 0

0 1
r2(R,τ )

λ4(t)
λ4(τ )

0

0 0 λ4(τ )

λ4(t)

⎤
⎥⎥⎦ . (2.35)

The principal invariants of b read

I1(R, t) = 2
λ2(τ )

λ2(t)
+ λ4(t)

λ4(τ )
, I2(R, t) = 2

λ2(t)

λ2(τ )
+ λ4(τ )

λ4(t)
. (2.36)

The non-zero components of the Cauchy stress read

σ rr (R, t) = −p(R, t) + α(R, t)
λ2(τ )

λ2(t)
− β(R, t)

λ2(t)

λ2(τ (R))
,

σ θθ (R, t) = −p(R, t)
λ2(t)

λ2(τ (R)) r̄2(R)
+ α(R, t)

1

r̄2(R)
− β(R, t)

λ4(t)

λ4(τ (R)) r̄2(R)
,

σ zz(R, t) = −p(R, t) + α(R, t)
λ4(t)

λ4(τ (R))
− β(R, t)

λ4(τ (R))

λ4(t)
.

(2.37)

The equilibrium equation reads ∂σ rr (R,t)
∂R = 0. Thus, σ rr (R, t) = σ0(t). This implies that

−p(R, t) = σ0(t) − α(R, t)
λ2(τ (R))

λ2(t)
+ β(R, t)

λ2(t)

λ2(τ (R))
. (2.38)

Thus, on the growth surface, one has −p(s(t), t) = σ0(t) − α(s(t), t) + β(s(t), t). Hence

σ (s(t), t) = [−p(s(t), t) + α(s(t), t) − β(s(t), t)]

⎡
⎣
1 0 0
0 1

r̄2(R)
0

0 0 1

⎤
⎦ . (2.39)
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We know that σ (s(t), t) = 0,5 and hence−p(s(t), t)+α(s(t), t)−β(s(t), t) = 0. This implies that, σ0(t) = 0,
and thus

−p(R, t) = −α(R, t)
λ2(τ (R))

λ2(t)
+ β(R, t)

λ2(t)

λ2(τ (R))
. (2.40)

Using (2.34) (with σ0(t) = 0) and (2.40) one observes that the radial and circumferential (hoop) stresses
identically vanish and the only non-zero component of the Cauchy stress has the following distribution

σ zz(R, t) =

⎧⎪⎪⎨
⎪⎪⎩

λ6(t)−1
λ4(t)

[
α(R, t) λ2(t) + β(R, t)

]
, 0 ≤ R ≤ R0 ,

λ6(t)−λ6(τ (R))

λ4(τ (R)) λ4(t)

[
α(R, t) λ2(t) + β(R, t) λ2(τ (R))

]
, R0 ≤ R ≤ s(t) .

(2.41)

Remark 2.4 In anelasticity finite eigenstrains are modeled by the Riemannian metric of the material manifold
[39,40]. Universal eigenstrains for elastically incompressible isotropic solids were studied by Goodbrake et al.
[15]. They first observed that the known universal deformations of incompressible isotropic solids are invariant
under certain Lie subgroups of the special Euclidean group. For each known family of universal deformations,
they assumed that the universal eigenstrain distributions, and consequently the correspondingmaterial metrics,
are invariant under the same Lie groups. For accreting circular cylindrical bars we assumed the deformation
(2.2). Within the initial body (0 ≤ R ≤ R0) this is a subset of Family 3 deformations. For the secondary
body (R0 ≤ R ≤ s(t)), the radial deformation has the form (2.27). We have shown that the following pair of
deformations and eigenstrains are universal.6

G =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎣
1 0 0
0 R2 0
0 0 1

⎤
⎦ , 0 ≤ R ≤ R0 ,

⎡
⎣
1 0 0
0 r̄2(R) 0
0 0 λ4(τ (R))

⎤
⎦ , R0 ≤ R ≤ s(t) ,

r =

⎧⎪⎪⎨
⎪⎪⎩

R

λ(t)
, 0 ≤ R ≤ R0 ,

1

λ(t)

[
R0 +

∫ R

R0

λ(τ(ξ)) dξ

]
, R0 ≤ R ≤ s(t)

, θ = � , z = λ2(t)Z .

(2.42)

At the two ends of the bar (Z = 0, L), the axial force required to maintain the deformation is calculated as

F(t) = 2π
∫ s(t)

0
PzZ (R, t)R dR , (2.43)

where PzZ is the zZ -component of the first Piola-Kirchhoff stress, which has the following distribution

PzZ (R, t) =

⎧⎪⎪⎨
⎪⎪⎩

λ6(t)−1
λ6(t)

[
α(R, t) λ2(t) + β(R, t)

]
, 0 ≤ R ≤ R0 ,

λ6(t)−λ6(τ (R))

λ4(τ (R)) λ6(t)

[
α(R, t) λ2(t) + β(R, t) λ2(τ (R))

]
, R0 ≤ R ≤ s(t) .

(2.44)

5 Note that on the growth surface the entire Cauchy stress is known as the new material added to the boundary in the current
configuration is stress-free.

6 For definition of universal eigenstrains see [41]. See also [45] for another class of universal deformations and eigenstrains in
the case of an accreting circular cylindrical bar under finite torsion.



1062 A. Yavari et al.

R

R0

R

R0

R

R0

R

R0

t = 0.25 ta

t = ta

t = 0.50 ta

t = 0.75 ta

σzz(R, t)
μ0

σzz(R, t)
μ0

σzz(R, t)
μ0

σzz(R, t)
μ0

0.2 0.4 0.6 0.8 1.0 1.2

0.02

0.04

0.06

0.08

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.6

0.8

0.5 1.0 1.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.5 1.0 1.5 2.0

5

10

15

Fig. 4 Axial stress distribution during the accretion process at four different instances of time for the displacement-control loading
λ(t) = 1 + ( t

ta

)3

Example 2.5 For neo-Hookean solids α(R) = μ(R) > 0 and β(R) = 0. Let us also assume a uniform shear
modulus μ(R) = μ0. Thus

σ zz(R, t) =

⎧⎪⎪⎨
⎪⎪⎩

μ0
λ6(t)−1
λ2(t)

, 0 ≤ R ≤ R0 ,

μ0
λ6(t)−λ6(τ (R))

λ4(τ (R)) λ2(t)
, R0 ≤ R ≤ s(t) ,

(2.45)

and

PzZ (R, t) =

⎧⎪⎪⎨
⎪⎪⎩

μ0
λ6(t)−1
λ4(t)

, 0 ≤ R ≤ R0 ,

μ0
λ6(t)−λ6(τ (R))

λ4(τ (R)) λ4(t)
, R0 ≤ R ≤ s(t) .

(2.46)

We assume that Ra = 2R0, u0 = 1, and ta = 1. In Fig. 4, for the displacement-control loading λ(t) = 1+( t
ta

)3,
we show the distribution of the axial stress for four instances of time during the accretion process.

From (2.43), the axial force is calculated as

F(t) = πμ0R
2
0

λ6(t) − 1

λ4(t)
+ 2πμ0

∫ R0+u0t

R0

R

[
λ2(t)

λ4(τ (R))
− λ2(τ (R))

λ4(t)

]
dR . (2.47)

If F(t) is given, the nonlinear integral equation (2.47) needs to be solved numerically to find λ(t). In order
to numerically solve this integral equation using Mathematica we first transform it to a system of first-order
ODEs. Let us define

h1(t) =
∫ s(t)

R0

R λ−4(τ (R)) dR , h2(t) =
∫ s(t)

R0

R λ2(τ (R)) dR . (2.48)
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Fig. 5 λ2(t) distribution for eight different loadings during accretion

Note that h1(0) = h2(0) = 0. Now the nonlinear integral equation (2.47) can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h′
1(t) = u0 s(t) λ−4(t) ,

h′
2(t) = u0 s(t) λ2(t) ,

λ2(t) − λ−4(t) + 2

R2
0

[
h1(t) λ2(t) − h2(t) λ−4(t)

] = f (t) ,

h1(0) = h2(0) = 0 , λ(0) = 1 .

(2.49)

Example 2.6 We consider the following applied forces:

F±
1 (t) = ±μ0 πR2

0 sin
(2π t

ta

)
,

F±
2 (t) = ±μ0 πR2

0 sin
(4π t

ta

)
,

F±
3 (t) = ±μ0 πR2

0 sin2
(2π t

ta

)
,

F±
4 (t) = ±μ0 πR2

0 sin2
(4π t

ta

)
.

(2.50)

We assume that Ra = 2R0, u0 = 1, and ta = 1. The corresponding λ2(t) are shown in Fig. 5.
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2.1 Residual stresses

We assume that the accretion process starts at time t = 0 and ends at time t = ta . For any t > ta , if the body
is unloaded, i.e., λ(t) = 1 (or equivalently F(t) = 0), the accreted bar may be residually stressed. Residual
stresses depend on the growth velocity and the history of deformation in the interval [0, ta]. Thematerial metric
of the accreted bar has the following representation

0 ≤ R ≤ R0 : G =
⎡
⎣
1 0 0
0 R2 0
0 0 1

⎤
⎦ ,

R0 ≤ R ≤ Ra : G =
⎡
⎣
1 0 0
0 r̄2(R) 0
0 0 λ4(τ (R))

⎤
⎦ ,

(2.51)

where Ra = s(ta). Let us denote the mapping from the material manifold to the residually-stressed configu-
ration by ϕ̃ : B → S, where in cylindrical coordinates: ϕ̃(R, �, Z) = (r̃ , θ̃ , z̃) = (r̃(R), �, λ̃2Z), and λ̃2 is
the residual stretch (see Figs. 1 and 2). Incompressibility implies that

r̃(R) = R

λ̃
, 0 ≤ R ≤ R0 ,

r̃2(R) = R2
0

λ̃2
+ 2

λ̃2

∫ R

R0

r̄(ξ) λ2(τ (ξ)) dξ , R0 ≤ R ≤ Ra .

(2.52)

For the deformation mapping ϕ̃ the principal invariants read

I1(R) = 2 + λ̃6

λ̃2
, I2(R) = 1 + 2λ̃6

λ̃4
, R1 ≤ R ≤ R0,

I1(R) = 2
λ2(τ )

λ2(t)
+ λ4(t)

λ4(τ )
, I2(R) = 2

λ̃2

λ2(τ (R))
+ λ4(τ (R))

λ̃4
, R0 ≤ R ≤ Ra .

(2.53)

The radial and circumferential stress components are identically zero everywhere and hence the boundary
condition σ̃ rr (Ra) = 0 is trivially satisfied. The axial stress component has the following distribution

σ̃ zz(R, t) =

⎧⎪⎪⎨
⎪⎪⎩

λ̃6−1
λ̃4

[
α(R) λ̃2 + β(R)

]
, 0 ≤ R ≤ R0 ,

λ̃6−λ6(τ (R))

λ4(τ (R)) λ̃4

[
α(R) λ̃2 + β(R) λ2(τ (R))

]
, R0 ≤ R ≤ Ra .

(2.54)

Similarly, the axial component of the first Piola-Kirchhoff stress has the distribution

P̃ zZ (R, t) =

⎧⎪⎪⎨
⎪⎪⎩

λ̃6−1
λ̃6

[
α(R) λ̃2 + β(R)

]
, 0 ≤ R ≤ R0 ,

λ̃6−λ6(τ (R))

λ4(τ (R)) λ̃6

[
α(R) λ̃2 + β(R) λ2(τ (R))

]
, R0 ≤ R ≤ s(t) .

(2.55)

The unknown residual stretch is calculated using the condition F = 0.

Example 2.7 For a homogeneous neo-Hookean bar α(R) = μ0 > 0 and β(R) = 0. Thus

σ̃ zz(R, t) =

⎧⎪⎪⎨
⎪⎪⎩

μ0
λ̃6−1
λ̃2

, 0 ≤ R ≤ R0 ,

μ0

[
λ̃4

λ4(τ (R))
− λ2(τ (R))

λ̃2

]
, R0 ≤ R ≤ Ra ,

(2.56)

and P̃ zZ (R, t) = σ̃ zz(R,t)
λ̃2

. The condition F = 0 is simplified to read

λ̃6 + 2

R2
0 λ̃4

∫ Ra

R0

R

[
λ̃2

λ4(τ (R))
− λ2(τ (R))

λ̃4

]
dR = 1 . (2.57)
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Table 1 Residual stretch for different displacement-control loadings

m = 1
3 m = 1

2 m = 1 m = 2 m = 3

λ(t) = 1 + ( t
ta

)m 1.20089 1.19249 1.17085 1.13907 1.11709

λ(t) = 1 − 1
2

( t
ta

)m 0.593063 0.623043 0.686102 0.758822 0.802297

In the first row stretch varies from 1.0 to 2.0 in the time interval [0, ta]. In the second row it varies from 1.0 to 0.5 in the time
interval [0, ta]
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R
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( t

ta
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t

ta

λ(t) = 1 − 1
2

( t
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)3
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2 ta
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Fig. 6 Axial residual stress distribution for different displacement-control loadings during the accretion process

Let us assume that Ra = 2R0. Thus tau0 = R0. We also assume that u0 = 1.0, and consider two displacement-
control loadings during the accretion process: (i) λ(t) = 1 + ( t

ta

)m , m > 0. In this loading the stretch

monotonically increases from 1.0 to 2.0 in the interval [0, ta]. (ii) λ(t) = 1 − 1
2

( t
ta

)m , m > 0. In this loading
the stretch monotonically decreases from 1.0 to 0.5 in the interval [0, ta]. In Table 1 we show the residual
stretches for five different values of m for the two loadings. In Fig. 6, the residual axial stress distribution for
four different displacement-control loadings during the accretion process are shown.

2.2 Linearized accretion mechanics

Linearized kinematics. Next we linearize the governing equations of the nonlinear accretion theory and find
those of the linearized accretion mechanics. We assume that linearization is with respect to an undeformed
stress-free configuration of the bar. More precisely, let us consider a reference motion ϕ̊t , and a one-parameter
family of motions ϕt,ε such that ϕt,0 = ϕ̊t [23,32,44]. For the finite extension of a bar we consider the one-
parameter family of motions ϕε(R, �, Z , t) = (rε(R, t), �, λ2ε(t)Z). We linearize the governing equations
with respect to the reference motion ϕ̊t (R, �, Z , t) = (R, �, Z), which corresponds to the motion of a
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cylindrical bar that is under no external forces while stress-free cylindrical layers are added to its boundary
cylinder in the time interval [0, ta]. The variation field is defined as

δϕt (R, �, Z) = d

dε

∣∣∣
ε=0

ϕε(R, �, Z , t) = (δr(R, t), 0, 2δλ(t) Z) . (2.58)

From, δr(R, t) = d
dε

∣∣∣
ε=0

rε(R, t), one concludes that δr̄(R) = δr
(
R, R−R0

u0

)
. The displacement field is

defined as
U(R, �, Z , t) = δϕt (R, �, Z) − δϕτ(R)(R, �, Z) . (2.59)

Assuming that λ(0) = 1, for the initial body (0 ≤ R ≤ R0), ϕε(R, �, Z , 0) = (rε(R, 0),�, Z) = (R, �, Z),
and hence δϕ0(R, �, Z) = (0, 0, 0). Thus, for 0 ≤ R ≤ R0, U(R, �, Z , t) = δϕt (R, �, Z). However, for
the new material points (R0 ≤ R ≤ s(t) = R0 + u0t) the displacement field is defined with respect to their
positions at the time of attachment.

For 0 ≤ R ≤ R0, the incompressibility condition for the perturbed motions along with rε(0, t) = 0,
implies that

rε(R, t) = R

λε(t)
, 0 ≤ R ≤ R0 . (2.60)

Taking derivative with respect to ε on both sides, evaluating at ε = 0, and noting that λε=0(t) = 1, one obtains

δr(R, t) = −R δλ(t) . (2.61)

Knowing that λε(0) = 1, δλ(0) = 0, and hence δr(R, 0) = 0.
For R0 ≤ R ≤ s(t):

rε(R, t) = 1

λε(t)

[
R0 +

∫ R

R0

λε(τ (ξ)) dξ

]
. (2.62)

Thus

δr(R, t) = −R δλ(t) +
∫ R

R0

δλ(τ(ξ)) dξ . (2.63)

Linearized stresses. The only non-zero component of the Cauchy stress for the perturbed motion of a homo-
geneous bar made of a neo-Hookean solid is

σ zz
ε (R, t) =

⎧⎪⎪⎨
⎪⎪⎩

μ0
λ6ε (t)−1
λ2ε (t)

, 0 ≤ R ≤ R0 ,

μ0

[
λ4ε (t)

λ4ε (τ (R))
− λ2ε (τ (R))

λ2ε (t)

]
, R0 ≤ R ≤ s(t) .

(2.64)

Therefore

δσ zz(R, t) =

⎧⎪⎨
⎪⎩
6μ0 δλ(t) , 0 ≤ R ≤ R0 ,

6μ0 [δλ(t) − δλ(τ(R))] , R0 ≤ R ≤ s(t) .

(2.65)

For the perturbed motion the axial force is calculated as

Fε(t) = πμ0R
2
0

λ6ε(t) − 1

λ4ε(t)
+ 2πμ0

∫ s(t)

R0

R

[
λ2ε(t)

λ4ε(τ (R))
− λ2ε(τ (R))

λ4ε(t)

]
dR . (2.66)

Thus

δF(t) = 6πμ0R
2
0 δλ(t) + 12πμ0

∫ s(t)

R0

R [δλ(t) − δλ(τ(R))] dR

= 6πμ0s
2(t) δλ(t) − 12πμ0

∫ s(t)

R0

Rδλ(τ(R)) dR .

(2.67)

Taking time derivative of both sides, one obtains

˙
δF(t)

6πμ0
= 2s(t)ṡ(t) δλ(t) + s2(t) ˙

δλ(t) − 2ṡ(t)s(t) δλ(τ(s(t))) = s2(t) ˙
δλ(t) . (2.68)
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This implies that

˙
δλ(t) =

˙
δF(t)

6πμ0 s2(t)
. (2.69)

Therefore

δλ(t) = 1

6πμ0

∫ t

0

˙
δF(η)

s2(η)
dη . (2.70)

In particular, one obtains

δλ(τ(R)) = 1

6πμ0

∫ τ(R)

0

˙
δF(η)

s2(η)
dη . (2.71)

Example 2.8 Let us consider the applied force F(t) = kμ0πR2
0 sin2

(
2π t
ta

)
in both the nonlinear and linearized

solutions.We assume that Ra = 2R0, u0 = 1, and ta = 1. In Fig. 7 we compare the nonlinear axial stretch λ2(t)
and its linearization 1+ 2δλ(t) for three values of k = 0.25, 0.5, and 1.0. It is observed that for small applied
loads (here k = 0.25) the two solutions agree. However, for large loads the linearized theory underestimates
the axial stretch.

Linearized residual stretch and residual stresses. The zero applied force for the perturbed motion using (2.66)
is written as

R2
0

λ̃6ε − 1

λ̃4ε
+ 2

∫ Ra

R0

R

[
λ̃2ε

λ4ε(τ (R))
− λ2ε(τ (R))

λ̃4ε

]
dR = 0 . (2.72)

Taking derivative with respect to ε and evaluating at ε = 0, one obtains

δλ̃ = 2

R2
a

∫ Ra

R0

Rδλ(τ(R)) dR = 1

3πμ0 R2
a

∫ Ra

R0

R
∫ τ(R)

0

˙
δF(η)

s2(η)
dη dR . (2.73)

The linearized residual axial stress has the following distribution

δσ̃ zz(R) =

⎧⎪⎨
⎪⎩

6μ0 δλ̃ , 0 ≤ R ≤ R0 ,

6μ0

[
δλ̃ − δλ(τ(R))

]
, R0 ≤ R ≤ Ra .

(2.74)
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3 Conclusion

In this paper we formulated the initial-boundary-value problem of accretion of a solid circular cylinder under
finite time-dependent extensions. More specifically, while the bar is under a time-dependent axial stretch
stress-free cylindrical layers are continuously added to it. Starting from a stress-free initial bar, the accreted
bar after the removal of external forces is not stress-free, in general. The state of residual stresses depends on the
history of the deformation during the accretion process. We modeled the natural configuration of the accreting
cylinder by a Riemannian manifold whose metric explicitly depends on the deformation history during the
accretion process. Assuming that the bar is made of an arbitrary incompressible isotropic solid we showed
that the radial motion is completely determined by the axial stretch function. Consequently, residual stresses
are determined as soon as one computes the residual stretch. We considered both displacement-control and
force-control loadings during accretion. In the case of force-control loading the time-dependent axial stretch
was calculated numerically in a few examples. We also numerically showed that residual stretch explicitly
depends on the history of deformation during the accretion process. Finally, we derived analytic expressions for
stresses, residual stretch, and residual stresses in the accreting bar in the setting of linear accretion mechanics.
We compared the nonlinear and linear solutions for stretch during accretion under a few force-control loading
examples. As expected, for small applied forces the linearized solution is a good approximation. For large
applied forces, however, the linearized solution considerably underestimates the axial stretch. A thermoelastic
analysis of accretion under finite time-dependent extensions, and dynamic analysis of accreted bars under
pulse or impact loads will be future extensions of this work.

Acknowledgements This research was partially supported by the Swiss National Science Foundation (Grant No. IZSE0-
187171/1), NSF (Grant No. CMMI 1939901) and ARO (Grant No. W911NF-18-1-0003).

References

1. Abi-Akl, R., Cohen, T.: Surface growth on a deformable spherical substrate. Mech. Res. Commun. 103, 103457 (2020)
2. Abi-Akl, R., Abeyaratne, R., Cohen, T.: Kinetics of surface growth with coupled diffusion and the emergence of a universal

growth path. Proc. R. Soc. A 475(2221), 20180465 (2019)
3. Afazov, S., Denmark, W.A., Toralles, B.L., Holloway, A., Yaghi, A.: Distortion prediction and compensation in selective

laser melting. Addit. Manuf. 17, 15–22 (2017)
4. Arutyunyan, N.K., Naumov, V., Radaev, Y.N.: A mathematical model of a dynamically accreted deformable body. part 1:

Kinematics and measure of deformation of the growing body. Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela (6): 85–96 (1990)
5. Bergel, G.L., Papadopoulos, P.: A finite element method for modeling surface growth and resorption of deformable solids.

Comput. Mech. 68(4), 759–774 (2021)
6. Brown, C.B., Goodman, L.E.: Gravitational stresses in accreted bodies. Proc. R. Soc. Lond. A 276(1367), 571–576 (1963)
7. Carpenter, K., Tabei, A.: On residual stress development, prevention, and compensation in metal additive manufacturing.

Materials 13(2), 255 (2020)
8. Colegrove, P.A., Donoghue, J., Martina, F., Gu, J., Prangnell, P., Hönnige, J.: Application of bulk deformation methods for

microstructural and material property improvement and residual stress and distortion control in additively manufactured
components. Scr. Mater. 135, 111–118 (2017)

9. Doyle, T.C., Ericksen, J.L.: Nonlinear elasticity. Adv. Appl. Mech. 4, 53–115 (1956)
10. Drozdov, A.D.: Continuous accretion of a composite cylinder. Acta Mech. 128(1) 117–135 (1998a)
11. Drozdov, A.D.: Viscoelastic Structures: Mechanics of Growth and Aging. Academic Press, Cambridge (1998)
12. Eckart, C.: The thermodynamics of irreversible processes. 4. The theory of elasticity and an elasticity. Phys. Rev. 73(4),

373–382 (1948)
13. Epstein, M.: Kinetics of boundary growth. Mech. Res. Commun. 37(5), 453–457 (2010)
14. Ericksen, J.L.: Deformations possible in every isotropic, incompressible, perfectly elastic body. Z. Angew. Math. Phys. 5(6),

466–489 (1954)
15. Goodbrake, C., Yavari, A., Goriely, A.: The anelastic Ericksen problem: Universal deformations and universal eigenstrains

in incompressible nonlinear anelasticity. J. Elast. 142(2), 291–381 (2020)
16. Kadish, J., Barber, J.,Washabaugh, P.: Stresses in rotating spheres grown by accretion. Int. J. Solids Struct. 42(20), 5322–5334

(2005)
17. Kalentics, N., Boillat, E., Peyre, P., Gorny, C., Kenel, C., Leinenbach, C., Jhabvala, J., Logé, R.E.: 3d laser shock peening-a

new method for the 3d control of residual stresses in selective laser melting. Mater. Design 130, 350–356 (2017)
18. Lychev, S., Manzhirov, A.: The mathematical theory of growing bodies. Finite deformations. J. Appl. Math. Mech. 77(4),

421–432 (2013)
19. Lychev, S., Koifman, K., Djuzhev, N.: Incompatible deformations in additively fabricated solids: Discrete and continuous

approaches. Symmetry 13(12), 2331 (2021)
20. Lychev, S.A.: Geometric aspects of the theory of incompatible deformations in growing solids. In: Mechanics for Materials

and Technologies, pp. 327–347. Springer (2017)



Finite extension of accreting nonlinear elastic 1069

21. Manzhirov, A.: The general non-inertial initial-boundary value problem for a viscoelastic ageing solid with piecewise-
continuous accretion. J. Appl. Math. Mech. 59(5), 805–816 (1995)

22. Manzhirov, A.V.:Mechanics of growing solids: New track inmechanical engineering. In: ASME 2014 InternationalMechan-
ical Engineering Congress and Exposition, pp. V009T12A039–V009T12A039. American Society of Mechanical Engineers
(2014)

23. Marsden, J., Hughes, T.: Mathematical Foundations of Elasticity. Dover, Illinois (1983)
24. Metlov, V.: On the accretion of inhomogeneous viscoelastic bodies under finite deformations. J. Appl. Math. Mech. 49(4),

490–498 (1985)
25. Naumov, V.E.: Mechanics of growing deformable solids: a review. J. Eng. Mech. 120(2), 207–220 (1994)
26. Nazarov, A., Vivier, V., Vucko, F., Thierry, D.: Effect of tensile stress on the passivity breakdown and repassivation of aisi

304 stainless steel: A scanning Kelvin probe and scanning electrochemical microscopy study. J. Electrochem. Soc. 166(11),
C3207 (2019)

27. Ogden, R.W.: Non-Linear Elastic Deformations. Courier Corporation, Chelmsford (1997)
28. Ong, J.J., O’Reilly, O.M.: On the equations ofmotion for rigid bodies with surface growth. Int. J. Eng. Sci. 42(19), 2159–2174

(2004)
29. Poincaré, H.: Science and Hypothesis. Science Press, Beijing (1905)
30. Simo, J., Marsden, J.: Stress tensors, Riemannian metrics and the alternative descriptions in elasticity. In: Trends and

Applications of Pure Mathematics to Mechanics, pp. 369–383. Springer (1984)
31. Southwell, R.: Introduction to the Theory of Elasticity for Engineers and Physicists. Oxford University Press, Oxford (1941)
32. Sozio, F., Yavari, A.: Nonlinear mechanics of surface growth for cylindrical and spherical elastic bodies. J. Mech. Phys.

Solids 98, 12–48 (2017)
33. Sozio, F., Yavari, A.: Nonlinear mechanics of accretion. J. Nonlinear Sci. 29(4), 1813–1863 (2019)
34. Sozio, F., Shojaei, M. Faghih., Sadik, S., Yavari, A.: Nonlinear mechanics of thermoelastic accretion. Z. Angew. Math. Phys.

71(3), 1–24 (2020)
35. Tangestani, R., Farrahi, G.H., Shishegar, M., Aghchehkandi, B.P., Ganguly, S., Mehmanparast, A.: Effects of vertical and

pinch rolling on residual stress distributions in wire and arc additively manufactured components. J. Mater. Eng. Perform.
29(4), 2073–2084 (2020)

36. Tomassetti, G., Cohen, T., Abeyaratne, R.: Steady accretion of an elastic body on a hard spherical surface and the notion of
a four-dimensional reference space. J. Mech. Phys. Solids 96, 333–352 (2016)

37. Truskinovsky, L., Zurlo, G.: Nonlinear elasticity of incompatible surface growth. Phys. Rev. E 99(5), 053001 (2019)
38. Yavari, A.: Universal deformations in inhomogeneous isotropic nonlinear elastic solids. Proc. R. Soc. A 477(2253), 20210547

(2021)
39. Yavari, A.: On Eshelby’s inclusion problem in nonlinear anisotropic elasticity. J. Micromech. Mol. Phys. 6(01), 2150002

(2021)
40. Yavari, A., Goriely, A.: Nonlinear elastic inclusions in isotropic solids. Proc. R. Soc. A 469(2160), 20130415 (2013)
41. Yavari, A., Goriely, A.: The anelastic Ericksen problem: Universal eigenstrains and deformations in compressible isotropic

elastic solids. Proc. R. Soc. A 472(2196), 20160690 (2016)
42. Yavari, A., Goriely, A.: Universal deformations in anisotropic nonlinear elastic solids. J. Mech. Phys. Solids 156, 104598

(2021)
43. Yavari, A., Goriely, A.: The universal program of nonlinear hyperelasticity. J. Elast. (2022). https://doi.org/10.1007/s10659-

022-09906-3
44. Yavari, A., Ozakin, A.: Covariance in linearized elasticity. Z. Angew. Math. Phys. 59(6), 1081–1110 (2008)
45. Yavari, A., Pradhan, S.P.: Accretion mechanics of nonlinear elastic circular cylindrical bars under finite torsion. J. Elast. 152,

29–60 (2022)
46. Zhu, J., Yuan, W.: Effect of pre-stretching on residual stresses and microstructures of inconel 718 superalloy. Metals 11(4),

614 (2021)
47. Zurlo, G., Truskinovsky, L.: Printing non-Euclidean solids. Phys. Rev. Lett. 119(4), 048001 (2017)
48. Zurlo, G., Truskinovsky, L.: Inelastic surface growth. Mech. Res. Commun. 93, 174–179 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement
with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely
governed by the terms of such publishing agreement and applicable law.

https://doi.org/10.1007/s10659-022-09906-3
https://doi.org/10.1007/s10659-022-09906-3

	Finite extension of accreting nonlinear elastic solid circular cylinders
	Abstract
	1 Introduction
	2 Finite extension of an accreting circular cylindrical bar
	2.1 Residual stresses
	2.2 Linearized accretion mechanics

	3 Conclusion
	Acknowledgements
	References




