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Abstract In this study, a hemivariational formulation is presented for a Hencky-type discrete model to pre-
dict damage behavior in pantographic layers. In the discrete model, elastic behavior of pantographic layers is
modeled via extensional, bending and shear springs. A damage descriptor is added for each spring type. Such
a damage descriptor is non-decreasing function of time, and therefore, the standard variational formulation
of the problem is generalized to a hemivariational one providing not only the Euler–Lagrange equations for
the evolution of the displacements of all the standard degrees of freedom but also the Karush–Khun–Tucker
condition governing the evolution of damage descriptor. The dissipation energy included in the hemivaria-
tional formulation depends upon six additional constitutive parameters (two per each spring type), and the
mechanical behavior of layer is simulated with an efficient and smart strategy able to solve the nonlinear
equilibrium equations coupled with the evolution of damage variables. A metallic pantographic layer which
was experimentally investigated in the literature is considered to test the proposed formulation.

Keywords Pantographic structures ·Discretemodel ·Hemivariational formulation ·Damage ·Metamaterials

1 Introduction

In the last decade, new advanced manufacturing processes like 3-D printing have considerably changed the
perspective of industrial design applications due to their ability to fabricate complex materials showing uncon-
ventional and exotic behaviors [1]. Therefore, design and fabrication of metamaterials has recently become a
popular academic and industrial research subject, and a broad range of studies has been presented to assess
the versatility of various metamaterials and their potential applications (for example, see [2–6] for different
examples).
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Fig. 1 Topology of pantographic layers

The central theme of this study is to model and investigate damage phenomenon in structural behavior
of pantographic metamaterials, which is a type of mechanical metamaterial. In general, a metamaterial is
referred to as mechanical metamaterial if its desired overall behavior is obtained as a result of mechanical
interaction of structural constituents at different length scales [7]. A standard pantographic layer has two
orthogonally aligned fiber families connected by pivots as shown in Fig. 1. Due to its distinctive properties
in terms of fabrication, mathematical modeling and mechanical behavior, pantographic layers have been
extensively studied in the literature (for instance, see [8–14]). First of all, a pantographic layer can be easily
modeled in a CAD software and additively manufactured even with regular 3-D printers. Second, it can
be subjected to large deformations while retaining elastic behavior, which may be an interesting property
for various engineering applications [15,16]. Third, from a theoretical standpoint, fabrication of pantographic
layers has also revealed the applicability of higher-gradientmathematical models. In thesemodels, deformation
energy is assumed to be a function of higher gradients of displacement field as opposed to the classical
continuum theory (i.e., Cauchy Continuum) [17,18]. This fact has garnered a lot of attention by researchers,
and higher-gradientmodeling approaches have been utilized to investigate various phenomena such as buckling
[19–21], damage and fracture [22–27], and plasticity [28–30]. For interested readers, we refer to the recent
works of Abali et al. [31], Barchiesi et al. [32], Spagnuolo et al. [33] and Yang et al. [34] for further details on
the applications of higher-gradient mathematical modeling.

In order to investigate the mechanical behavior of a pantographic layer numerically, three different
approaches may be followed. If the classical theory is preferred, one should create an appropriate 3-D finite
element model of the structure, discretizing all the fibers and pivots with suitable volume elements. Alterna-
tively, one can adapt beam elements, e.g., see [35], to model fibers. However, in this approach, attention must
be paid to include the behavior due to the existence of pivots, which is highly crucial in the overall mechani-
cal behavior of pantographic structures as it is highlighted in the literature [36,37]. Besides, second-gradient
continuum models can be an alternative to investigate pantographic structures [38–40]. It has been shown that
second-gradient models provide a substantial improvement and simplicity in terms of computational cost and
discretization to conduct numerical simulations [41]. In addition to numerical approaches based on continuum
theory, pantographic structure can also be modeled as a discrete system. In the latter approach, the discrete
system is created by assigning a set of particles, and mechanical behaviors of fibers and pivots are modeled by
defining suitable linear and rotational springs between particles (see [42–46] for more detail on the discrete
modeling approach).

In this study, damage phenomenon occurring in pantographic layers is modeled and examined with a
hemivariational formulation. As a target problem, shear test of a metallic pantographic layer consisting of
“quasi-perfect” pivots is considered. The current numerical framework accounting damage behavior is an
extension of a well-known 2D Hencky-type discrete model developed for pantographic layers. The discrete
model includes three mechanical phenomena, namely extension and bending of fibers and torsion of pivots,
by suitable linear and rotational springs. To include damage in the problem, a dissipation energy for each
type of spring is identified within the hemivariational formulation, which results in additional two constitutive
parameters to characterize damage in each kind of spring: one of them corresponds to an activation threshold
of damage phenomenon, and the other one prescribes the inertia of damage evolution until fracture. In order
to show the applicability of the numerical framework, the specimen under study has been numerically inves-
tigated by suitable constitutive parameters, and the obtained numerical force–displacement behavior has been
compared to those experimentally measured.

The rest of the paper is as follows. The discrete model and its numerical solution procedure are presented,
respectively, in Sects. 2 and3.Then, the hemivariational formulation tomodel damagephenomenon is presented
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Fig. 2 A pantographic layer and its discrete model: (a) Schematic of a pantographic layer with 10 square cells on shorter side
and aspect ratio of 3; (b) planar lattice geometry being x1 and x2 the pivot’s position in the reference configuration and u1 and
u2 displacement components; (c) discrete model adopted with suitable spring elements

in Sect. 4, and a numerical study conducted for a metallic pantographic layer is given in Sect. 5. Finally,
conclusions are drawn in Sect. 6.

2 Modeling planar pantographic layers following Hencky’s pattern

In this section,we synthetically state themodel used to describe themechanical behavior of a pantographic layer
such as that depicted in Fig. 2.Here, amongmanypossibilities,we have chosen tomodel the planar pantographic
layer introducing a well-experienced finite dimensional Lagrangian model, see, e.g., [42]. Following Piola,
we consider a finite number of material particles occupying, in the reference configuration, the nodes of a
rectangular lattice made up of square cells having length ε (see Fig. 2 for a schematic of a pantographic layer
of with 10 square cells on the shorter side and aspect ratio of 3).

The pantographic lattice is constituted by two arrays of orthogonal beams, oriented at an angle π/4 and
−π/4 with respect to x1 axis. We indicate with 1 the array corresponding to the angle π/4 (green color) and
with 2 the array at the other one (blue color). Each of introduced material particles model the pivots (red color)
which, see again Fig. 2a, in the 3D printed specimen link the two arrays of beams.1

We introduce the reference position of the generic i-th material particle using their position Pi , whereas
the current position of the same material particle is denoted by pi . This model follows the pioneering work
of Hencky [48] and some more recent works [49,50]) for Elasticae. In brief, we model the elastic interactions
among the particles by means of extensional and rotational springs, see Fig. 2c, so that pairwise and triple
particles interactions appear. The model is completely defined by the strain energy of each one spring. The
search of equilibrium configurations is successively solved by imposing the stationarity of potential energy
following the algorithm described in Sect. 3.

Our choice for strain energies can be listed below:

1 The hypothesis of pantographic layer with orthogonal beams can easily be removed as proven in [47].
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Fig. 3 Kinematics of extensional (on the left), bending (on the middle) and shear (on the right) springs (reference and current
configurations are indicated by using upper case and lower case letters)

Strain energy for extensional springs Each extensional spring stores, elastically, an energy which depends
quadratically on its length variation:

we
el = 1

2
keel

(‖p j − pi‖ − ε
)2

, (1)

where pi and p j are the current positions, see Figs. 2c and 3, of the nodes connected by the considered
extensional spring whose stiffness is keel .

Strain energy for bending springsThree consecutive particles along array 1 or 2 interact bymeans of a rotational
spring whose stored elastic energy depends on the angle in between the two consecutive segments connecting,
in the current configurations, the particles’ positions:

wel
b = kelb (cos γb + 1) , (2)

where the term cos γb is computed by using Carnot’s theorem by using the actual positions of aligned nodes
(pi1 , p j1, pk1 for array 1 and pi2 , p j2 , pk2 for array 2) and kelb denote the stiffness of the rotational spring.
Strain energy for shear springs Since the pivots link the two arrays of beams, then the elastic interaction is
connected to the current angle γs in between the two arrays. Hence we assume that the stored elastic energy

depends quadratically on the difference
(
γs − π

2

)

wel
s = 1

2
ksel

(
γs − π

2

)2
, (3)

where (see Figs. 2c and 3) the angle γs can be again identified by the Carnot’s theorem. In quadrant I , p j1and
pk1 , pk2

are the actual positions of the nodes relative to the rotational spring of stiffness ksel connecting array
1 with array 2. Remark that we assumed to have one exactly equal shear springs also in the quadrants II, III
and IV, see Fig. 2c.

The three aforementioned strain energies completely define the Hencky-type model for the planar defor-
mation of pantographic layer accounting extension and bending of fibers and torsion of pivots, and the total
strain energy can be obtained simply by summing each contribution. In order to have a complete solution of the
considered equilibrium problem, displacements and forces or couples exerted by each spring, a step-by-step
procedure was implemented to reconstruct the complete equilibrium path of the pantographic layer, as will be
described in detail in the following Sect. 3.

3 Coding a smart strategy able to solve the nonlinear equilibrium equations

The pantographic layer model briefly sketched in Sect. 2 aims to solve problems involving large displacements.
For this reason, it is necessary, a specific algorithm able to solve strongly nonlinear problems. We intend, for
its generality, to tackle the problem following a step-by-step procedure. In order to code this strategy, we
need9 three basic tools: (i) the definition of the structural response vector, in brief the reaction, (ii) the tangent
stiffness matrix and (iii) the external load vector.



Modeling and numerical investigation of damage behavior … 1485

Starting from the nonlinear system of equilibrium equations obtained by imposing the variation of the total
energy

s(u) − f = 0 (4)

where s is the structural reaction, in brief the reaction, depending from the vector uwhich stores the Lagrangian
parameters using to describe the motion (nodal displacements) and f is the vector which collects the external
loads.

We firstly calculate the reaction vector s simply using

s = ∇E , (5)

where the ∇ operator embraces the derivatives of the strain energy E respect to the Lagrangian parameters
which govern the motion, i.e., the nodal displacements of the pantographic lattice collected in the vector u.
Analogously, the work of the external loads W gives

f = ∇W . (6)

In order to complete the tools, besides the reaction and the external force vectors, we need definition of
the tangent stiffness matrix, or, in other words, the Hessian H(·) of the strain energy E or, equivalently, the
gradient of the reaction s

K = H(E) = ∇s . (7)

From a computational point of view, it is convenient to compute with an algebraic manipulator the exact
solution corresponding to the elementary cases reported in Fig. 3. Successively, the elementary contributions
can be assembled in the global vectors s and f and matrix K by using the same procedure usual in the
framework of finite elements. For this work, in order to avoid complex checks on the formulae obtained
from the algebraic manipulator, a chip of MATLAB® code producing all the functions necessary to perform
the required calculations was built. This in order to save time and to have a optimized and error-free code.
In different and rough terms, we built a very small piece of code capable to write the core of the analysis
procedure.

The used analysis strategy is essentially founded on the classic Newton’s iterative scheme. Since it is well
known that the Newton’s scheme is not capable to overcome limit points, i.e., points where the stiffness matrix
becomes singular, then it is used only as predictor leaving the role of corrector to the Riks’ arc-length strategy
[51]. The main aspects of this procedure are well defined in [52] for the limit analysis of Kirchhoff plates and
in [43,44] for a pantographic layer modeled as an assembly of springs.

In the framework of a stepwise strategy, the reconstruction of the equilibriumpath starts from the knowledge
of the curve point—as Newton’s scheme require—and computes the following (sufficiently near to the initial).

We assume that the external load be controlled by a scalar parameter λ, i.e., f(λ) = λf̄ . It follows that the
nonlinear system of equilibrium equations is

s(u) − λf̄ = 0 , (8)

If the pair (λ1,u1) belongs to the equilibrium path, i.e., a measure of the rest of equilibrium equations
is near to zero, then a nearby point of the equilibrium path (λ2,u2) can be calculated—using the first-order
approximation of the rest, i.e., á la Newton—by the following iterative scheme:

�u := u2 − u1 = −K−1
u1

(
su1 + (λ1 + �λ)f̄

)
, (9)

where �λ = λ2 − λ1 and the vector su1 and the matrix Ku1 are the reaction and the tangent stiffness matrix
computed in u1, respectively.

In order to overcome the aforementioned limitation of theNewton’s scheme,Riks’ arc-length strategy, using
exactly the same tools, changes essentially the point of view using as parameter to describe the equilibrium path
its arc-length, see [51]. In simple words, the equilibrium path is recovered introducing an additional parameter,
the curve arc-length, for describing it. The consequent algorithm does not suffer of the Newton’s scheme
drawback, i.e., no convergence problem arises when the stiffness matrix becomes singular. More details of
an smart implementation of the arc-length scheme can be found in [43,45,53]. Here, we describe only some
details showing the simplicity and the efficiency of the algorithm.
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As mentioned above, the key idea of the Riks’ arc-length method is the description of the equilibrium path
using, instead of the non-dimensional load parameter λ, its arc-length. As a consequence, the method moves
forward on the basis of a fixed arc-length instead of increasing λ. Naturally, since we increase the number
of unknown quantities, i.e., the arc-length parameter, a new equation balancing the unknowns is necessary.
This simple but fruitful idea permits many different possible choices producing more or less clever algorithms.
Probably, the most natural choice is to search the solution on the circle of radius equal to the desired arc-length.
At this choice, even if it is surely rigorous, does not follow the faster algorithm. It is much more simple and
computationally efficient to code as a rule a kind of orthogonality between the extrapolation, predictor step,
and the correction, corrector step. This is equivalent to constrain that the arc-length be constant only in an
approximate way.

Starting from the rest of the equilibrium equations:

r(u1 + �u + u̇, λ1 + �λ + λ̇) ≈ su1+�u + Ku1+�uu̇ + (λ + �λ + λ̇)f̄ = 0 , (10)

where the pair (λ̇, u̇) is the desired correction to the computed extrapolation (λ1 + �λ, u1 + �u).
The number of equations and that of unknowns have to be balanced; therefore, wemust write one additional

constraint equation. A quite general form is

�uTCu̇ + γ�λλ̇ = 0 , (11)

where, besides the already defined quantities, the matrix C and the scalar γ appear. The matrix C and scalar
γ can be chosen, e.g., to improve the convergence or to make simple the calculations. We remark that the
condition (11) is rather general and can be interpreted as an orthogonality condition between extrapolation,
i.e., the pair (�λ,�u), and the correction, i.e., the pair (λ̇, u̇).

From Eq. (10), we can compute u̇:

u̇ = −K−1
u1+�u

(
su1+�u + (λ1 + �λ + λ̇)f̄

)
, (12)

and, then, by using Eq. (11), λ̇

λ̇ = �uTCK−1
u1+�u(su1+�u + (λ1 + �λ)f̄)

γ�λ − �uTCK−1
u1+�usu1+�u

. (13)

At this point, we can specify (γ,C) assuming the pair (0,K) and, as a consequence, obtaining a very
simple correction formula for �λ:

λ̇ = −�uT (su1+�u + (λ1 + �λ)f̄)
�uT su1+�u

, (14)

whereas the correction displacement vector u̇ for the extrapolation �u can be computed by using Eq. (12).
The algorithm sketched in the immediate foregoing requires to define the first extrapolation in each step.

The simplest way is to define it on the basis of the previous steps results. Using the already introduced symbols:

�λ = m(λ1 − λ0) ,

�u = m(u1 − u0) ,
(15)

where the coefficient m modifies, in an adaptive way, the arc-length when the step-by-step procedure goes
ahead.More precisely,m increases the step-length in the parts of the equilibriumpath rather linear and decreases
the step-length in the parts of the equilibrium path which contain, e.g., limit point and hence require much
more care. Following [54], the adaptive coefficient m can be computed as

m = 1 − rl − nl
rl + nl

, (16)

on the basis of rl , required, and nl , needed, number of loops to achieve the convergence. At the first step, we
can set m = 1 and fix in advance the value of �λ, defining the arc-length in an implicit way, from which the
corresponding value of �u can be computed.
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Fig. 4 Standard versus quasi-perfect pivots: comparison of deformed specimens in shear test [55]

4 Modeling of damage behavior via hemivariational formulation

In shear tests of pantographic layers, out-of-plane deformationsmaybe significant affecting the overallmechan-
ical behavior. As explained by Spagnuolo et al. [55] in detail, stiffnesses associated with each energy term
play a crucial role, and indeed, depending on the considered set of stiffnesses, one deformation mechanism
which results in an energy minimum is favored over another, for the same prescribed displacement. In shear
tests of standard pantographic layers, it is generally observed that out-of-plane deformations occur due to high
torsional stiffness of pivots, and to alleviate out-of-plane deformations, “quasi-perfect" pivots may be pre-
ferred. Experimental studies (see Fig. 4) show that, quasi-perfect pivots may modify significantly the overall
behavior in terms of out-of-plane deformations. As can be clearly seen from Fig. 4, the pantographic layer with
quasi-perfect pivots does not have any significant out-of-plane deformation compared to the one with standard
pivots (please, see Spagnuolo et al. [55] for further discussion on the quasi-perfect pivots and their usage).

Besides, in the comparison of force–displacement plots (see Fig. 5), differences are observed due to the
presence of quasi-perfect pivots. Importantly, from a qualitative point of view, similar trends are observed in
both cases. The curve starts with a certain slope. Then, for a certain displacement step, the slope decreases
considerably. At the end, the slope increases again, this time almost asymptotically, just before the first observed
break. Here, it must be remarked that the effect of quasi-perfect pivots is ensured by reducing the torsional
stiffness in the simulations [55].

In shear test, the first part of the deformation process of the pantographic structures is characterized by
torsional deformation of the pivots from an energetic point of view, so the initial slope is strongly related
to the torsional stiffness of the pantographic layer. In the second part, the angle between the fibers of the
two families approaches zero with high displacements, i.e., fibers become parallel, and then the prevalent
deformation mechanism becomes the elongation of the fibers. The activation of the deformation mechanism
by fiber extension corresponds to the second change in slope observed in Fig. 5.

In this study, the existing 2D discrete model is improved including damage for each considered mechanism
in the model (torsion of pivots, bending and elongation of fibers). In order to verify and validate the damage
behavior, experimental measurements in the shear test of metallic pantographic layer made of quasi-perfect
pivots are used as reference (see Fig. 5). As the current algorithm is two-dimensional, the pantographic layer
made of standard pivots is not considered in this study due to excessive out-of-plane deformation.

In order to model damage behavior in the 2D discrete model, the approach presented in Sessa et al. [56]
for linear springs is utilized and extended for also rotational springs. By following their study, for linear and
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Fig. 5 Standard versus quasi-perfect pivots: comparison of experimentally measured force–displacement plots [55]

extensional springs, elastic energy is modified and a dissipation energy is introduced as follows:

we
el = 1

2
keel(1 − de)u

2, we
diss = 1

2
ked d

2
e + ket de (17)

where u is the deflection, u = (‖p j − pi‖ − ε
)
, de is the damage term due to extension, where de ∈ [0, 1],

and ked and ket are the damage parameters which control the evolution of the damage term de. The evolution
of the extensional damage parameter can be obtained by the non-healing constraint on the damage and the
so-called Karush–Kuhn–Tucker condition [56],

de(u) =
(
keelu

2

2ked
− ket

ked

)

H

(
keelu

2

2ked
− ket

ked

)

(18)

where H(x) is the Heaviside function.
Similarly, for rotational springs (for those used for bending and shear), we can follow the same idea and

use the following elastic and dissipation energy terms:

wb
el = kbel(1 − db) (cos γb + 1) wb

diss = 1

2
kbd d

2
b + kbt db, (19)

ws
el = 1

2
ksel(1 − ds)

(
γs − π

2

)2
ws
diss = 1

2
ksd d

2
s + kst ds . (20)

Then, the hemivariational approach is utilized to obtain the evolution functions of the damage terms db and ds
as follows:

db(γb) =
(
keel (cos γb + 1)

ked
− ket

ked

)
H

(
keel (cos γb + 1)

ked
− ket

ked

)
, (21)

ds(γs) =
(
kselγs

2

2ksd
− kst

ksd

)

H

(
kselγs

2

2ksd
− kst

ksd

)

. (22)

Finally, with this modification, the solution procedure explained in previous section is utilized by including
elastic and dissipation energy terms inside Eq. 5 to investigate damage behavior in pantographic layers.
Each damage term (de, db, or ds) is evaluated and updated according to corresponding Karush–Kuhn–Tucker
condition in each load step, identifying degradation for each type of spring used in the discrete system (Eqs.
18, 21 and 22). Importantly, the kt terms identify the threshold energy value to activate damage, while kd terms
characterize how fast the activated damage propagates in the simulation.
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Table 1 Stiffness and damage parameters used in numerical simulations

Parameter Value Parameter Value Parameter Value

keel 8 × 105 N/m kbel 0.46 Nm ksel 0.035 Nm

ket 4.65 kbt 1E-5 kst 2.1E-5

ked 1.8 kbd 0.55 kbd 7.5E-4

(a) ū = 10 mm (b) ū = 20 mm (c) ū = 30 mm

u = 40 mm(d) ¯ (e) ū = 50 mm

Fig. 6 Comparison of deformed configurations: experiment versus simulation

5 Numerical results and comparisons

In this section, the presented mathematical framework is examined with a metallic pantographic layer under
shear test. The pantographic layer has fibers of width a = 1 mm and depth b = 1 mm, and quasi-perfect
pivots of radius r = 0.4 mm and height h = 1.5 mm. The number of fibers along its width (�) is N f = 7.
The structure has been investigated by Spagnuolo et al. [55] using a 2D second-gradient model accounting
out-of-plane deformations with a simplified damage approach. In Spagnuolo et al. [55], damage was only taken
into account for quasi-perfect pivots, and it was assumed that a significant degradation occurs if the rotation
threshold is exceeded. In this study, we investigate the same behavior using a discrete model and including
damage not only for torsion of pivots but also for bending and extension of fibers. In numerical simulations,
to include damage behavior of the specimen during shear test, the parameters listed in Table 1 were adopted,
and a 75-mm prescribed displacement (ū) was applied in 300 steps to the top side of the specimen.

In Fig. 6, the obtained deformed configurations are compared to those observed in the experiment for
prescribed displacements, ū = 10, 20, 30, 40 and50mm.As canbe seen from the comparison, the experimental
and numerical deformed shapes compare each other very well. As discussed in previous section, according to
experimental measurements, we expect that the first part of the deformation is characterized by the torsional
behavior of quasi-perfect pivots, i.e., damage in shear springs. Here, it must be remarked that although it is
possible to design perfect pivot in a CAD software (pivot with zero torsional resistance), it is still a challenging
fabrication process due to many possible 3D printing issues that may occur. Therefore, the printed pivots are
referred to as “quasi-perfect" which indicates low torsional stiffness, and this stiffness is significant early in
the deformation process.

In Fig. 7, experimental and numerical reaction force–displacement plots are compared. The comparison
shows that the adopted damage parameters (ket , k

e
d , k

b
t , k

b
d , k

s
t , k

s
d ) provide the expected behavior in the numer-

ical simulation, and the two plots show a close match. Here, in order to get more insight, it is crucial to
understand how damage evolves in both pivots and fibers (torsion of pivots, bending and extension of fibers)
as the occurring damage highly affects the overall behavior of the pantographic structure.
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Fig. 7 Comparison of reaction force at the fixed side: experiment versus simulation

Fig. 8 Damage evolution due to torsion of pivots

Fig. 9 Damage evolution due to bending of fibers

In order to comprehend the first part of the reaction force–displacement graph, damage evolution due to
torsional behavior of pivots are presented in Fig. 8. Here, the contour plot is given for the damage parameter ds
(ds = 0 no damage, ds = 1 fully damaged), for prescribed displacements ū = 10, 20, 30 and 40 mm. As can
be clearly seen from Fig. 8, damage parameters of most pivots (ds) reach to 1 in the beginning of simulation,
and this clearly explains how the first slope change in reaction force–displacement plot is obtained.

Next, to elucidate the second part of the reaction force–displacement graph, damage evolutions due to
bending and extension of fibers are, respectively, presented in Fig. 9 and 10. In both figures, results are
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Fig. 10 Damage evolution due to extension of fibers (red fibers are the ones fully damaged)

Fig. 11 Elastic energy versus dissipated energy during simulation

provided for prescribed displacements, ū = 40, 50, 60, and 70 mm. During the numerical simulation, Fig. 9
shows that damage due bending of fibers does not reach to 1 (fully damaged). Indeed, this investigation can
be supported by the damaged specimen at the end of experiment given in Fig. 4 as there is no fully damaged
fiber due to bending. On the other hand, the sudden jumps start to occur significantly after 60 mm, due to
damage in the extension of fibers. According to the numerical simulation, the fibers on the short sides first get
fully damaged. This again can be explained by using the experimental observation: in the experiment fibers
on the top side get fully damage as can be seen in Fig. 4. Here, it must be noted that in the study presented
by Spagnuolo et al. [55] the second part of the force–displacement plot cannot be captured as the study only
focuses on damage in quasi-perfect pivots.

Moreover, the computed total elastic (we
el + wb

el + ws
el ) and dissipation (we

diss + wb
diss + ws

diss) energies
are given as functions of prescribed displacement in Fig. 11. Here, as it is expected, the dissipation energy
is always increasing due to irreversibility of damage terms. Also, it is observed that there is no significant
dissipation energy increase in the beginning of simulation. However, around 0.05 m, dissipation energy starts
to increase considerably, due to the observed failure in extensional springs (see Fig. 10). On the other hand,
jumps in elastic energy shows that failure of extensional springs in the specimen activates other springs and
elastic energy increases again after a certain drop.
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6 Conclusions

In summary, we have provided an hemivariational formulation for those discrete elements that are included
in an Hencky-type discrete model that was conceived for pantographic layers. In order to model damage and
fracture behavior of such pantographic layer, three damage kinematic descriptors have been added for those
three kinds of springs included in the elastic model. Euler-Lagrange equations aimed to the evolution of the
displacements of the internal pivots and Karush–Khun–Tucker conditions aimed to govern the evolution of
damage descriptors have been derived from an hemivariational principle and numerically investigated with an
efficient and smart strategy able to solve the nonlinear equilibrium equations coupled with the evolution of
damage variables. The 6 constitutive parameters of the 3 kinds of springs (2 per each kind of spring, the first
corresponding to the activation of damage and the second prescribing the velocity of damage evolution until
fracture) have been identified with a comparison with an experimental data available in the literature.
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