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Abstract This paper presents a semi-analytic rigid/plastic solution for the expansion/contraction of a hollow
sphere at large strains. The yield stress depends on the equivalent strain rate and the equivalent strain. No
restriction is imposed on this dependence. The solution reduces to a single ordinary differential equation for
determining the radial stress. The independent variable in this equation is the equivalent strain. Moreover, the
equivalent strain rate is expressed in terms of elementary functions of the equivalent strain, which allows for
representing the yield stress as a function of the equivalent strain and a time-like independent variable. In
the course of deriving the equations above, the transformation between Eulerian and Lagrangian coordinates
is used. A numerical example illustrates the solution for a material model available in the literature. The
motivation of this research is that solutions for the expansion/contraction of a hollow sphere are widely used at
the micro-level to calculate some material properties at the macro-level. To this end, it is necessary to specify
constitutive equations for micromechanical modeling. The accuracy of these equations is questionable. An
advantage of the solution found is that it is practically analytic for quite a general material model that accounts
for both strain- and rate-hardening. Therefore, it is straightforward to generate a large amount of theoretical
data for comparing with measurable quantities at the macro-level.

Keywords Strain- and rate- hardening material · Finite strain · Analytic solution

1 Introduction

The expansion/contraction of a hollow sphere is one of the classical problems of plasticity. The brief literature
review below is restricted to solutions at large strains. The first solution is derived in [1], where an elastic
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perfectly plastic model has been adopted. Elastic compressibility has been taken into account. This solution
has been extended to strain-hardening materials in [2]. No restriction is imposed on the strain hardening law.
Another solution for strain hardening materials is proposed in [3]. In contrast to [2], the model is rigid/plastic,
and thematerial is incompressible.Using the solution found at themicro-level, the authors of [3] have calculated
theoretical pressure–relative density curves in the process of compaction of metal powders. The solution
provided in [4] is for power-law creep. The elastic portion of strain is neglected. Therefore, the material is
incompressible. The solution is used at the micro-level for evaluating the contribution of creep to the final
stage of densification in sintering processes. The importance of closed-form solutions for hollow spheres
subjected to external pressure for micromechanical modeling of hot isostatic pressing of powder materials is
emphasized in [5]. Closed-form solutions for hollow spheres under external pressure are found in [6], adopting
the Mohr–Coulomb and Drucker–Prager yield criteria. The plastic flow rule associated with these criteria
is used. Therefore, the material is compressible even though the elastic portion of strain is neglected. No
hardening law is adopted. The solution is used to evaluate a Gurson-type yield criterion.

The description of material behavior under certain conditions requires constitutive equations that account
for the dependence of the yield stress on both the equivalent strain (or the plastic work) and the equivalent
strain rate. One of the most widely used models of this type has been proposed in [7]. This model postulates
that the von Mises flow stress is the product of three specific functions. Each function depends on a single
argument: the equivalent plastic strain or the equivalent plastic strain rate or temperature. The parameters
involved in these functions have been identified for several materials [7–9]. Many generalizations of the model
[7] are available in the literature. Paper [10] has combined the functions responsible for the strain rate and
temperature effects in [7] and a new function of the equivalent strain. Experimental data have been presented
for the Ti–6Al–4V alloy. An extension of the model [7] to anisotropic materials is proposed in [11]. It has been
assumed that the constitutive equation proposed in [7] is valid along a selected direction. Experimental data
have been presented for the Zn–Cu–Ti alloy. The models proposed in [12,13] suppose that the flow stress is a
function of the equivalent strain, the equivalent strain rate, and temperature. Then, experimental data are used
to determine this function for different steels.

Under certain conditions, the temperature effect is negligible. In this case, the model [7] simplifies. In
particular, the flow stress depends on two functions responsible for the equivalent strain and equivalent strain
rate effects in the original model. Reference [14] has included the stress triaxiality in the model, and reference
[15] the stress triaxiality and the cubic stress invariant. Also, these papers have adopted the function of the
equivalent strain rate proposed in [16] instead of the original function involved in the model [7]. Paper [17]
has developed a general model in which the flow stress is a function of the equivalent strain and the equivalent
strain rate. A particular choice of this function reduces this model to that in [7] and other available models.
Besides the model [7], the representation of the flow stress as the product of a power function of the equivalent
plastic strain and a power function of the equivalent plastic strain rate is widely used in the literature (see,
for example, [18]). A theory of elastic-viscoplastic strain hardening materials in which the plastic work is
considered as a state variable is proposed in [19]. The theory has been verified for commercially pure titanium.

Paper [5] has analyzed strain-hardening viscoplastic thick-walled sphere and cylinder under external pres-
sure. The elastic portion of strain is neglected, and the material is incompressible. The flow stress is the product
of the Palm–Voce strain-hardening function and a power function of the equivalent strain rate. This constitutive
equation is often used in conjunction with sequential limit analysis [20–22]. The present paper generalizes the
solution for a sphere given in [5]. In particular, no restriction is imposed on the dependence of the equivalent
stress on the equivalent strain and the equivalent strain rate. This feature of the solution is of special importance
for micromechanical modeling since it is difficult to determine accurate constitutive equations at this level.
Therefore, many calculationswith different constitutive equations at themicro-levelmay be required to achieve
sufficient accuracy at the macro-level. In [5], the constitutive equations have been intentionally simplified to
obtain the analytic solution.

The solution below is facilitated by using the equivalent strain as one of the independent variables. Similar
approaches have been used in [2,23–25]. The radial coordinate of a spherical coordinate system has been
replaced with the equivalent stress in [2] to analyze a thick-walled sphere loaded by internal and external
pressure. The radial coordinate of a cylindrical coordinate system has been replaced with the equivalent strain
in [23] to analyze the pure plane strain bending of a sheet. These two papers deal with large strains. Paper [24]
concerns the expansion/contraction of a sphere at small strains. The radial coordinate of a spherical coordi-
nate system has been replaced with the equivalent strain. Thermo-mechanical loading of a sphere assuming
temperature-dependent material properties has been investigated in [25]. The temperature has been used as an
independent variable in place of the radial coordinate of a spherical coordinate system. A common feature of



Finite strain expansion/contraction of a hollow sphere 1115

the constitutive equations adopted in [2,23–25] is that the equivalent stress depends on one quantity. Then, it
becomes advantageous to replace the natural space coordinate with this quantity. An essential difference of the
constitutive equations considered in the present paper is that the equivalent stress depends on two quantities.
Therefore, the approach developed in [2,23–25] should be generalized.

Themethod developed to derive the analytic solution applies to a class of boundary value problems. Among
these problems are the expansion/contraction of a hollow cylinder under plane strain conditions, compression
of a thin layer between parallel plates using conventional approximations (see, for example, [26,27]), and
compression of plastic material between rotating plates [28]. All these problems are of practical importance.

The solution found can be used as a benchmark problem for verifying numerical codes for quite a general
model of plasticity accounting for strain- and rate-hardening, which is a necessary step before using such codes
[29,30].

2 Statement of the problem

Consider a hollow sphere whose initial inner and outer radii are a0 and b0, respectively. The current radii are
denoted as a and b. It is natural to use the spherical coordinate system (r, θ, ϕ) with its origin at the center
of the sphere. Let σr , σθ , and σϕ be the normal stresses referred to this coordinate system. These stresses are
the principal stresses. By virtue of the symmetry,

σθ = σϕ. (1)

Any pressure-independent yield criterion is represented as

|σθ − σr | = σY . (2)

Here, σY is the yield stress in tension. The plastic flow rule associated with the yield criterion (2) results in the
equation of incompressibility and the condition that the plastic work rate is positive. Let ξr , ξθ , and ξϕ be the
normal strain rates referred to the spherical coordinate system. Then, the equation of incompressibility can be
written as

ξr + ξθ + ξϕ = 0. (3)
It is assumed that the yield stress depends on both the equivalent strain rate, ξeq, and the equivalent strain, εeq.
In the case under consideration, the equivalent strain rate and the equivalent strain are defined as

ξeq =
√
2

3

√
ξ2r + ξ2θ + ξ2ϕ (4)

and
dεeq
dt

= ξeq. (5)

Here, t is the time and d/dt denotes the convected derivative. The yield criterion (2) can be rewritten as

σθ − σr = mσ0�
(
εeq, ξeq

)
(6)

where σ0 is a reference stress and �
(
εeq, ξeq

)
is an arbitrary function of its arguments. Moreover, here and

in what follows, m = 1 in the case of expansion and m = −1 in the case of contraction. The only stress
equilibrium equation which is not identically satisfied in the spherical coordinate system is

∂σr

∂r
+ 2 (σr − σθ )

r
= 0. (7)

The only nonzero velocity component is the radial velocity u. Then,

ξr = ∂u

∂r
, ξθ = ξϕ = u

r
. (8)

The velocity boundary condition is
u = mU (9)

for r = a. Here, U > 0. The stress boundary condition is

σr = 0 (10)

for r = b. Since the yield criterion is pressure-independent, the solution for the sphere loaded by uniform
pressure over its outer or inner radius can be generated from the solution satisfying (10) by simply adding an
appropriate uniform hydrostatic tension or compression.
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3 General solution

Equations (3) and (8) combine to give ∂u/∂r+2u/r = 0. The solution of this equation satisfying the boundary
condition (9) is

u = mU
(a
r

)2
. (11)

By definition, ∂r/∂t = u and ∂a/∂t = mU . Using these equations and (11), one gets

∂r

∂a
=

(a
r

)2
. (12)

Let R be the Lagrangian coordinate such that r = R at the initial instant. The solution of equation (12)
satisfying this condition is

r3 = a3 + R3 − a30 . (13)

This equation can be solved for R:
R3 = r3 − a3 + a30 . (14)

Using (4), (8), (11), and (13), one finds the equivalent strain rate as

ξeq = 2Ua2(
a3 + R3 − a30

) . (15)

Substituting (15) into (5) and taking into account that ∂a/∂t = mU yield

∂εeq

∂a
= m

2a2(
a3 + R3 − a30

) . (16)

The initial condition to this equation is εeq = 0 at a = a0. The solution of equation (16) satisfying this
condition is

εeq = m
2

3
ln

(
a3 + R3 − a30

R3

)
. (17)

Using (14), one rewrites this solution as

εeq = m
2

3
ln

(
r3

r3 − a3 + a30

)
. (18)

Solving this equation for r3 gives

r3 =
(
a3 − a30

)
exp

( 3m
2 εeq

)
exp

( 3m
2 εeq

) − 1
. (19)

Replace the independent variable r with εeq. In this case,

∂σr

∂r
= ∂σr

∂εeq

∂εeq

∂r
. (20)

The derivative ∂εeq/∂r is readily determined from (18). Then, substituting (20) into (7) and using (6) yields

∂σr

σ0∂εeq
=

(
r3 − a3 + a30

)
(
a30 − a3

) �
(
εeq, ξeq

)
. (21)

One can eliminate r in this equation using (19). As a result,

∂σr

σ0∂εeq
= �

(
εeq, ξeq

)
1 − exp

( 3m
2 εeq

) . (22)



Finite strain expansion/contraction of a hollow sphere 1117

Using (13) and (19), one transforms Eq. (15) to

ξeq = 2Ua2
[
exp

( 3m
2 εeq

) − 1
]

(
a3 − a30

)
exp

( 3m
2 εeq

) . (23)

Then, the function �
(
εeq, ξeq

)
can be represented as

�
(
εeq, ξeq

) = 	
(
εeq, a

)
. (24)

The function	
(
εeq, a

)
is readily determined if the function�

(
εeq, ξeq

)
is prescribed. Equation (22) becomes

∂σr

σ0∂εeq
= 	

(
εeq, a

)
1 − exp

( 3m
2 εeq

) . (25)

This equation can be integrated at any value of a except a = a0. At a = a0, replacing r with εeq is not justified
since εeq = 0 at the initial instant. However, the radial stress distribution at the initial instant is readily found
from the original equations, which will be demonstrated below.

The solution of Eq. (25) should satisfy the boundary condition (10). It follows from (13) and (18) that

εb = m
2

3
ln

(
b3

b3 − a3 + a30

)
= m

2

3
ln

(
a3 + b30 − a30

b30

)
. (26)

Here, εb is the value of εeq at r = b (or R = b0). Therefore, the boundary condition (10) is equivalent to the
condition σr = 0 for εeq = εb. Then, the solution of Eq. (25) can be represented as

σr

σ0
=

εeq∫
εb

	 (χ, a)[
1 − exp

( 3m
2 χ

)]dχ. (27)

The dependence of the radial stress on r is determined from (19) and (27) in parametric form, with εeq being
the parameter. Having found the radial stress, one can immediately determine the circumferential stress from
(6). The pressure over the inner radius of the sphere is determined as P = −σr where σr is understood to be
calculated at r = a. Then, it follows from (27) that

p = P

σ0
=

εb∫
εa

	(χ, a)[
1 − exp

( 3m
2 χ

)]dχ. (28)

Here, εa is the value of εeq at r = a. It follows from (18) that

εa = 2m ln

(
a

a0

)
. (29)

As it has been noted above, the general solution is not valid at the initial instant. The solution at the initial
instant is derived below. Since the equivalent strain vanishes everywhere at the initial instant, Eq. (6) becomes

σθ − σr = mσ0�
(
0, ξeq

)
. (30)

Substituting this equation into (7) results in

∂σr

∂r
= 2mσ0�

(
0, ξeq

)
r

. (31)

Equation (15) at the initial instant becomes

ξeq = 2Ua20
r3

. (32)
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Equation (31) can be rewritten as

∂σr

∂ξeq

∂ξeq

∂r
= 2mσ0�

(
0, ξeq

)
r

. (33)

The derivative ∂ξeq/∂r is readily determined from (32) as

∂ξeq

∂r
= −6Ua20

r4
. (34)

Substituting (34) into (33) and eliminating r by means of (32) yield

∂σr

σ0∂ξeq
= −2m�

(
0, ξeq

)
3ξeq

. (35)

The boundary condition (10) becomes

σr = 0 (36)

for ξeq = ξb. Here ξb is the value of ξeq at r = b0. It follows from (32) that

ξb = 2Ua20
b30

. (37)

Then, the solution of Eq. (35) can be written as

σr

σ0
= −2m

3

ξeq∫
ξb

� (0, χ)

χ
dχ. (38)

The circumferential stress is determined from (30) and (38) as

σθ

σ0
= −2m

3

ξeq∫
ξb

�(0, χ)

χ
dχ + m�

(
0, ξeq

)
. (39)

The radial distribution of the radial and circumferential stresses follows from (38) and (39) where ξeq should
be eliminated using (32). The pressure over the inner radius of the sphere is found from (38) as

p = 2m

3

ξb∫
ξa

� (0, χ)

χ
dχ. (40)

Here, ξa is the value of ξeq at r = a0. It follows from (32) that

ξa = 2U

a0
. (41)
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4 Illustrative example

Comprehensive overviews of strain-hardening viscoplastic constitutive equations have been provided in [12,
17]. At a constant temperature, one of the widely used equations reads

σY = σ0

(
1 + μεneq

) [
1 + λ ln

(
ξeq

ξ0

)]
. (42)

Here, μ, λ, ξ0, and n are constitutive parameters. For mild steels, μ = 8.38, λ = 0.0362, ξ0 = 0.001, and
n = 0.316. This set of parameters is used in the subsequent calculations. Comparing the right-hand side of (6)
and (42) shows that

�
(
εeq, ξeq

) =
(
1 + μεneq

) [
1 + λ ln

(
ξeq

ξ0

)]
. (43)

Equations (23) and (43) combine to give

	
(
εeq, a

) =
(
1 + μεneq

) 〈
1 + λ ln

{
2Ua2

[
exp

( 3m
2 εeq

) − 1
]

ξ0
(
a3 − a30

)
exp

( 3m
2 εeq

)
}〉

. (44)

It is convenient to introduce the dimensionless quantities:

β = 2U

ξ0b0
, α = a

b0
, ρ = r

b0
, and c0 = a0

b0
. (45)

Then, Eqs. (44), (26), (29), and (19) become

	
(
εeq, a

) =
(
1 + μεneq

) 〈
1 + λ ln

{
βα2

[
exp

( 3m
2 εeq

) − 1
]

(
α3 − c30

)
exp

( 3m
2 εeq

)
}〉

, (46)

εb = m
2

3
ln

(
α3 + 1 − c30

)
, (47)

εa = 2m ln

(
α

c0

)
, (48)

and

ρ3 =
(
α3 − c30

)
exp

( 3m
2 εeq

)
exp

( 3m
2 εeq

) − 1
, (49)

respectively. Substituting (46), (47), and (48) into (27) and (28), one can evaluate the integrals numerically.
Then, Eq. (49) is used for finding the dependence of the radial and circumferential stresses on the dimensionless
radial coordinate.

At the initial instant, it follows from (38), (39), and (43) that

σr

σ0
= −2m

3

ξeq∫
ξb

1

χ

[
1 + λ ln

(
χ

ξ0

)]
dχ = −2m

3
ln

(
ξeq

ξb

)
− mλ

3

[
ln2

(
ξeq

ξ0

)
− ln2

(
ξb

ξ0

)]
,

σθ

σ0
= −2m

3
ln

(
ξeq

ξb

)
− mλ

3

[
ln2

(
ξeq

ξ0

)
− ln2

(
ξb

ξ0

)]
+ m

[
1 + λ ln

(
ξeq

ξ0

)]
. (50)

Equations (32), (37), (41), and (45) result in

ξeq

ξ0
= βc20

ρ3 ,
ξb

ξ0
= βc20,

ξa

ξ0
= β

c0
. (51)

Equations (50) and (51) supply the dependence of the radial and circumferential stresses on the dimensionless
radial coordinate. The pressure over the inner radius of the sphere is determined from (50) as

p = 2m

3
ln

(
ξa

ξb

)
+ 2mλ

3

{
ξ20

ξ2a

[
1 − ln

(
ξa

ξ0

)]
− ξ20

ξ2b

[
1 − ln

(
ξb

ξ0

)]}
. (52)
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Fig. 1 Dependence of the inner pressure required to expand a sphere on α at several values of β. The initial dimensionless inner
radius of the sphere is c0 = 1/2

Fig. 2 Radial distribution of the radial stress in an expanding sphere at several values of α. The initial dimensionless inner radius
of the sphere is c0 = 1/2

Figure 1 depicts the variation of the pressure required to expand a sphere whose initial inner dimensionless
radius is c0 = 1/2 with α for several β− values. The gradient of p is very high at the beginning of the process.
The pressure attains a local maximum as a result of geometric changes. As expected, higher values of β lead to
larger pressures. Figures 2 and 3 show the radial distribution of the radial and circumferential stresses at several
stages of the process for β = 0.1. Monotonic functions of the dimensionless radius represent the distributions
of the radial stress. The circumferential stress attains a local minimum if the value of α is large enough.

The method described at the end of Sect. 2 has been used for solving the problem for a sphere contracted
by external pressure. In this case, the boundary condition (10) is replaced with the boundary condition:

σr = 0 (53)

for ρ = α. Therefore, the stress solution is obtained by adding p shown in Fig. 1 to the stress components
derived in Sect. 3. The dimensionless pressure applied to the external surface is pb = −σr/σ0 where σr is
understood to be calculated at r = b. Figure 4 depicts the variation of this pressure for a sphere whose initial



Finite strain expansion/contraction of a hollow sphere 1121

Fig. 3 Radial distribution of the circumferential stress in an expanding sphere at several values of α. The initial dimensionless
inner radius of the sphere is c0 = 1/2

Fig. 4 Dependence of the outer pressure required to contract a sphere on α at several values of β. The initial dimensionless inner
radius of the sphere is c0 = 1/2

inner dimensionless radius is c0 = 1/2 with α for several β− values. The gradient of p is very high at the
beginning of the process. Both the constitutive equations and geometric changes contribute to the increase in
pb. Therefore, in contrast to the previous case, monotonic functions represent the variation of pb with α. As
in the previous case, higher values of β lead to larger pressures. Figures 5 and 6 show the radial distribution
of the radial and circumferential stresses at several stages of the process for β = 0.1. Monotonic functions of
the dimensionless radius represent the distributions of both stresses.
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Fig. 5 Radial distribution of the radial stress in a contracting sphere at several values of α. The initial dimensionless inner radius
of the sphere is c0 = 1/2

Fig. 6 Radial distribution of the circumferential stress in a contracting sphere at several values of α. The initial dimensionless
inner radius of the sphere is c0 = 1/2

5 Conclusions

The present paper has extended the existing solution for the boundary value problem of thick-walled spheres
subjected to internal and external pressures. The yield stress depends on both the equivalent strain and the
equivalent strain rate, and no restriction is imposed on this dependence. The solution is practically analytic. A
numerical treatment is only necessary to evaluate ordinary integrals. The solution is ready for use in conjunction
with the available approaches for micromechanical modeling of the constitutive behavior of porous materials.
It also can be used for testing numerical procedures for quite a general model of strain-hardening, viscoplastic
materials.

The solution has been facilitated by using Lagrangian coordinates and the equivalent strain as an indepen-
dent variable instead of the natural space coordinate. The reasoning adopted in deriving this solution suggests
that the approach developedwill successfully extend the solutions given in [26–28] to the constitutive equations
used in the present paper.

The illustrative example has adopted a widely used model of viscoplastic hardening materials. The predic-
tions are in agreement with physical expectations. In particular, the pressure required to deform an expanding
sphere attains a maximum at a certain stage of the process (Fig. 1). This feature is a consequence of thinning
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the wall. In contrast, the pressure required to deform a contracting sphere is a monotonic function of the current
inner radius of the sphere. It is evident that the wall is thickening in this process. The expansion/contraction
speed effect is controlled by the parameter β introduced in (45). It is seen from Figs. 1 and 4 that this effect is
more pronounced at smaller β− values. In the case of expanding spheres, the circumferential stress attains a
minimum at a certain radius after a certain amount of expansion (Fig. 3).

The solution is rigid/plastic. Therefore, the distributions of residual stresses and strains cannot be found
strictly speaking. Using the method proposed in [31], one can determine these distributions with high accuracy.
However, it is impossible to apply this method in the case of the constitutive equation adopted in Sect. 4. It
is seen from (42) that σY → ∞ as ξeq → 0. Therefore, this equation is not adequate at small ξeq and has no
sense at ξeq = 0.
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