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Abstract Our study deals with a thermoelastic body with pores. We have added a new independent variable,
namely the time derivative of the voidage.Within the theory of suchmedia, we analyze the spatial and temporal
evolution of solutions. For the spatial behavior, we will prove certain estimations of the Saint-Venant type,
in the situation the bodies are bounded. In the case the bodies are unbounded bodies, to describe the spatial
evolution we consider certain estimations of the Phragmén–Lindelöf type.

Keywords Dipolar structure · Voids · Thermoelastic · Acceleration waves

1 Introduction

The considerations from our study can be used in applications regarding porous bodies, such as geological
bodies, some granular solids and so on.

The granular theory of Goodman and Cowin from [1] is considered the first investigation on porous media.
Here and, also, in the paper [2], the researchers introduced a supplementary degree of freedom to develop the
mechanical evolution of solids with voids so that the interstices are voids and matrix is an elastic material.
There are many applications of this theory, as such materials of geological type, like soil and rocks and, also,
in artificially manufactured materials with pores, as such, ceramics media and pressed powders. In the theory
of Cowin and Nunziato and also in the paper [3], the materials are non-conductors of heat. The basic concept
of these theories is that for these materials the bulk density is stated as a product of two fields, the volume
fraction field and the matrix material density (see also, [4–6]). After that, the theory was extended by Iesan in
[4] to cover the materials with voids for which it is considered the thermal effect. However, the author does not
consider the fact that the changes in the volume fraction have effect on the internal dissipation in the material.

The constitutive equations for porous elastic bodies with incompressible matrix material are derived in
[7]. Chirita and Ciarletta proposed in [8] a time-weighted power function which we will use in the following.
Ciarletta and Scarpetta in [9] give a variational characterization of Gurtin type for the incremental problem
of thermoelasticity for porous dielectric materials. Some refinements to the behavior of solutions for different
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kind of bodies with microstructure and voids can be found in [10–21]. In our paper, we intend to generalize
the theory of Cowin and Nunziato in order to cover the dipolar thermoelastic bodies with voids. To this aim,
we consider the time derivative of the voidage as a new variable in the set of the constitutive variables. This is
to take into account the inelastic effects.

2 Basic equations and conditions

We consider a regular domain D of the Euclidean space R3 occupied at the moment t = 0 by a material which
is dipolar elastic and have voids. The boundary of D is denoted by ∂D and is an enough regular surface to
allow the application of the theorem of divergence. In the initial state of the body, the relation between the
density of bulk, the density of matrix and the fraction of the matrix volume is given by:

�0 = γ0ν0,

where γ0 and ν0 are constants regarding the spatial variables. In order to describe the evolution of our dipolar
body with pores, we will use the following independent variables:

– vm(x, t), φmn(x, t)—the components of displacement and of dipolar displacement with regard to the
initial configuration;

– ϑ—the variation of the temperature from T0, i.e., ϑ(x, t) = T (x, t) − T0;
– ϕ—the variation in volume fraction, regarding the initial configuration, i.e., ϕ(x, t) = ν(x, t) − ν0. With
the help of the motion variables, we can define the tensors of strain, namely emn , εmn , γmnr by means of
the following kinematic equations:

emn = 1

2

(
vm,n + vn,m

)
, εmn = un,m − φmn, γmnr = φmn,r . (1)

We will assume that the body has no flux rate, no intrinsic equilibrated mass forces and it has zero initial stress
and dipolar stress. In all what follows, we will take into account only linear equations and conditions. Hence,
we have to suppose that the internal energy is a quadratic application, with respect to its constitutive functions.
Consequently, the energy principle helps us to state the internal energy in the following form:


 = 1

2
Ai jmnei j emn + Gi jmnei jεmn + Fi jmnr ei jγmnr

+1

2
Bi jmnεi jεmn + Di jmnrεi jγmnr + 1

2
Ci jkmnrγi jkγmnr

+ai jkei jϕ,k + bi jkεi jϕ,k + ci jkmγi jkϕ,m − aiϑϕ,i − 1

2
cϑ2

−αi j ei jϑ − βi jεi jϑ − δi jkγi jkϑ + 1

2
di jϕ,iϕ, j + 1

2
κi jϑ,iϑ, j . (2)

We can use a procedure proposed in the paper Nunziato and Cowin [3] in order to obtain:

tmn = ∂


∂emn
, τmn = ∂


∂εmn
, mi jk = ∂


∂γi jk
, hm = ∂


∂ϕ,m
, S = −∂


∂ϑ
, qm = ∂


∂ϑ,m
.

In thisway,we obtain the connections between the tensors of deformation and the stress, namely the constitutive
equations:

ti j = Ai jmnemn + Gmni jεmn + Fmnri jγmnr + ai jkϕ,k − αi jϑ,

τi j = Gi jmnemn + Bi jmnεmn + Di jmnrγmnr + bi jkϕ,k − βi jϑ,

mi jk = Fi jkmnemn + Dmni jkεmn + Ci jkmnrγmnr + ci jkrϕ,r − δi jkϑ,

hi = ai jke jk + bi jkε jk + ci jkrγ jkr + di jϕ, j − aiϑ,

S = αi j ei j + βi jεi j + ci jkγi jk + aiϕ,i + cθ,

qi = κi jθ, j .

(3)
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Based on the fact that the tensor of deformations ei j is a symmetric one (see Eq. (1)1), we obtain the following
relations of symmetry:

A jkmn = Akjmn = Amnjk, G jkmn = Gkjmn, Fjkmnr = Fkjmnr ,

C jklmnr = Cmnr jkl , dmn = dnm, αmn = αnm, κmn = κnm . (4)

With the help of the same suggestion from Nunziato and Cowin [2], we can deduce the next main balances
(see also [4]):

- the equations of motion:

(tmn + τmn),n + � fm = �v̈m,

mi jk,i + τ jk + �g jk = I jm φ̈km; (5)

- **the equation of the equilibrated forces:

hm,m + �l = �kϕ̈; (6)

- the balance of the energy:

�T0η̇ = qm,m + �r. (7)

In above equations remained unspecified the next notations: S— the mass entropy, k—the inertia of balancing,
Imn—the inertia, hm—a vector of stress, qm—the vector of flux of heat, fm , gm , l—body forces and r— heat
supply. The entropy inequality implies

kmnϑ,mϑ,n ≥ 0. (8)

The motion equations (5) are similar to the classical motion equations of motion and Eq. (6) is the same
balance of energy as the classical case. A new equation is (5), which is for the balance of equilibrated force.
A motivation for the presence of this equation can be made using a variational reason, as proposed in [2].

Suppose the coefficients in the constitutive relations (3) are functions of classC1(D̄).Moreover, we suppose
that the functions a, � and κ are strictly positive in the domain D̄, that is

�(x) ≥ �0 > 0, κ(x) ≥ κ0 > 0, a(x) ≥ a0 > 0, (9)

where �0, κ0(x) and a0 are constants. The conductivity tensor kmn is positive definite, is symmetric and
satisfies the conditions:

kmϑ,rϑ,r ≤ krsϑ,rϑ,s ≤ kMϑ,rϑ,r , (10)

where km and kM represent the minimum value and maximum value of the conductivity tensor, respectively.
Considering the constitutive relation (3)6 and using the inequality of Schwartz, the double inequality (10) led
to:

qmqm = (
kmnϑ,n

)
qi ≤ (

krsϑ,rϑ,s
)1/2

(kmnqmqn)
1/2 ≤ (

krsϑ,rϑ,s
)1/2

(kMqnqn)
1/2 , (11)

such that we can conclude that

qmqm ≤ kMkmnϑ,mϑ,n . (12)

Assume that the function of free energy 
, expressed in (2), is a quadratic application for which we can find
the constants μm > 0 and μM > 0 so that the following double inequality is satisfied:

μm
(
emnemn + εmnεmn + γmnrγmnr + ϕ,mϕ,m

) ≤ 2E
≤ μM

(
emnemn + εmnεmn + γmnrγmnr + ϕ,mϕ,m

)
. (13)

In the following, we will use a linear space, with specific norm, as the set of all components of displacements.
This will be denoted by S13 and is a thirteen-dimensional space containing the displacement fields V, as
follows:

V = {vm, φmn, ϕ} . (14)
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The space S13 can be equipped with the following inner product

V . W = vmwm + φmnψmn + ϕχ, V = {vm, φmn, ϕ} , W = {wm, ψmn, χ} . (15)

As usual, the norm for a vector field W = {wm, ψmn, χ} ∈ S13, induced by this inner product, is given by
(see [22,23]):

|W| = (W . W)1/2 = (
wmwm + ψmnψmn + χ2)1/2 . (16)

It is clear that the state of strain can be characterized with the help of the fields

E(V) = {
emn(V), εmn(V), γmnr (V), ϕ,m(V)

}
, (17)

where, according to (3), we have

emn(V) = 1

2

(
vm,n + vn,m

)
, εmn(V) = vm,n − φmn, γmnr (V) = φnr,m . (18)

Let us introduce the vector space of the strains, that is, having components described in (17). We will denote
by E the space of the strains and we will endow it with the next norm:

|E | = √
(E . E) = (

emnemn + εmnεmn + γmnrγmnr + ϕ,mϕ,m
)1/2

. (19)

For any E ∈ E , we consider the set S(E) defined by:

S(E) = {
Ti j (E), Ti j (E), Mi jk(E), Hi (E)

}
,

where we used the notations:

Ti j (E) = Ai jmnemn + Gmni jεmn + Fmnri jγmnr + ai jkϕ,k,

Ti j (E) = Gi jmnemn + Bi jmnεmn + Di jmnrγmnr + bi jkϕ,k,

Mi jk(E) = Fi jkmnemn + Dmni jkεmn + Ci jkmnrγmnr + ci jkrϕ,r ,

Hi (E) = ai jke jk + bi jkε jk + ci jkrγ jkr + di jϕ, j . (20)

Considering the above definitions (17), (19), for any S(E) ∈ E we introduce the following norm:

|S(E)| =
{
Ti j (E)Ti j (E) + Ti j (E)Ti j (E) + Mi jk(E)Mi jk(E) + Hi (E)Hi (E)

}1/2
. (21)

Taking into account (17) and (18), we can consider the bilinear application F defined by:

F
(
E (1), E (2)

)
= 1

2

[
Ai jmne

(1)
i j e

(2)
mn + Gi jmn

(
e(1)
i j ε(2)

mn + e(2)
i j ε(1)

mn

)

+Fi jmnr

(
e(1)
i j γ (2)

mnr + e(2)
i j γ (1)

mnr

)
+ Bi jmnε

(1)
i j ε(2)

mn

+Di jmnr

(
ε
(1)
i j γ (2)

mnr + ε
(1)
i j γ (1)

mnr

)
+ Ci jkmnrγ

(1)
i jk γ (2)

mnr

+ai jk
(
ϕ

(1)
,k e(2)

i j + ϕ
(2)
,k e(1)

i j

)
+ bi jk

(
ϕ

(1)
,k ε

(2)
i j + ϕ

(2)
,k ε

(1)
i j

)

+ +ci jkm
(
ϕ(1)

,m γ
(2)
i jk + ϕ(2)

,m γ
(1)
i jk

)
+ di jϕ

(1)
,i ϕ

(2)
, j

]
. (22)

for every E (ν) ∈ E , where

E (ν) =
{
e(ν)
i j , ε

(ν)
i j , γ

(ν)
i jk , ϕ

(ν)
,i

}
, ν = 1, 2.

Taking into account the symmetry relations (7), it is easy to deduce that

F
(
E (1), E (2)

)
= F

(
E (2), E (1)

)
, ∀ E (1), E (2) ∈ E . (23)
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Also, after simple calculations it is easy to find that

F (E, E) = 
 (E) , ∀ E ∈ E, (24)

where 
 is the free energy function defined by (2). Based on the double inequality (13), with the help of the
Schwarz’s inequality, we can deduce:

F
(
E (1), E (2)

)
≤

[



(
E (1)

)]1/2 [



(
E (2)

)]1/2
, ∀ E (1), E (2) ∈ E . (25)

By direct calculations, using the relations (20)-(22) we obtain the equality:

|S(E)|2 = Ti j (E)Ti j (E) + Ti j (E)Ti j (E) + Mi jk(E)Mi jk(E) + Hi (E)Hi (E)

= Ai jmnTi j emn + Gi jmnTi jεmn + Fi jmnr Ti jγmnr + ai jkTi jϕ,k

+Gmni jTi j emn + Bmni jTi jεmn + Di jmnrTi jγmnr + bi jkTi jϕ,k

+Fi jkmnMi jkemn + Di jmnMi jkεmn + Ci jmnr Mi jkγmnr + ci jkmMi jkϕ,m

+amni emnHi + bmniεmnHi + cmnriγmnr Hi + di jϕ, j Hi = 2F (E, S(E)) . (26)

By using Eqs. (13), (19), (25) and (26), it results:

|S(E)|2 ≤ 2μM
(E). (27)

Taking into account norm (21) and inequality (27), we get

Ti j (E)Ti j (E) + Ti j (E)Ti j (E) + Mi jk(E)Mi jk(E) + Hi (E)Hi (E) ≤ 2μM
(E), ∀ E ∈ E . (28)

Given two real numbers a and b, we have:

(a + b) (a + b) ≤ (1 + ε)a2 +
(
1 + 1

ε

)
b2, (29)

for any arbitrary positive number ε. With the help of relations (3), (20) and inequality (29), inequality (28)
gives us:

ti j ti j + τi jτi j + mi jkmi jk + hihi = (
Ti j − αi jϑ

) (
Ti j − αi jϑ

)

+ (
Ti j − βi jϑ

) (
Ti j − βi jϑ

) + (
Mi jk − δi jkϑ

) (
Mi jk − δi jkϑ

)

+ (Hi − γiϑ) (Hi − γiϑ) ≤ (1 + ε)Ti j Ti j +
(
1 + 1

ε

)
αi jαi jϑ

2

+(1 + ε)Ti jTi j +
(
1 + 1

ε

)
βi jβi jϑ

2 + (1 + ε)Mi jkMi jk

+
(
1 + 1

ε

)
δi jkδi jkϑ

2 + (1 + ε)Hi Hi +
(
1 + 1

ε

)
aiaiϑ

2

≤ (1 + ε)2μM
(E) +
(
1 + 1

ε

)
M2ϑ2, ∀ ε > 0, (30)

where we have used the notation

M2 = max
D̄

(
αi jαi j + βi jβi j + δi jkδi jk + aiai

)
. (31)

In order to complete the basic mixed problem in the context of theory of thermoelastic media with pores and
dipolar structure, we need to give some of the boundary relations and initial values. Moreover, we need to add
some of the initial values. So, initial values have the form:

vm(0, x) = v0m(x), v̇m(0, x) = v1m(x), x ∈ D̄,

φmn(0, x) = φ0
mn(x), φ̇mn(0, x) = φ1

mn(x), x ∈ D̄,

ϑ(0, x) = ϑ0(x), ϕ(0, x) = ϕ0(x), ϕ̇(0, x) = ϕ1(x), x ∈ D̄. (32)
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We prescribe the boundary relations in the following form:

vm = v̄m on ∂D1 × [0,∞), tm ≡ (tkm + τkm) nk = t̄m on ∂Dc
1 × [0, ∞),

φmn = φ̄mn on ∂D2 × [0, ∞), mi j ≡ mi jknk = m̄i j on ∂Dc
2 × [0,∞),

ϕ = ϕ̄ on ∂D3 × [0, ∞), h ≡ hknk = h̄ on ∂Dc
3 × [0,∞),

ϑ = ϑ̄ on ∂D4 × [0,∞), q ≡ qknk = q̄ on ∂Dc
4 × [0, ∞), (33)

where ∂D1, ∂D2, ∂D3 and ∂D4 with respective complements ∂Dc
1, ∂D

c
2, ∂D

c
3 and ∂Dc

4 are subsets of ∂D, nk
are the elements of the normal oriented to the exterior of ∂D. Also v0m, v1m, φ0

mn, φ1
mn, ϑ0, ϕ0, ϕ1, v̄m,

t̄m, φ̄mn, m̄i j , ϕ̄, ϑ̄, q̄ and h̄ are prescribed continuous functions in their domains. Introducing Eq. (3) into
Eqs. (5), (6) and (7), we obtain the following system of equations

�v̈i = [(
Ai jmn + Gmni j

)
emn + (

Gmni j + Bmni j
)
εmn

+ (
Fmnri j + Di jmnr

)
γmnr + (

ai jk + bi jk
)
ϕ,k − (

αi j + βi j
)
ϑ

]
, j + � fi ,

Ikm φ̈lm = (
Fjklmnemn + Dmnjklεmn + Ckl jmnrγmnr + c jklmϕ,m − δk jlϑ

)
, j

+Gklmnemn + Bklmnεmn + Dklmnrγmnr + bklmϕ,m − βklϑ + �gkl ,

�κϕ̈ = (
amni emn + bmniεmn + cmnriγmnr + di jϕ, j − aiϑ

)
,i + �l,

aϑ̇ = 1

�T0
(ki jϑ, j ),i + 1

T0
r − αi j ėi j − βi j ε̇i j − δi jk γ̇i jk − ai φ̇i . (34)

We denote by P the mixed problem composed of system of Eq. (37), the initial data (35) and the boundary
relations (36). An ordered array (vm, φmn, ϕ, ϑ) is a solution of the mixed problem P in the thermoelasticity
theory of dipolar porous media, if it satisfies the system of Eq. (34) for all (x, t) ∈ �0 = D × [0,∞), the
boundary relations (33) and the initial data (32).

3 Preliminary auxiliary estimates

The integral identities that we demonstrate in this section are helpful in obtaining the behavior of any solution
of the mixed problem P .

Theorem 1 Consider a solution (vm, φmn, ϕ, ϑ) of the mixed problem P . Then, the following law of conser-
vation for the energy is satisfied:

∫

D
e−λt

{
1

2

[
�v̇m(t)v̇m(t) + Imnφ̇mr (t)φ̇nr (t) + �κϕ̇2(t)

] + 
(E(t)) + 1

2
aϑ2(t)

}
dV

+
∫ t

0

∫

D
e−λs λ

2

[
�v̇m(s)v̇m(s) + Imnφ̇mr (s)φ̇nr (s) + �κϕ̇2(s)

]
dVdτ

+
∫ t

0

∫

D
e−λs

[
λ

2
aϑ2(s) + 1

T0
kmnϑ,m(s)ϑ,n(s) + λ
(E(s))

]
dVdτ

=
∫

D

{
1

2

[
�v̇m(0)v̇m(0) + Imnφ̇mr (0)φ̇nr (0) + �κϕ̇2(0)

] + 
(E(0)) + 1

2
aϑ2(0)

}
dV

+
∫ t

0

∫

D
e−λs�

[
v̇m(s) fm(s) + φ̇mn(s)gmn(s) + ϕ̇(s)l(s) + 1

T0
ϑ(s)r(s)

]
dVdτ

+
∫ t

0

∫

∂D
e−λs

[
tm(s)v̇m(s) + mkl(s)φ̇kl(s) + h(s)ϕ̇(s) + 1

T0
q(s)ϑ(s)

]
d Adτ, (35)

for λ > 0 a known parameter, the sizes ti ,mi , h and q introduced in (33) and for t ≥ 0.
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Proof By direct calculations, based on Eq. (37), the constitutive relations (3), the kinematic conditions (1) and
the relations of symmetry (7), it results:

d

dτ

{
1

2

[
�v̇m(s)v̇m(s) + Imnφ̇mr (s)φ̇nr (s) + �κϕ̇2(s)

] + 
(E(s)) + 1

2
aϑ2(s)

}

+ 1

T0
kmnϑ,m(s)ϑ,n(s)

= �

[
v̇m(s) fm(s) + φ̇mn(s)gmn(s) + ϕ̇(s)l(s) + 1

T0
ϑ(s)r(s)

]

+
[
tmj (s)v̇m(s) + mi jk(s)φ̇ik(s) + h j (s)ϕ̇(s) + 1

T0
q j (s)ϑ(s)

]

, j
(36)

In (36), we multiply by e−λs , after that the obtained equality is integrated over D × [0, t]. But the boundary
∂D has the degree of regularity that allows the application of the theorem of divergence and, based on this, we
obtain the proposed identity (35) and so the proof of Theorem 1 is ended. �	
Theorem 2 Let (vm, φmn, ϕ, ϑ) be an arbitrary solution of P . Then, the following equality is satisfied:

2
∫

D

[
�vm(t)v̇m(t) + Imnφmr (t)φ̇nr (t) + �κϕ(t)ϕ̇(t)

+ 1

T0
kmn

(∫ t

0
ϑ,m(s)dτ

)(∫ t

0
ϑ,n(s)dτ

)]
dV

= 2
∫ t

0

∫

D

[
�v̇m(s)v̇m(s) + Imnφ̇mr (s)φ̇nr (s) + �κϕ̇2(s) − 2
(E(s)) − aϑ2(s)

]
dVdτ

+2
∫ t

0

∫

D
�η(0)ϑ(s)dVdτ + 2

∫

D

[
�vm(0)v̇m(0) + Imnφmr (0)φ̇nr (0) + �κϕ(0)ϕ̇(0)

]
dV

+2
∫ t

0

∫

D
�

[
fm(s)vm(s) + gmn(s)φmn(s) + l(s)ϕ(s) + 1

T0
ϑ(s)

∫ s

0
r(z)dz

]
dVdτ

+2
∫ t

0

∫

D
�η(0)ϑ(s)dVdτ + 2

∫

D

[
�vm(0)v̇m(0) + Imnφmr (0)φ̇nr (0) + �κϕ(0)ϕ̇(0)

]
dV

+2
∫ t

0

∫

∂D

[
tm(s)vm(s) + mkl(s)φkl(s) + h(s)ϕ(s) + 1

T0
ϑ(s)

∫ s

0
q(z)dz

]
d Adτ. (37)

Proof If we use the equations of motion (5)1 and take into account the kinematic equations (1), it results:

d

dτ

[
�vm(s)v̇m(s)

] = �v̇m(s)v̇m(s) + [tmn(s)vm(s)],n − tmn(s)vm,n(s) + �vm(s) fm(s). (38)

By considering of motion equations (5)2 and, again, kinematic equations (1), we obtain:

d

dτ

[
Imnφmr (s)φ̇nr (s)

] = Imnφ̇mr (s)φ̇nr (s) + [
mkl j (s)φkl(s)

]
, j

−mkl j (s)ϕkl, j (s) + �φmn(s)gmn(s). (39)

By adding equalities (38) and (39), we find the relation:

d

dτ

[
�vm(s)v̇m(s) + Imnφmr (s)φ̇nr (s)

] = �v̇m(s)v̇m(s)

+Imnφ̇mr (s)φ̇nr (s) + [tmn(s)vm(s) + mkln(s)φkl(s)],n
−tmn(s)emn(s) − τmn(s)εmn(s) − mkl j (s)γkl j (s). (40)
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Based on the constitutive Eqs. (3)1 and (3)2, we have:

ti j (s)ei j (s) = Ai jmnei j (s)emn(s) + Gi jmnei j (s)εmn(s) + Fmnri j ei j (s)γmnr (s)

+2ai jkφ,k(s)ei j (s) − [
ai jkφ,k(s)ei j (s) + αi jϑ(s)ei j (s)

]
,

τi j (s)εi j (s) = Gi jmnεi j (s)emn(s) + Bi jmnεi j (s)εmn(s) + Di jmnrεi j (s)γmnr (s)

+2bi jkφ,k(s)εi j (s) − [
bi jkφ,k(s)εi j (s) + βi jϑ(s)εi j (s)

]
. (41)

On the other hand, using the constitutive relation (3)3, we deduce:

mi jk(s)γi jk(s) = Fi jmnr ei j (s)γmnr (s) + Dmnri jεi j (s)γmnr (s)

+Ci jkmnkγi jk(s)γmnr (s) + 2ci jklφ,l(s)γi jk(s) − [
ci jklφ,l(s)γi jk(s) + δi jkϑ(s)γi jk(s)

]
. (42)

By adding relations (41) and (42) together, we obtain

ti j (s)ei j (s) + τi j (s)εi j (s) + mi jk(s)γi jk(s)

= +Ai jmnei j (s)emn(s) + 2Gmni j ei j (s)εmn(s) + 2Fmnri j ei j (s)γmnr (s)

+Bi jmnεi j (s)εmn(s) + 2Di jmnrεi j (s)γmnr (s) + Ci jkmnrγi jk(s)γmnr (s)

+2ai jkφ,k(s)ei j (s) + 2bi jkφ,k(s)εi j (s) + 2ci jklφ,l(s)γi jk(s)

− [
ai jkφ,k(s)ei j (s) + αi jϑ(s)ei j (s)

]

− [
bi jkφ,k(s)εi j (s) + βi jϑ(s)εi j (s)

]

− [
ci jklφ,l(s)γi jk(s) + δi jkϑ(s)γi jk(s)

]
. (43)

Using formulas (3)3–(3)5 and (1), we can write the previous parentheses as follows:

[
ai jkei j (s) + bi jkεi j (s) + ci jlkγi jl(s)

]
φ,k(s)

+ [
αi j ei j (s) + βi jεi j (s) + δi jkγi jk(s)

]
ϑ(s)

= −di jφ,i (s)φ, j (s) − aϑ2(s) + �η(s)ϑ(s). (44)

By integrating the equation of energy (7), we obtain the following equality:

�η(s) − �η(0) = 1

T0

∫ s

0
qm,m(z)dz + �

T0

∫ s

0
r(z)dz. (45)

With the help of relations (6) and (45), we get:

hm,m(s)ϕ(s) − �η(s)ϑ(s) = [
�κϕ̈(s) − �L(s)

]
ϕ(s) − �η(0)ϑ(s)

− �

T0

∫ s

0
r(z)dz −

[
1

T0
ϑ(s)

∫ s

0
qm(z)dz

]

,m
+ 1

T0
ϑ,m(s)

∫ s

0
qm(z)dz. (46)

Based on the constitutive relation (3)6, equality (46) can be rewritten as follows:

hm,m(s)ϕ(s) − �η(s)ϑ(s) = −�κϕ̇2(s) − �η(0)ϑ(s)

+ d

dτ

[
�κϕ(s)ϕ̇(s) + 1

2T0
kmn

(∫ s

0
ϑ,m(z)dz

)(∫ s

0
ϑ,n(z)dz

)]

−�

[
L(s)ϕ(s) + 1

T0
ϑ(s)

∫ s

0
r(z)dz

]
−

[
1

T0
ϑ(s)

∫ s

0
qm(z)dz

]

,m
. (47)
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If we enter the results from (43), (44) and (47) into the identity (40), we are led to the equality:

d

dτ

[
2�vm(s)v̇m(s) + 2Imnφmr (s)φ̇nr (s) + 2�κϕ(s)ϕ̇(s)

+ 1

T0
kmn

(∫ s

0
ϑ,m(z)dz

)(∫ s

0
ϑ,n(z)dz

)]

= 2�v̇m(s)v̇m(s) + 2Imnφ̇mr (s)φ̇nr (s) + 2�κϕ̇2(s) − 2
[
2
(E(s)) + aϑ2(s)

]

+2�

[
fm(s)vm(s) + gmn(s)φmn(s) + l(s)ϕ(s) + 1

T0
ϑ(s)

∫ s

0
r(z)dz

]

+2

[
tnm(s)vm(s) + mmnj (s)φmj (s) + hn(s)ϕ(s) + 1

T0
ϑ(s)

∫ s

0
qn(z)dz

]

,n

+2�η(0)ϑ(s). (48)

Finally, by integrating identity (51) on D × [0, t] and, after that, using the theorem of divergence we obtain
equality (40) and so we end the proof of Theorem 2. �	
Theorem 3 Consider (vm, φmn, ϕ, ϑ) a solution of P . The following equality is satisfied:

2
∫

D

[
�vm(t)v̇m(t) + Imnφmr (t)φ̇nr (t) + �κϕ(t)ϕ̇(t)

+ 1

T0
kmn

(∫ t

0
ϑ,m(s)dτ

) (∫ t

0
ϑ,n(s)dτ

)]
dV

=
∫

D

{
� [vm(0)v̇m(2t) + v̇m(0)vm(2t)] + Imn

[
φmr (0)φ̇nr (2t) + φ̇mr (0)φnr (2t)

]}
dV

+
∫

D
�κ [ϕ(0)ϕ̇(2t) + ϕ̇(0)ϕ(2t)] dV +

∫ t

0

∫

D
�η(0) [ϑ(t − τ) − ϑ(t + τ)] dVdτ

+
∫ t

0

∫

D
� [vm(t + τ) fm(t − τ) − vm(t − τ) fm(t + τ)] dVdτ

+
∫ t

0

∫

D
Imn [φmr (t + τ)gnr (t − τ) − φmr (t − τ)gnr (t + τ)] dVdτ

+
∫ t

0

∫

D
[ϕ(t + τ)l(t − τ) − ϕ(t − τ)l(t + τ)] dVdτ

+
∫ t

0

∫

D

1

T0

[
ϑ(t − τ)

∫ t+s

0
r(z)dz − ϑ(t + τ)

∫ t−s

0
r(z)dz

]
dVdτ

+
∫ t

0

∫

∂D
[vm(t + τ)tm(t − τ) − vm(t − τ)tm(t + τ)] d Adτ

+
∫ t

0

∫

∂D
[φmn(t + τ)gmn(t − τ) − φmn(t − τ)gmn(t + τ)] d Adτ

+
∫ t

0

∫

∂D
[ϕ(t + τ)h(t − τ) − ϕ(t − τ)h(t + τ)] d Adτ

+
∫ t

0

∫

∂D

1

T0

[
ϑ(t − τ)

∫ t+s

0
q(z)dz − ϑ(t + τ)

∫ t−s

0
q(z)dz

]
d Adτ. (49)

Proof Using simple calculations, we deduce:

− d

dτ

{
� [vm(t + τ)v̇m(t − τ) + v̇m(t + τ)vm(t − τ)]

}

= � [vm(t + τ)v̈m(t − τ) − vm(t − τ)v̈m(t + τ)] , s ∈ [0, t], t ∈ [0, ∞). (50)
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With the help of the motion equations (5)1, can be rewrite term from the right side of (50) in the following
form:

� [vm(t + τ)v̈m(t − τ) − vm(t − τ)v̈m(t + τ)]

= � [vm(t + τ) fm(t − τ) − vm(t − τ) fm(t + τ)]

+ [vm(t + τ)tnm(t − τ) − vm(t − τ)tnm(t + τ)],n
+ [

vm,n(t − τ)tnm(t + τ) − vm,n(t + τ)tnm(t − τ)
]
. (51)

Hence, based on Eq. (51), equality (50) becomes:

− d

dτ

{
� [vm(t + τ)v̇m(t − τ) + v̇m(t + τ)vm(t − τ)]

}

= � [vm(t + τ) fm(t − τ) − vm(t − τ) fm(t + τ)]

+ [vm(t + τ)tnm(t − τ) − vm(t − τ)tnm(t + τ)],n
+ [

vm,n(t − τ)tnm(t + τ) − vm,n(t + τ)tnm(t − τ)
]
. (52)

Clearly, we have

− d

dτ

{
Imn

[
φmr (t + τ)φ̇nr (t − τ) + φ̇mr (t + τ)φnr (t − τ)

]}

= Imn
[
φmr (t + τ)φ̈nr (t − τ) − φmr (t − τ)φ̈nr (t + τ)

]
, s ∈ [0, t], t ∈ [0,∞). (53)

Based on Eq. (5)2, the last term in (53) receives the following form:

Imn

[
φmr (t + τ)φ̈nr (t − τ) − φmr (t − τ)φ̈nr (t + τ)

]

= � [φmn(t + τ)gmn(t − τ) − φmn(t − τ)gmn(t + τ)]

+ [
φkl(t + τ)mkl j (t − τ) − φkl(t − τ)mkl j (t + τ)

]
, j

+ [
φkl, j (t − τ)mkl j (t + τ) − φkl, j (t + τ)mkl j (t − τ)

]
. (54)

Considering identity (54), equality (53) can be rewritten as follows:

− d

dτ

{
Imn

[
φmr (t + τ)φ̇nr (t − τ) + φ̇mr (t + τ)φnr (t − τ)

]}

= � [φmn(t + τ)gmn(t − τ) − φmn(t − τ)gmn(t + τ)]

+ [
φkl(t + τ)mkl j (t − τ) − φkl(t − τ)mkl j (t + τ)

]
, j

+ [
φkl, j (t − τ)mkl j (t + τ) − φkl, j (t + τ)mkl j (t − τ)

]
. (55)

By adding the relations (55) and (52) and using the kinematic equations (1), we find the following equality:

− d

dτ

{
� [vm(t + τ)v̇m(t − τ) + v̇m(t + τ)vm(t − τ)]

}

− d

dτ

{
Imn

[
φmr (t + τ)φ̇nr (t − τ) + φ̇mr (t + τ)φnr (t − τ)

]}

= � [vm(t + τ) fm(t − τ) − vm(t − τ) fm(t + τ)]

+� [φmn(t + τ)gmn(t − τ) − φmn(t − τ)gmn(t + τ)]

+ [vm(t + τ)tmn(t − τ) − vm(t − τ)tmn(t + τ)],n
+ [

φkl(t + τ)mkl j (t − τ) − φkl(t − τ)mkl j (t + τ)
]
, j

+ [tmn(t + τ)emn(t − τ) − tmn(t − τ)emn(t + τ)]

+ [τmn(t + τ)εmn(t − τ) − τmn(t − τ)εmn(t + τ)]

+ [
mkl j (t + τ)γkl j (t − τ) − mkl j (t − τ)γkl j (t + τ)

]
. (56)
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We now intend to obtain another expression for the last two terms from identity (56). With the help of the
constitutive relations (3)1-(3)5, we get:

[tmn(t + τ)emn(t − τ) − tmn(t − τ)emn(t + τ)]

[tmn(t + τ)εmn(t − τ) − tmn(t − τ)εmn(t + τ)]

+ [
mkl j (t + τ)γkl j (t − τ) − mkl j (t − τ)γkl j (t + τ)

]

= [
hm(t − τ)ϕ,m(t + τ) − hm(t + τ)ϕ,m(t − τ)

]

+� [ϑ(t − τ)η(t + τ) − ϑ(t + τ)η(t − τ)] . (57)

Considering Eq. (6) for the balance of the equilibrated forces and the kinematic equations (1), we deduce:

hm(t − τ)ϕm(t + τ) − hm(t + τ)ϕm(t − τ)

= [hm(t − τ)ϕ(t + τ) − hm(t + τ)ϕ(t − τ)],m
+� [ϕ(t + τ)l(t − τ) − ϕ(t − τ)l(t + τ)]

+�κ [ϕ(t − τ)ϕ̈(t + τ) − ϕ(t + τ)ϕ̈(t − τ)] . (58)

Now we use the relation (7) in order to obtain:

� [ϑ(t − τ)η(t + τ) − ϑ(t + τ)η(t − τ)] = �η(0) [ϑ(t − τ) − ϑ(t + τ)]

+ �

T0

[
ϑ(t − τ)

∫ t+τ

0
r(z)dz − ϑ(t + τ)

∫ t−τ

0
r(z)dz

]

+ 1

T0

[
ϑ(t − τ)

∫ t+τ

0
qm(z)dz − ϑ(t + τ)

∫ t−τ

0
qm(z)dz

]

,m

+ 1

T0
kmn

[
ϑ,m(t + τ)

∫ t−s

0
ϑ,m(z)dz − ϑ,m(t − τ)

∫ t+s

0
ϑ,m(z)dz

]
. (59)

We now substitute the results from identities (59) and (58) into (57) and the identity that results is substituted
in (56). In this way, we deduce:

− d

dτ

{
� [vm(t + τ)v̇m(t − τ) + v̇m(t + τ)vm(t − τ)]

}

− d

dτ

{
Imn

[
φmr (t + τ)φ̇nr (t − τ) + φ̇mr (t + τ)φnr (t − τ)

]}

− d

dτ

{
�κ [ϕ(t − τ)ϕ̇(t + τ) + ϕ(t + τ)ϕ̇(t − τ)]

}

− d

dτ

[
1

T0
kmn

(∫ t+τ

0
ϑ,m(z)dz

)(∫ t−τ

0
ϑ,n(z)dz

)]

= � [vm(t + τ) fm(t − τ) − vm(t − τ) fm(t + τ)]

+� [φmn(t + τ)gmn(t − τ) − φmn(t − τ)gmn(t + τ)]

+� [ϕ(t + τ)l(t − τ) − ϕ(t − τ)l(t + τ)]

+ �

T0

[
ϑ(t − τ)

∫ t+τ

0
r(z)dz − ϑ(t + τ)

∫ t−τ

0
r(z)dz

]

+�η(0) [ϑ(t − τ) − ϑ(t + τ)]

+ [vm(t + τ)tmn(t − τ) − vm(t − τ)tmn(t + τ)],n
+ [

φkl(t + τ)mkl j (t − τ) − φkl(t − τ)mkl j (t + τ)
]
, j

+ [hm(t − τ)ϕ(t + τ) − hm(t + τ)ϕ(t − τ)],m

+ 1

T0

[
ϑ(t − τ)

∫ t+τ

0
qm(z)dz − ϑ(t + τ)

∫ t−τ

0
qm(z)dz

]

,m
. (60)

Finally, identity (60) is integrated over D × [0, t] so that with the help of the theorem of divergence, we find
the equality (49) and so we end the proof of Theorem 3. �	
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4 Evolution of solutions

Weneed some auxiliary results in order to obtain the basic results of the present section, regarding the evolution
of solutions of P , as it is defined in Sect. 2.

We assume that the dipolar porous body occupies, at the initial time t = 0, a regular domain D of
three-dimensional space R3. The border of D is noted by ∂D and it must allow the application of the theorem
of divergence. Fixing T > 0, we can define a new space�T , consists of any x ∈ D̄, in the following situations:

1. If x ∈ D, then

v0m(x) 
= 0 or v1m(x) 
= 0 or φ0
mn(x) 
= 0 or φ1

mn(x) 
= 0 or

ϕ0(x) 
= 0 or ϕ1(x) 
= 0 or ϑ0(x) 
= 0 or η0(x) 
= 0 or (61)

fm(t, x) 
= 0 or gmn(t, x) 
= 0 or l(t, x) 
= 0 or r(t, x) 
= 0, t ∈ [0, T ]. (62)

2. If x ∈ ∂D, then

v̄m(t, x) 
= 0 or t̄m(t, x) 
= 0 or φ̄kl(t, x) 
= 0 or m̄kl(t, x) 
= 0 or

ϕ̄(t, x) 
= 0 or h̄(t, x) 
= 0 or ϑ̄(t, x) 
= 0 or η̄(t, x) 
= 0, t ∈ [0, T ]. (63)

From the above situations, we can observe that the space�T is, in fact, the support for the boundary and initial
conditions and, also, for the body charges for the problem P , considered on [0, T ]. For R ≥ 0, we define the
set �R , defined by

�R =
{
x̄ ∈ D̄ : �∗

R ∩ S̄(x, t) 
= 0
}

. (64)

Here, we denoted by S̄(x, t) the ball with center at x and having radius r . We have also noted with �∗
T the

smallest regular surface of ∂D that includes �T .
In what follows, we will use two new notations. So, we will denote by BR a subset of D such that

BR = D \ Dr and for R1 > R2 we set B(R1, R2) = BR2 \ BR1 . Another notation is SR and it is a subset of
∂DR , included inside of D and having the normal oriented to the exterior of DR . Let us consider a solution
(vm, φmn, ϕ, ϑ) of the problem P and associate it with the following time-weighted surface power function:

I (R, t) = −
∫ t

0

∫

SR
e−λs

[
tm(s)v̇m(s) + mkl(s)φ̇kl(s) + h(s)ϕ̇(s) + 1

T0
q(s)ϑ(s)

]
d Adτ. (65)

This function is well defined for any t ∈ [0, T ] and any R ≥ 0. In (65) λ > 0 is a given parameter. Also, the
functions tM (s), mkl(s), h(s) and q(s) are introduced in Eq. (33). In the following, we will use the integral of
function I , denoted by J , defined by:

J (R, t) =
∫ R

0
I (R, s)dτ, R ≥ 0, t ∈ [0, T ]. (66)

In the following theorem, we will formulate and prove some properties of the time-weighted surface power
function I , defined in (65).

Theorem 4 Consider the time-weighted function I (R, t), corresponding to a solution (vm, φmn, ϕ, ϑ) of
problem P . For every t ∈ [0, T ] and R ≥ 0, the function I (R, t) has the following properties:
(i). If 0 ≤ R2 ≤ R1, then

I (R1, t) − I (R2, t)

=
∫

B(R1,R2)

e−λt
{
1

2

[
�v̇m(t)v̇m(t) + Imnφ̇mr (t)φ̇nr (t) + �κϕ̇2(t)

] + 1

2
aϑ2(t) + 
(E(t))

}
dV

−
∫ t

0

∫

B(R1,R2)

e−λs
{
1

2

[
�v̇m(s)v̇m(s) + Imnφ̇mr (s)φ̇nr (s) + �κϕ̇2(s)

]}
dVdτ

+ −
∫ t

0

∫

B(R1,R2)

e−λs
{
λ
(E(s)) + λ

2
aϑ2(s) + 1

T0
kmnϑ,m(s)ϑ,m(s)

}
dVdτ. (67)
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(ii). I (R, t) is a continuous differentiable function, with regard to the variable R. By direct derivation, we
obtain:

∂ I

∂R
=

∫

SR
e−λt

{
1

2

[
�v̇m(t)v̇m(t) + Imnφ̇mr (t)φ̇nr (t) + �κϕ̇2(t)

] + 
(E) + 1

2
aϑ2(t)

}
d A

−
∫ t

0

∫

SR
e−λs

{
1

2

[
�v̇m(s)v̇m(s) + Imnφ̇mr (s)φ̇nr (s) + �κϕ̇2(s)

]
}
d Adτ

+ −
∫ t

0

∫

SR
e−λs

{
λ
(E(s)) + λ

2
aϑ2(s) + 1

T0
kmnϑ,m(s)ϑ,n(s)

}
d Adτ. (68)

(iii). I (R, t) is a non-increasing function with respect to R.
(iv). For each R ≥ 0, I (R, t) is a solution of differential inequality, of first order, of the form (see also [24]):

∂ I

∂R
(R, t) + λ

c

∣∣
∣ I (R, t)

∣∣
∣ ≤ 0, (69)

in which we have used the notation:

c =
√

(1 + ε0) μM

�0
. (70)

Also, ε0 > 0 is a solution root of the following second-order equation:

x2 + x

(
1 − M2

a0μM
− λ�0kM

2a0T0μM

)
− M2

a0μM
= 0. (71)

(v). Function I (R, t) is positive.

Proof For R1 ≥ R2 ≥ 0, we will insert B(R1, R2) instead of D in Theorem 1. Taking into account the
definitions of B(R1, R2) and I (R, t), by using identity (35) we obtain the statement i). If we use the hypotheses
(9) and (10), taking into account the equality (67) we obtain the affirmation ii). Also, part iii). follows from
(67) with the aid of inequalities (13). Let us prove the assertion iv). Applying the inequality of Schwarz and
the mean inequality from (65), we get:

∣∣
∣ I (R, t)

∣∣
∣ ≤

∫ t

0

∫

SR
e−λs

{
ε1

2�0
[tmn(s)tmn(s) + τmn(s)τmn(s) + mmnr (s)mmnr (s)+

+hm(s)hm(s)] + 1

2ε1

[
�v̇m(s)v̇m(s) + Imnφ̇mr (s)φ̇nr (s) + �κϕ̇2]

+ ε2

2T0a0
qm(s)qm(s) + 1

2T0ε2
aϑ2(s)

}
d Adτ

≤
∫ t

0

∫

SR
e−λs

{
1

λε1
.
λ

2

[
�v̇m(s)v̇m(s) + Imnφ̇mr (s)ϕ̇nr (s) + �κϕ̇2(s)

] +

+ε1(1 + ε)μM

λ�0
.λ
(E(s)) +

[
ε1M2

λa0�0

(
ε + 1

ε

)
+ 1

λT0ε2

]
.
λ

2
aϑ2(s)

+ε2kM
2a0

.
1

T0
kmnϑ,m(s)ϑ,n(s)

}
d Adτ, R ≥ 0, 0 ≤ t ≤ T, ∀ ε1, ε2 > 0. (72)

Now, the integral from the right-side hand of (72), we equate energy coefficients:

1

λε1
= ε1(1 + ε)μM

λ�0
= ε1M2

λa0�0

(
ε + 1

ε

)
+ 1

λT0ε2
= ε2kM

2a0
(73)

In view of (73) we set

ε1 = 1

c
, ε2 = 2a0c

λkM
, (74)

where c has the expression (70). So, taking into account relations (68) and (72) we obtain the relation (69). To
prove the result v) it is sufficient to use the definitions of the set �T and of the power function I (R, t) and,
also, the assertion iii). With this, the proof of Theorem 4 is complete. �	
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Corollary The function J (R, t) defined in (69) satisfies a first-order differential inequality of the form
∣∣∣ J (R, t)

∣∣∣ + tγ (t)
∂ J

∂r
(R, t) ≤ 0, 0 ≤ t ≤ T, R ≥ 0, (75)

where we have used the notation:

γ (t) =
√

(1 + δ0(t)) μM

�0
, (76)

in which δ0(t) is a solution of the following second-order equation:

ξ2 + ξ

(
1 − M2

a0μM
− �0kM

2ta0T0μM

)
− M2

a0μM
= 0. (77)

Proof It is no difficult to prove the inequality:
∫ t

0

∫ s

0
f 2(ξ)dξdτ ≤ t

∫ s

0
f 2(ξ)dzξ. (78)

Using the same procedure as in proof of point iv), in Theorem 4, and taking into account inequality (78), we
obtain the inequality (75). �	

Now we can prove the result on the spatial evolution of any solution of the problem P if the domain D is
bounded. As such, behaviors will be appreciated by using the functions J (t, R) and I (t, R).

Theorem 5 Consider a bounded domain D and the time-weighted function I (R, t), corresponding to a solu-
tion (vm, φmn, ϕ, ϑ) of the mixed problem P . We assume that the body charges, the boundary relations and
initial values have as support the set �T , included in the interval [0, T ]. For each t ∈ [0, T ], any solution of
P decays, regarding to the measures I (t, R) and J (t, R), namely

I (t, R) ≤ I (t, 0)e−λR/c, 0 ≤ R ≤ Dd , (79)

J (t, R) ≤ J (t, 0)e−R/(tγ (t)), 0 ≤ R ≤ Dd , (80)

where the diameter Dd is for the domain D \ �∗
T .

Proof In view of the fact that I (R, t) is a positive function and taking into account the expression of the
function J (t, R), we can rewrite both differential inequalities that are fulfilled by the functions I (t, R) and
J (t, R) in the following form:

∂

∂R

[
eλR/c I (t, R)

]
≤ 0, 0 ≤ R ≤ Dd , (81)

∂

∂R

[
eR/(tγ (t)) J (t, R)

]
≤ 0, 0 ≤ R ≤ Dd . (82)

If we integrate inequality (81) with respect to variable R, we obtain the estimation (79), and by integrating
inequality (82) with regard to R, then we deduce the estimation (80). So, the proof of Theorem 5 is completed�	.

We now propose to evaluate the spatial evolution of solution of the mixed problem P in the situation the
dipolar thermoelastic body with pores occupies a domain which is unbounded. In order to achieve this, we
will use certain estimations of the Phragmén–Lindelöf type.

Theorem 6 Let us consider a domain D, which is unbounded, and the time-weighted function I (r, t), cor-
responding to a solution (vm, φmn, ϕ, ϑ) of the mixed problem P , defined on D. We assume that the body
charges and the boundary and initial values have as support the set �T , included in [0, T ]. For each fixed
t ∈ [0, T ], the corresponding solution of the mixed problem P spatially decays, with respect to functions
J (t, R) and I (t, R), in accordance to one of the next cases:

1. If I (t, R) ≥ 0 for all R ≥ 0, then

I (t, R) ≤ I (t, 0)e−λR/c, R ≥ 0, (83)

J (t, R) ≤ J (t, 0)e−R/(tγ (t)), R ≥ 0. (84)
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2. Suppose ∃R1 ≥ 0 so that I (t, R1) < 0. Then, from Theorem 4, point iii), we get I (t, R) ≤ I (t, R1) < 0
and J (t, R) < 0, for all R ≥ R1. In addition, the following estimates hold:

−I (t, R) ≥ −I (t, R1)e
λ(R−R1)/c, R ≥ R1, (85)

−J (t, R) ≥ −J (t, R1)e
(R−R1)/c, 0 ≤ R ≥ R1. (86)

Proof Taking into account the fact I (t, R) is a non-increasing function with respect to r , according to Theorem
4, part (iii), we obtain:

I (t, R) ≥ 0, for any R ≥ 0.

Then, we are led to the conclusion that the differential inequality (69), fulfilled by the function I (t, R), can be
stated in the form (81). So, we obtained the estimation (83). Similarly, inequality (75), fulfilled by the function
J (t, R), can be stated as in (82). So, we obtained the estimation (84). If we assume that there exists R1 ≥ 0 so
that I (t, R) ≤ 0, then from Theorem 4, part iii) we obtain:

I (t, R) < I (t, R1) ≤ 0,

for any R ≥ R1. Under these conditions, the differential inequality (69) becomes:

∂

∂R

[
e−λR/c I (t, R)

]
≤ 0, R ≤ R1, (87)

and hence, by integration with respect to R, we obtain (85). Also, since I (t, R) ≤ 0 we obtain J (t, R) ≤ 0,
considering the expression (66) of the function J (t, R). Because of this, inequality (75) becomes:

∂

∂R

[
e−λR/(tγ (t)) J (t, R)

]
≤ 0, R ≤ R1, (88)

and hence, by integration with respect to R, we obtain (86). This ends the proof of Theorem 6. �	

5 Conclusions

Let us make an analysis of the previous estimates demonstrated in our study. So, we deduced the estimates
(79), (83) and (85), which are conveniently for certain short moments of time, while the estimations (80),
(84) and (86) are conveniently for certain long values of the time variable. This is why we have coupled the
demonstrations of the previous estimates, like this: (79) is coupled with (80), (83) is coupled with (84), and (85)
is coupled with (86). With these couplings, we can get a comprehensive description for the spatial evolution
of any solution of the mixed problem P .
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