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Abstract The mechanical balance equations for a body with microstructure are derived from an expansion of
the general Noll’s axiom of frame-indifference that takes into account the behavior of measures of microstruc-
tural interactions. Next, we introduce perfect internal constraints and adopt an extended determinism principle
to analyze the consequences of their presence. Finally, we define the class of continua with partially con-
strained microstructure to give a complete dynamical description for a broad family of peculiar materials such
as suspensions of rigid rotating granules, pseudo-Cosserat continua and partially constrained micro-spins.

Keywords Multiscale models · Invariance · Continua with microstructure · Internal constraints · Balance
laws

1 Introduction

In continuum mechanics, the possible restrictions to the motion of a material point are represented by the
internal constraints, i.e., any device that limits the positions and/or velocities of the points of a material
system. Classical examples, extensively studied, are the incompressibility in the dynamics of fluids and the
inextensibility in the mechanics of solid elastic materials.

The first complete general mechanical theory of internal constraints was developed by Noll in §30 of [68],
and was generalized to the thermodynamic variables in [46,49,53]. Afterward in [15], the theory was extended
to the dynamics of oriented materials, such as Cosserat brothers’ continua [22,48], and subsequently, more
generally, to the case of continua with microstructure in [17], as well as the diatomic continua are [24,33,40],
or the many examples in the essay [6].

At the end, when the microstructural parameters result to be completely constrained to the macro-
deformation, we obtain the so-called latent microstructure, which includes some other important types of
material, such as continua with voids [43,61], bubbly liquids [8], dilatant granular materials [44,45], Korteweg
fluids [4,28].

The present work concerns the use of internal constraints to expand the mechanical theory developed in
[17,49] in order to study the essential features of media with a microstructure which is partially constrained.
Precisely, we specify, in the list of kinematic order parameters on manifolds which describe the substructures,
the local charts that are free, constrained or linked to the macro-motion, respectively.

Communicated by Andreas Öchsner.

P. Giovine (B)
Department of Civil, Energy, Environment andMaterials Engineering (DICEAM), Mediterranean University of Reggio Calabria,
Reggio Calabria, Italy
E-mail: giovine@unirc.it

http://orcid.org/0000-0002-9526-9541
http://crossmark.crossref.org/dialog/?doi=10.1007/s00161-021-01057-5&domain=pdf


274 P. Giovine

Next, we formulate a principle of extended determinism which permits us to obtain all the pure, i.e.,
reaction-free, mechanical balance laws for the observed material and, subsequently, the remaining balance
equations necessary to determine the corresponding reactions to the constraints.

In the end, we observe that the form of the Cauchy’s equation looks like the classical one, but some
traditional tenets are abandoned, that is, the stress tensor need not have to be symmetric and can depend on
higher time and/or spatial derivatives of displacement.

Afterward, in the last sections of the paper, we use the previous results and consider various general
examples of partially constrained theories of microstructured continuous bodies, focusing attention on the
subdivision of the mechanical response of materials to deformation into its reactive and determined parts, both
in the holonomic and in the anholonomic cases, and we lay down the equations that determine the reactions
once the solution of a pure problem of motion has been found.

Furthermore, the peculiarities of the suspensions of rigid rotating granules in a fluid matrix and of pseudo-
Cosserat continua are here explicitly obtained, while we can already recover other different instances for solids
with nano-pores and soil mechanics (see, e.g., [34,41,42]), as well as in the theory of ephemeral continua
[12].

2 Deformations, configuration spaces and motions in materials with microstructure

We indicate by B∗ the regular region (in the sense of fit regions in [59]) of the three-dimensional Euclidean
point space E3 occupied by the body in its reference placement. If we denote a generic material element of B∗
by x∗, a mapping x̃, acting as

B∗ � x∗
x̃�−→ x = x̃(x∗) ∈ E3 (1)

(and assumed to be one-to-one, continuous and piecewise continuously differentiable), is a deformation: it
indicates the current place x of a generic material element of the body resting at x∗ in B∗; the current deformed
placement of the body is the regular region B = x̃(B∗).

Moreover, we presume also that x̃ be orientation preserving and hence this is equivalent to prescribe that,
at each x∗, the deformation gradient, indicated by F (namely F := ∇x̃ (x∗)), has positive determinant ι, i.e.,

ι := det F > 0. (2)

Now, in order to describe the whole mechanical format necessary to analyze the behavior of materials with
microstructure, we need to associate then to each material element of the body not only its placement x in
E3 but also a set of m order parameters, its microstate ν, which is an element of a paracompact differentiable
manifold M of dimension m, that we presume here without boundary; hence, we have a map ν̃ given by

B∗ � x∗
ν̃�−→ ν = ν̃(x∗) ∈ M, (3)

that we suppose to be continuous and piecewise continuously differentiable.
In this phase, we avoid any particular choice of order parameters that would allow us to take into account

peculiar aspects of the morphology of the microstructure of the material, but not others. Furthermore, the
geometric properties of a particular manifold M could have a physical meaning: for example, a connection
on M allows to represent contact micro-interactions acting on the microstructure of a material element of
the body and due to microstructural changes in the adjacent elements, instead of some weakly non-local
micro-interactions of gradient nature (see [10,11]), while the assignment of a ownmicro-inertia to the material
microstructure, and so of a peculiar micro-kinetic energy, induces a metric overM; contrariwise, the selection
of a particular metric overM affects the expression of the micro-kinetic energy (see [9,10]). Therefore, now,
we do not choose any order parameter nor manifold, which could reduce the generality of the theory.

The space of configurations in a multifield theory is the collection C of pairs (x̃(·), ν̃(·)) that may be
endowed by the structure of a manifold; its tangent space is indicated by TC, whereas its cotangent space by
T ∗C. Hence, amotion of duration τ̄ (τ̄ > 0) for the body is a sufficiently smooth time parametrized curve over
C

[0, τ̄ ] � τ �−→(x̃τ , ν̃τ ) = (x̃(x∗, τ ), ν̃(x∗, τ )) ∈ C (4)
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where we indicate the current placement of a material element, at rest in x∗ at time τ = 0, and its current
microstate by x̃(x∗, τ ) and ν̃(x∗, τ ), respectively.

Moreover, the velocity fields are given by

ẋ := dx̃
dτ

(x∗, τ ) ∈ TxB, ν̇ := dν̃

dτ
(x∗, τ ) ∈ TνM, (5)

where TxB and TνM are the tangent spaces to B at x and to M at ν, respectively; of course, the pair
(ẋ(·, τ ), ν̇(·, τ )) belongs to T(x,ν)C (the dependance on τ remaining tacit).

Remark 1 We observe here that each tangent space TνM is a linear space, while the union TM of all tangent
spaces to M, namely the tangent bundle TM = ⋃

ν∈MTνM, does not coincide, in general, with a linear
space, even if it has the natural structure of a differentiable manifold of dimension 2m whose elements are the
pairs (ν, ν̇).

Moreover, the cotangent space T ∗
ν M ofM at ν, i.e., the dual space of each tangent space TνM, is a linear

space of dimensionm too, but also the cotangent bundle T ∗M := ⋃
ν∈M T ∗

ν M does not coincide, in general,
with a linear space. As well it is endowed with a natural structure of a differentiable manifold of dimension
2m and of a duality pairing; its elements are the pairs (ν, z) with the cotangent vector z ∈ T ∗

ν M (see, e.g.,
[52] for a complete description of smooth manifolds).

Let us consider now two observers differing by a rotation of characteristic vector q, with corresponding
proper orthogonal tensor

Q = exp (−εq) := I − εq + 1

2
(εq)(εq) − . . . , (6)

where exp is the basis of natural logarithms, ε is Ricci’s three-dimensional alternating tensor and I is the
identity tensor. These two observers evaluate two different values ν and νq of the order parameters connected
by the following relation (see §3 of [6] or §6 of [19]):

νq = ν + Aq + o(|q|), (7)

whereA, the Fréchet derivative of νq at ν, is the infinitesimal generator of the local action onM of the group
of the proper orthogonal tensors Q defined by:

A(ν) := dνq
dq

∣
∣
∣
∣
q=0

; (8)

A is a linear operator mapping vectors of E3 into elements of the tangent space of M at ν (i.e., A ∈
Hom {TxB, TνM}) and, in its matrix representation, has three columns and a number of rows equal to the
dimension m of M.

Therefore, in frames that move one with respect to another with translational velocity c(τ ) and rotational
velocity q̇(τ ) but coincide at the instant of observation, two observers read macro- and micro-velocities related
by the following formulae:

ẋ′ = ẋ(x∗, τ ) + c(τ ) + q̇(τ ) × (
x(x∗, τ ) − x0

)
,

ν̇′ = ν̇(x∗, τ ) + A(
ν(x∗, τ )

)
q̇(τ ), (9)

respectively, where x0 is a fixed point chosen arbitrarily in E3 (see equations (2.9) and (2.10) in [20]).
Finally, a complete motion of the body is said rigid if there is an observer for whom both macro- and

micro-velocity vanish identically on B, i.e., an observer for which the body appears in complete rest (cf. §6
of [19]). Hence, the most general rigid velocity distribution for B (indicated by ẋR and ν̇R), with translatory
speed c(τ ), constant in space and angular speed w(τ ), is shown by the expressions:

ẋR = c(τ ) + w(τ ) × (
xR − x0

)
, ν̇R = A(νR)w(τ ). (10)
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3 Balance laws

In order to deduce the balance equations for materials withmicrostructure, we prefer to followNoll’s procedure
in [58] by requiring the invariance of the outer power with respect to classical changes in spatial observers,
rather than to postulate integral balances, and generalize it to interactions of microstructural nature too (see
[14]).

If we denote by℘(B∗) the set of all subsetsP of B∗ with non-null volume measure and the same regularity
properties of B∗ itself, we call working (or virtual power) a map

W : ℘(B∗) × TC −→ 	 (11)

(	 the set of real numbers) such that: (i) W(·, ẋ, ν̇) is additive on disjoint parts and (ii) W(P, ·, ·) is bilinear.
We appeal to known integral representation theorems (see, e.g., [26]), as generalized in [64], for which

there is a natural isomorphism between the dual bundle T ∗
(x,ν)C of T(x,ν)C and the space of vector-valued

measures on B∗, i.e., for any couple of virtual velocities (ẋ, ν̇) for the pair (x, ν), there exist vector-valued
measures mB and μB such that the power of a set of actions on the body B∗ takes the form

W(B∗, ẋ, ν̇) =
∫

B∗

(
ẋ · dmB + 〈ν̇, dμB〉), (12)

where 〈·, ·〉 is the natural duality pairing introduced in Remark 1 of Sect. 2, comma 2. Different specifications
of those measures imply different models, as standard continua or media with edge interactions (see [14,60]).
Moreover, if we consider more general tensor-valued measures into the expression (12) of working (depending
on the smoothness of velocity fields (ẋ, ν̇)), then we can introduce “stresses” which may not derive from
boundary tractions (as when a physically significant connection cannot be defined on the manifold M [10])
or that may be non-local [11]: a general introduction to these very subtle questions can be found in [18,63].

For properties (i) and (ii) of working W , the result in (12) can be formally applied to any part P of the
body B∗ simply by substituting P instead of B∗ in it and noting that the measures will depend also on P .
Afterward, we can deduce balance equations from this expression by invoking an axiom of frame-indifference,
if we specify that measures are intended to represent the total external actions on the part P of the body B∗.

We assume that micro-interactions are of bulk and contact nature (as they are in classical continuum
mechanics), the latter exerted through the boundary ∂P , and are defined by quantities associated to micro-
velocities ν̇, which belong to the tangent space TνM to M at ν. Hence, they are elements of the cotangent
space T ∗

ν M, so that the scalar product by ν̇ is well defined.
Consequently, to express the powerWout

P (ẋ, ν̇) of all external actionswe define themeasures of interactions
acting on the body B∗ in the Lagrangian description as follows: at each x∗, external bulk macro- and micro-
forces are measured by the covector density per unit volume f̄ ∈ T ∗

x B(∼= 	3) and γ̄ ∈ T ∗
ν M, respectively,

including inertial and non-inertial contributions, when relevant; instead, at the boundary ∂P , surface terms
are measured by means of the standard first Piola–Kirchhoff stress tensor P and of the micro-stress tensor
S ∈ Hom {E3, T ∗

ν M}, a linear operator with domain E3 and codomain T ∗
ν M such that, on a surface element

where n is the unit vector of the exterior normal to the boundary ∂P of P , the co-vector σ of T ∗
ν M,

σ := Sn, (13)

represents the surface actions exerted on the microstructure through the element. A general proof of the
existence of the micro-stress tensor on the basis of geometric measure theory might be obtained by using, for
different contexts, the results in [23,57,65], but here we only claim the existence of such a tensor.

Therefore, for each arbitrary part P of B∗, the total outer working over P along (x, ν), with the pair (ẋ, ν̇)
belonging to the relevant tangent space T(xν)C, is given by the following expression:

Wout
P (ẋ, ν̇) =

∫

P

(
ẋ · f̄ + ν̇ · γ̄ )

d3x∗ +
∫

∂P

(
ẋ · Pn + ν̇ · Sn)

dH2, (14)

where d3x∗ is the usual volume measure and dH2 is the two-dimensional Hausdorff measure over ∂P .
Now we are able to deduce balance equations from the following basic axiom of frame-indifference,

clearly stated in [58], that we invoke also in presence of measures of microstructural interactions (see, also,
[14,18,54,57]):
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The ExtendedNoll’s Axiom.For a dynamical process, the outer working is objective. That is, for any subbody
P of B∗ the global workingWout

P of all actions exerted on P , external to P , is invariant for arbitrary changes
in observers (9).

Introducing relations (9) in (14) and using the extended Noll’s axiom, we get

0 = Wout
P (ẋ′, ν̇′) − Wout

P (ẋ, ν̇) =
∫

P

{[
c + q̇ × (x − x0)

] · f̄

+ (Aq̇) · γ̄ } d3x∗ +
∫

∂P

{[
c + q̇ × (x − x0)

] · Pn + (Aq̇) · (Sn)
}
dH2

= c ·
(∫

P
f̄ d3x∗ +

∫

∂P
Pn dH2

)

+ q̇ ·
{∫

P

[
(x − x0) × f̄ + A∗γ̄

]
d3x∗

+
∫

∂P

[
(x − x0) × (Pn) + A∗ (Sn)

]
dH2

}

, (15)

for any choice of vectors c and q̇, where A∗ is the adjoint of A and maps linearly covectors over M in
three-dimensional vectors: in particular, for any vector v ∈ TxB and covector η ∈ T ∗

ν M, we must have that
(A∗η

) · v = η · (Av) . (16)

The arbitrariness of c and q̇ permits us to write the following integral balance equations for momentum
and moment of momentum, namely:

∫

P
f̄ d3x∗ +

∫

∂P
Pn dH2 = 0, (17)

∫

P

[
(x − x0) × f̄ + A∗γ̄

]
d3x∗

+
∫

∂P

[
(x − x0) × (Pn) + A∗ (Sn)

]
dH2 = 0, (18)

for any choice of part P of B∗, where, as mentioned already above, f̄ and γ̄ are presumed to comprise inertia
effects, while 0 represents the null vector (and covector). The first equation is equivalent to the classical
momentum balance equation, while the other one is a generalization of the standard moment of momentum
balance, that can be easily recognized when microstructural interactions are absent.

Moreover, the arbitrariness of P among subbodies of B∗, the divergence theorem and the usual techniques
of localization imply from (17) the Cauchy’s first law of motion

f̄ + DivP = 0. (19)

Therefore, taking into account the validity of (19), we obtain from (18) the following relation
∫

P

[
ε
(
FPT ) + A∗γ̄

]
d3x∗ +

∫

∂P
A∗ (Sn) dH2 = 0, (20)

for any fit region P ⊂ B∗, and hence, as for Eq. (19), we have the local expression of the balance of moment
of momentum in presence of micro-interactions:

ε
(
FPT ) + A∗γ̄ + Div

(A∗S
) = 0. (21)

We observe that the divergence operator Div (·) in Eq. (21) is classically defined only if the manifold M
of the values of the microstructure does not admit an intrinsic (i.e., a “physically significant”) connection,
as in the case of a liquid with finely distributed gas bubbles or a micro-cracked solid (see §II.C of [54]);
when, instead, the manifold M admits such an intrinsic connection, then the divergence operator must be
changed in the covariant divergence DivM (·), the result being the same (see equations (3.1–2) of [10] or, also,
any general essay on differential geometry): the change is possible without ambiguity only by the use of the
intrinsic connection available for M. For example, within the classical model for nematic liquid crystals and
for microrigid Cosserat continua, the respective manifolds M coincide with the projective plane P2 and with
the proper orthogonal group SO(3), while the matching intrinsic connections are, respectively, the Levi-Civita



278 P. Giovine

one derived from the simplest metric, mentioned casually by some Authors (see, e.g., [25]), and the one
obtained by the introduction of Euler angles (see §3 of [10] and §11 of [7]).

Alternatively, we should limit ourselves to the case where M is a smooth, complete and connected Rie-
mannian manifold, endowed with its geodesic distance [30]. In the following, we will imply the eventual
divergence index M and will use the same notation Div (·) in the two cases.

The vectorial equations (19) and (21) appear insufficient to determine a satisfactory set of evolution equa-
tions for the evolving pair (x, ν) (3+m quantities in all), even if suitable initial and boundary conditions are
added to. Nevertheless, by writing the second one in the following form

ε
(
PFT ) − (∇ A∗)S = A∗ (γ̄ + DivS) , (22)

we notice that two conditions have to be satisfied to assure its validness [13,55]: the first requires that the
difference

[
ε
(
PFT

) − (∇ A∗)S
]
be in the range of A∗; thus, there exists a covector ζ̄ ∈ T ∗

ν M such that

ε
(
PFT ) = A∗ζ̄ + (∇ A∗)S, (23)

which is the known form of the balance equation of “couples” in the theories of continua with microstructure
(see, e.g., equation (9.8) of [6]). The second requirement is that

γ̄ − ζ̄ + DivS ∈ N , (24)

where N is the null space of A∗, i.e., for any covector ζ ′ ∈ N , we have that

γ̄ − ζ̄ + DivS = ζ ′,

and hence the following micro-momentum balance (the so-called Capriz’s balance of micro-forces) holds:

γ̄ − ζ + DivS = 0, (25)

where ζ := ζ̄ + ζ ′ represents the internal micro-actions. Therefore:
(a) if the dimension n of N vanishes, namely if N ≡ {0}, then ζ ′ = 0 and ζ̄ is completely determined by

Eq. (25): this is a rare event because all microcelerities should be of rigid type (as for microrigid Cosserat
continua);

(b) if it happens that n = m, hence ζ̄ is not restricted in any manner (as for the theory of continua with finely
distributed voids);

(c) if, more generally, m > n > 0, and so the range of A does not cover TνM at any ν, then the last balance
(25) seems to introduce a sort of partial indeterminacy in the evaluation of ζ̄ , remaining not exhaustive;
therefore, we can discard it in favor of an intrinsic one involving only the (m − n) local coordinates in a
chart for the manifoldM (see, again, the nematic liquid crystal model, equations (3.3) of [10] and (44) of
[54]).

Alternatively, we need to require deeper invariance properties such as a further extension of Noll’s axiom to
be invariant also under the n-dimensional gauge group which comes out from a one-to-one change of observer
on the reading of the values ν of the microstructure on M (see [13,18,63]) or else, when an intrinsic distant
parallelism is not available onM and there is no room to construct the effect of a change of observer because
no effect ensues on ν, a postulate of invariance of the inner working under change of connection on M (see
§5 of [25]), or again a property of covariance of the balance of substructural interactions, in the sense that it
is invariant with respect to the action of the group of diffeomorphisms of M on itself or on some non-trivial
subgroup of it [56].

Finally, the balance (23) still holds if we substitute ζ̄ with the internal micro-actions ζ because A∗ζ̄ =
A∗ζ̄ + A∗ζ ′ = A∗ζ and so

ε
(
PFT ) = A∗ζ + (∇ A∗)S. (26)

Therefore, despite the quite different physical circumstances, the derivation from (21) of the balance
equations in the form (25) and (26) is always possible, modulo some reduction in the number of variables
and/or some invariance request. Moreover, if we apply the tensor of Ricci ε on the left side of Eq. (26), we get

skw
(
PFT

)
= 1

2
ε
[A∗ζ + (∇ A∗)S

]
. (27)
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Remark 2 It is important to note from the local balance of moment of momentum in the form (27) that, in
general, the tensor PFT

(
and so the Cauchy stress tensor T := (det F)−1 PFT

)
is not symmetric in the theory

of continua with microstructure. Moreover, an essential implication of (27) is the symmetry of T not only in
the obvious classical theory, when the microstructural actions ζ and S are absent, but also if the microstructural
parameters are unaffected by gross rotations, i.e., when the operator A vanishes.

To complete the mechanical picture of the model for the microstructure, we need an explicit expression
of the principle of conservation of mass. Suppose that each material element is perfectly identifiable at all
times and carries all its mass in its motion, on the contrary we exclude here any phenomenon that implies the
creation or vacation of mass (e.g., by radiation or explosions); therefore, we assume that the total mass of the
body in the current placement B is the integral over B of a mass density ρ and is conserved, as in the classical
theory. Thus, if ρ∗ is the value of ρ in the reference placement B∗, the following equality applies

∫

B
ρ =

∫

B∗
ρ∗; (28)

at the same time, similar ones hold for any subbody P , so, along sufficiently regular motions and for smooth
density distributions, the local relation follows

ρ(x∗, τ )ι(x∗, τ ) = ρ∗(x∗) (29)

where ι is defined in (2), or, equivalently,

ρ̇ = −ρ divv, (30)

where div(·) is the divergence of (·) in B.

4 Stress power and objectivity

We are now able to get the expression for the total inner workingW in
P for a body with microstructure from the

definition of the total external working Wout
P in (14) making use of the divergence theorem and two balance

equations of macro- and micro-momentum (19) and (25), respectively; in fact, it brings us to the following
result:

Wout
P (ẋ, ν̇) =

∫

P
w d3x∗, (31)

where the scalar

w := P · Ḟ + ζ · ν̇ + S · ∇ ν̇ (32)

is the net inner working per unit volume in the reference placement B∗, the so-called stress power in the
Lagrangian description (see, e.g., [17]), while P and S must be in C1(B) ∩ C0(∂B).

Therefore, it is noteworthy that, if we define the total inner working as

W in
P (ẋ, ν̇) := −

∫

P
w d3x∗, (33)

we can deduce, from Eq. (31), the following consequence of the Noll’s axiom:

Proposition 1 The total workingWP , inner and outer, over each arbitrary part P of B∗ has to vanish for any
couple of virtual velocities (ẋ, ν̇) for the pair (x, ν):

WP (ẋ, ν̇)
( := Wout

P + W in
P

) ≡ 0, ∀ P ⊂ B∗, ∀ (ẋ, ν̇) ∈ T(x,ν)C. (34)
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In the following, we shall give a suitable definition of a continuum with microstructure subject to perfect
internal kinematical constraints, for which the expression of the stress powerw has an essential role. Therefore,
we furnish here a version of w which shows clearly its independence from the observer by means of the use
of the corotational time derivative ν̊, marked here by a superimposed little circle, due to the spin tensor

Y := −skw
(
ḞF−1) , (35)

which is an objective measure of the micro-velocity (see, e.g., §2.8.2.4 of [50]); in Eq. (35), skw indicates the
skew part of the tensor in the round brackets.

Precisely, if we introduce the spin vector r such that

r := −1

2
ε
(
ḞF−1) = 1

2
ε Y = 1

2
Curl ẋ, (36)

where the differential operator “Curl” of a vector u is defined as Curl u := −ε(∇ u), for the skew properties
of ε we have the subsequent expression for ν̊:

ν̊ = ν̇ − Ar (37)

(see comments in Remark 2 of §6 in [6]).
Furthermore, the standard decomposition of the local velocity gradient L

(:= grad v = ∂v
∂x

)
here takes the

following form:

L = ḞF−1 = D − Y = D − εr, (38)

where D := sym
(
ḞF−1

)
is the stretching tensor (i.e., the symmetric part of L).

At the end, we can obtain the requested objective version of the stress power w in (32) by the use of the
balance of moment of momentum (26):

w = PFT · ḞF−1 + ζ · ν̇ + S · ∇ ν̇

= sym (PFT ) · D − skw (PFT ) · (εr) + ζ · ν̇ + S · ∇ ν̇

= sym (PFT ) · D − [A∗ζ + (∇ A∗)S
] · r + ζ · ν̇ + S · ∇ ν̇

= sym (PFT ) · D + ζ · (ν̇ − Ar) + S · [∇ ν̇ − (∇ A)t r
]

= sym (PFT ) · D + ζ · ν̊ + S · ∇ ν̊ + (A∗S
) · ∇ r, (39)

where, in the last row, D, ν̊, ∇ ν̊ and ∇ r are all frame indifferent; the minor right transposition of exponent t

on an n-order tensor A has the following meaning: ((At a)b) . . . )c = ((A b)a) . . . )c, for each triple of vectors
a, b and c, while the minor left one means that ((tA a) . . . )b)c = ((A a) . . . )c)b.

5 Internal constraints in microstructured materials

In the preceding sections, we tacitly supposed that the pair of variables (x, ν) ∈ C, as well as their velocity
distributions (ẋ, ν̇) ∈ T(x,ν)C, could take arbitrary values for each element of the body B; however, there
exists a wide class of microstructured media for which, when an element of B has reached a certain state,
the complete placement x, the microstate ν, the velocity ẋ or the micro-speed ν̇ are somehow restricted: as
examples, we may think of uniaxial liquid crystals, usually modeled as perfect incompressible fluids with a
unit vectorial microstructure, or of Cosserat continua, where their tensorial microstructure is constrained to be
a proper orthogonal tensor.

We are allowed to define here the class of continua with perfect internal constraints and adopt a principle
of extended determinism in order to analyze the consequences of their presence and to give a full dynamical
description for a broad family of such peculiar materials withmicrostructure. Themechanical theory of internal
constraints in media with microstructure, such as those we conceive here, is a non-trivial case of the abstract
thermodynamical theory of constrained materials developed in [49], as generalized in [17].

The body B is said to be internally constrained if, assigned any couple of variables (x, ν) that represent the
isothermal state of any material element placed at x∗ together with F and ∇ ν, the allowed velocity and micro-
velocity distributions (ẋ, ν̇) are such that not all values of the objective factors D, in the space of symmetric
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tensors, ν̊, in the tangent space TνM, ∇ ν̊, in the space of linear operators from TxB into TνM, and ∇ r,
between the second-order tensors, are accessible (see, also, §IV.7 of [67] and §9 of [19]).

Thus, we gave reasons to establish the following
Principle of Extended Determinism. For materials with microstructure subject to constraints, each quantity,
which in the absence of the constraints themselves is ruled by a constitutive prescription (i.e., P, ζ and S), is
now the direct sum of two components, one active and the other one reactive:

P = Pa + Pr , ζ = ζ a + ζ r , S = Sa + Sr , (40)

where only the active components Pa , ζ a and Sa must be specified, through suitable constitutive relations, by
the independent kinetic variables. As for the reactive termsPr , ζ r and Sr , in general, they remain undetermined
unless some information on the physical mechanism that causes the constraint is given: in any case, they will
depend on the specific process that occurs in the present siteB and their values reduce to fields in the orthogonal
complement of the respective active functionals (see, also, equations (5.2) of [15] and (3A.2.5) of [17] in the
mechanical theory).

However, as we anticipated before, we will consider the class of bodies with perfect constraints (i.e.,
internally frictionless) for which, in this purely mechanical context, reactive stress and micro-stresses do no
work: namely, the contribution of reactions to the stress power (39)5 is identically zero for every process
allowed by the constraints:

sym (PrFT ) · D + ζr · ν̊ + Sr · ∇ ν̊ + (A∗Sr
) · ∇ r = 0, (41)

so that the contribution of reactions Pr , ζr and Sr to w is powerless.
In many cases, it is always possible to eliminate the reactive components from the balance equations by

using some of Eqs. (19), (25), (27) and (41) and then arrive at a subset of pure equations, which alone are
sufficient to study the evolution of B.

Many consequences of assumptions (40) and (41) have been studied in Chap. II of the treatise [6], obtaining
a number of special theories, such as bubbly liquids, uni- and bi-axial nematic liquid crystals and Cosserat
continua; furthermore, when the microstructural parameters are completely constrained to the macro-motion,
only an indirect trace remains of the existence of the microstructure, now said latent: as consequences of the
same assumptions, the classical models of the elastic materials of Dunn and Serrin [28], the perfect fluids of
Korteweg [4], the materials of Korteweg type [27] or the granular materials with inelastic grains [32] have
been obtained.

However, in all the examples somepeculiar facts emerge: theCauchy stressT can depend on the acceleration
gradients, it does not necessarily have to be objective nor, even in these constrained cases, symmetrical.

6 Continua with partially constrained microstructure

Here, otherwise, we present a mixed instance in which we suppose to constrain only some order parameters
that describe the microstructure, possibly to macro-deformation, while the rest remain free to vary along the
physical process we are considering. Therefore, we rearrange their indexes on a local chart of the manifoldM
so that the first p parameters, with 0 ≤ p ≤ m, are free and the last (m − p) constrained; hence, we have

ν =
(

ν f

νc

)

with ν f :=
⎛

⎜
⎝

ν1
...

νp

⎞

⎟
⎠ and νc :=

⎛

⎜
⎝

νp+1
...

νm

⎞

⎟
⎠ ; (42)

further, we can think of a finer decomposition of the coordinates supposing that, among the (m− p) constrained
parameters, the first (q − p) are connected to the macro-motion, while last (m − q) are not, with p ≤ q ≤ m;
thus, in addition, we are able to write

νc =
(

νd

νe

)

, with νd :=
⎛

⎜
⎝

νp+1
...

νq

⎞

⎟
⎠ and νe :=

⎛

⎜
⎝

νq+1
...

νm

⎞

⎟
⎠ . (43)

For example, the latent microstructure occurs when p = 0 and q = m; instead, if p = q = 0 themicrostructure
is constrained in full; finally, when p = q = m, the unconstrained case takes place.
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Similarly to parameters ν, we separate the corresponding components of the fields ζ , S and A, e.g., we
have from (42)

ζ =
(

ζ f

ζ c

)

:=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ζ1
...

ζp
ζp+1

...
ζm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, S =
(
S f

Sc

)

:=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S11 S12 S13
...

...
...

Sp1 Sp2 Sp3
S(p+1)1 S(p+1)2 S(p+1)3

...
...

...
Sm1 Sm2 Sm3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(44)

and, likewise, forA, while, similarly, we could obtain analogous subdecompositions for (·)c fields by the use
of definitions (43).

To write the expression of the stress power w, we introduce this decomposition into the relations (39)4,5
to deduce the following

w = sym (PFT ) · D + ζ f · ν̊ f + S f ·
[
∇ ν̇ f − (∇ A f )t r

]

+ζ c · ν̊c + Sc · ∇ ν̊c + [
(Ac)∗ Sc] · ∇ r. (45)

Now, we specify better the general hypothesis for the order parameters νd constrained to themacro-motion:
(•) a set of frictionless holonomic or anholonomic constraints expresses either parameters νd in terms of

displacement gradient F and, perhaps, its gradients, or the micro-velocities ν̇d in terms of velocity gradient
∇ v and, perhaps, its higher gradients.

Therefore, by applying the principle of extended determinism to these perfect constraints, we obtain, from
condition (41),

sym (PrFT ) · D + ζ d
r · ν̊d + Sd

r · ∇ ν̊d +
[
(Ad)∗ Sd

r

]
· ∇ r + ζ

f
r · ν̊ f

+S f
r ·

[
∇ ν̇ f − (∇ A f )t r

]
+ ζ e

r · ν̊e + Se
r · ∇ ν̊e + [

(Ae)∗ Se
r

] · ∇ r = 0, (46)

where it can be specified that the first four terms link some micro-reaction to the macro-movement, the next
two terms regard free reactions and the last three terms concern other constrained micro-reactions.

Again, a great variety of cases can be dealt with on the basis of the identifications of ν f , νd and νe and
many special properties can be deduced, rather suggestive of some example of specific cases.

6.1 Partially constrained elastic materials

We consider below the general case when the constrained part of the microstate νc is completely determined
by the macro-strain F (i.e., q = m), a case which includes a certain number of known materials, as we will
see in the following:

νc = νd = ω(F); (47)

this relation represents an internal constraint only if it is objective, and so the following property must be valid

νdq = ω(QF), ∀Q ∈ SO(3), (48)

because the deformation gradient F is a double vector; Eq. (48) is true for relations (6)–(8) if and only if, in
components,

(Ad)α i = −εi jk
∂ωα

∂Fj J
Fk J . (49)

Component notations are specified as follows: the components of the fields in the tangent space TνM of M
at ν are marked with Greek exponents, while the Cartesian components of the fields in the Euclidean space
are marked with Latin indices, usually in lowercase, except when double vectors are involved (such as F) for
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which capital letters are also used; the convention, according to which repeated indices are to be summed, is
adopted here and throughout the paper.

Now, if we insert the third-order mixed tensor defined by

Oα
jk := ∂ωα

∂Fj J
Fk J (50)

in the condition (49) and use the constraint (47) in the corotational derivative ν̊d , we have, for relation (38)3,

ν̊d = (ν̇d − Adr) = O(L + εr) = OD. (51)

Afterward, we substitute relation (51)3 in Eq. (46) and use again relation (38)3 with the fact that

(∇ L)i j H = ∂Li j

∂XH
= ∂

∂XH

(
∂vi

∂x j

)

= ∂

∂x j

(
∂vi

∂XH

)

= ∂2vi

∂XH∂XL

∂XL

∂x j
= (∇2v � F−1)

i H j , (52)

where the tensor product � between tensors of the third and second orders gives a third-rank tensor field so
defined:

(H � S)iG j = HiGLSL j ; (53)

therefore, we have

sym
[
PrFT + O∗ζ d

r + (∇ O∗)Sd
r

]
· D +

[(
dω

dF

)∗
� Sd

r

]

· ∇ 2v

+ ζ
f
r · ν̊ f + S f

r ·
[

∇ ν̇ f −
(
∇ A f

)t
r
]

= 0, (54)

where relation (50) has been used and the adjoint operation (of exponent ∗) on the third-order mixed tensorO
has the following meaning: ((O∗ ζ )a)b = ((O a)b)ζ , for each triple of vectors a, b and covector ζ .

Equation (54) for reactions must be satisfied identically for all velocities v and micro-velocities ν̇ f dis-
tributions that are not bounded at all from the constraint (47), which also leaves the choice of D ∈ Sym,
∇2v ∈ TxB × Sym, r ∈ TxB and ∇ ν̇ f ∈ Hom {TxB, TνM} totally free, where Sym is the set of symmetric
tensors.

The reactions are then characterized by the following requirements:

sym
[
PrFT + O∗ζ d

r + (∇ O∗)Sd
r

]
= O,

rsym

[(
dω

dF

)∗
� Sd

r

]

= O, ζ
f
r = 0, S f

r = O, (55)

whereO represents the null tensor of any order,while rsym indicates the symmetric part in the last two indices of
a third-rank tensor field, i.e., in components:

[
rsym (D∗ � T)

]
i jk = (D∗ � T)i( jk) = 1

2

[Dα
i jTαk + Dα

ikTα j
]
;

accordingly, the relative active parts must satisfy the Principle of extended determinism of Sect. 5, for which
we have

[
PaFT + O∗ζ d

a + (∇ O∗)Sd
a

]
∈ Sym,

[(
dω

dF

)∗
� Sd

r

]T

w ∈ Sym, ∀ vectorw, (56)

while, for (55)3,4, ζ
f
a and S f

a are free fields in T ∗
ν M and Hom {TxB, T ∗

ν M}, respectively.
The final step is to seek the appropriate set of pure, i.e., reaction-free, balance equations, which rule the

mechanical evolution of the partially constrained elastic model avoiding the presence of reactive terms. First,
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let us consider the Capriz’s balance of micro-forces (25) and split it into the free (p)- and bound (m − p)-
components, as in (42); moreover, let us apply prescriptions (40)3,4 with (55)3,4, so that

γ̄ f − ζ
f
a + DivS f

a = 0 and ζ d
r − DivSd

r = γ̄ d − ζ d
a + DivSd

a , (57)

where the former is pure while the latter provides micro-reactions, once complete movement is achieved.
Afterward, in order to analyze the Cauchy’s balance of forces (19), we need to study the Piola–Kirchhoff

tensor P; in particular, using the decomposition into skew and symmetric parts, Eq. (27) and the relation (40)1,
we have

PFT = skw
(
PFT

)
+ sym

(
PFT

)

= 1

2
ε
[A∗ζ + (∇ A∗)S

] + sym
(
PaFT

)
+ sym

(
PrFT

)
. (58)

Again, let’s decompose the micro-actions, as in (42), apply (55)3,4, use Eqs. (49) and (50), in addition to the
property of Ricci’s tensor, and relation (55)1, to obtain

PFT = 1

2
ε
{(

A f
)∗

ζ
f
a +

[
∇

(
A f

)∗]
S f
a

}
− skw

[
O∗ζ d + (∇ O∗)Sd

]

+sym
(
PaF∗) − sym

[
O∗ζ d

r + (∇ O∗)Sd
r

]

= 1

2
ε
{(

A f
)∗

ζ
f
a +

[
∇

(
A f

)∗]
S f
a

}
−

[
O∗ζ d + (∇ O∗)Sd

]

+sym
[
PaFT + O∗ζ d

a + (∇ O∗)Sd
a

]

= 1

2
ε
{(

A f
)∗

γ̄ f + Div
[(

A f
)∗ � S f

a

]}
− O∗γ̄ d − Div

(
O∗ � Sd

r

)

+sym
[
PaFT + O∗ (

ζ d
a − DivSd

a

)]
− skw

[
Div

(
O∗ � Sd

a

)]
, (59)

where also balances (57) are used in the last equality.
Because of relations (55)2 and (56)2, the divergence of the last two terms of this expression vanishes,

therefore the pure equation of Cauchy, in Lagrangian formulation, is

f̄ + Div P̂ = 0, (60)

where the following reaction-free expression for the Piola–Kirchhoff stress tensor P̂ applies

P̂ =
{

sym
[
PaFT + O∗ (

ζ d
a − DivSd

a

)]
− O∗γ̄ d

+ 1

2
ε
{(

A f
)∗

γ̄ f + Div
[(

A f
)∗ � S f

a

]}}

F−T

= Pa − dω

dF

T (
γ̄ d − ζ d

a + DivSd
a

)

+
{
1

2
ε
{(

A f
)∗

γ̄ f + Div
[(

A f
)∗ � S f

a

]}}

F−T (61)

and where, in the last equivalence of this equation, we used relations (56)1 and (50). P̂ will be the object of a
constitutive prescription: we observe that the resulting Cauchy’s tensorT (:= (det F)−1 P̂FT

)
is not necessarily

symmetric-valued, in general.
To conclude, only the active componentsPa, ζ

d
a ,Sd

a , ζ
f
a andS f

a of the unknown constitutive fields highlight
in the Cauchy equation (60), with P̂ given by (61), and in the free part of the Capriz micro-momentum
equation (57)1: these are all the field equations governing the mechanical processes possible in any partially
constrained elastic material.

Once a solution to the macro- and micro-motion has been found, Eqs. (19) and (57)2, together with (55),
determine the reactions corresponding to the constraints within the intrinsic limits deriving from a partial
identity of the effects of the fields ζ d

r and DivSd
r and due to their indeterminacy left by Eq. (57)2 itself, as

discussed in §3, Remark 1, of [15] (see, also, §205 and §227 of [69]).
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Remark 3 A peculiar case of partially constrained elastic materials is the model for the perfect Korteweg fluid
by Dunn and Serrin [4,28], when it is assumed that the free coordinates ν f are absent, i.e., when p = 0;
therefore, all the fields with superscript f in Sect. 6.1 disappear: this body also represents a continuum with
latent microstructure.

6.2 Partially constrained micro-spins

Alternatively, we consider the peculiar case in which q = p and the constrained part of the micro-motion νc

is forced to be locally of the spin type, so that only micro-speed distributions ν̇c of the rigid type, as in (10)2,
are allowed with an arbitrary choice of the vector field w, but without a condition of global rigidity:

ν̇c = ν̇e = Ae w(x∗, τ ), (62)

where the choice of the vector field w is arbitrary; therefore, the condition (46) becomes now

sym (PrFT ) · D + ζ
f
r · ν̊ f + S f

r ·
[
∇ ν̇ f − (∇ A f )t r

]

+ {
(Ae)∗ζ e

r + [∇ (Ae)∗
]
Se
r

} · (w − r) + [
(Ae)∗Se

r

] · ∇ w = 0. (63)

Thus, the macro-motion is not constrained at all, as well as the first p-parameters ν f of the micro-motion,
and hence the symmetric tensorD, the vector ν̊ f in TνM and the homomorphism

[∇ ν̇ f − (∇ A f )t r
]
remain

totally free in (63), whereas the factors in parentheses, in the second line, are free only to the extent that the
vector (w − r) and the second-order tensor ∇ w are locally free.

The following conditions ensue

sym (PrFT ) = O, ζ
f
r = 0, S f

r = O,

(Ae)∗ζ e
r + [∇ (Ae)∗

]
Se
r = O, (Ae)∗Se

r = O; (64)

in parallel, as stated by the Principle of extended determinism, the active parts satisfy

skw (PaFT ) = O, (65)

while ζ
f
a , S f

a ,
{
(Ae)∗ζ e

a + [∇ (Ae)∗
]
Se
a

}
and

[
(Ae)∗Se

a

]
are free fields.

When we consider the conditions (64)1−4 of the reactions together with the balance (27) and the decom-
positions (40), we infer that

PFT = sym
(
PFT

)
+ skw

(
PFT

)

= sym
(
PaFT

)
+ 1

2
ε
[A∗ζ + (∇ A∗)S

]

= sym
(
PaFT

)
+ 1

2
ε
{A∗ζa + (∇ A∗)Sa +

(
A f

)∗
ζ
f
r +

[
∇

(
A f

)∗]
S f
r

+ (Ae)∗
ζ e
r + [∇ (Ae)∗]

Se
r

}

= sym
(
PaFT

)
+ 1

2
ε
{A∗ζa + (∇ A∗)Sa

}
, (66)

where again we express the Piola–Kirchhoff stress tensor P only in terms of its constituent components, which
makes the Cauchy’s equation (19) pure.

The evolution of the microstructure depends still on the fields ν f and w and, to obtain the pure equations
for them too, we divide the Capriz balance (25), as in the previous section, into the free (p)- and constrained
(m − p)-components, so that

γ̄ f − ζ
f
a + DivS f

a = 0 and ζ e
r − DivSe

r = γ̄ e − ζ e
a + DivSe

a, (67)

where the former is again pure for (64)2,3, while it is necessary to apply the operator (Ae)∗ on both sides of
the latter equation in order to take advantage of the conditions (64)4,5, for which

(Ae)∗ (
γ̄ e − ζ e

a + DivSe
a

) = 0 (68)
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is the last pure equation for w; we observe that the pure covector
(
γ̄ e − ζ e

a + DivSe
a

)
must belong to the null

space of (Ae)∗.
Again, once a solution to the motions has been obtained, relations (27) and (64)1−4, together with (65),

give

Pr =
[
sym (PrFT ) + skw

(
PrFT

)]
F−T

= 1

2

{
ε
[A∗ζa + (∇ A∗)Sa

]}
F−T , (69)

while the other reactions to constraints are determined by (64)2,3 and (67)2, always within the intrinsic limits
discussed at the end of the previous subsection regarding the difference (ζ e

r − DivSe
r ).

Remark 4 As an example of a partially constrained micro-spin, we can think of a bubbly uniaxial liquid crystal
where ν f ∈ (0, 1) is the bubble fraction, which is not affected by rigid rotations and A f = 0, while νe is a
unit vector d, for which ḋ = w × d = (ε d)w and Ae is the second-order tensor ε d.

In this case, the representation (66) reduces to

PFT = sym
(
PaFT

)
+ skw

[
d ⊗ ζ e

a + (∇ d)(Se
a)

T
]
, (70)

where also ζ e
a is a vector and Se

a a second-order tensor. In the pure equation for the void fraction of bubbles

(67)1, γ̄ f and ζ
f
a are scalars and S f

a is a vector, while the pure equation for the angular velocity (68) is now
(
γ̄ e − ζ e

a + DivSe
a

) × d = 0, (71)

i.e., the quantity in round brackets is a vector parallel to the unit vector d (see, also, [17]).

6.3 Partially constrained affine microstructure

Here, each material element of a body with affine microstructure is, in general, capable of an affine strain,
distinct from (and independent of) the macroscopic one, and also from neighboring elements (as is the case
with granular materials). The order parameter ν is a second-rank tensor field G with positive determinant
describing the local affine structure, that can also be considered as a double vector, such as F: accordingly,
we will indicate its Cartesian components with one lower and one upper case index; therefore, a rigid rotation
of the whole body, characterized by a proper orthogonal tensor Q in (7), changes the values of the field G as
Gq = QTG (see, also, [29,31]).

Therefore, the infinitesimal generator A of the group of rotations on the microstructure G in Lin+ is now
a third-order tensor field with components

Ai Jk = εimkGmJ (72)

(see §2 of [41]), like the micro-stress S, while the co-vectors ζ and γ̄ are also second-order tensors (denoted,
respectively, by the symbols K and C). Therefore, the balance of moment of momentum (27) is now

skw
(
PFT

)
= skw

(
GKT + ∇ G � S

)
, (73)

where the property of the Ricci’s alternating tensor ε, for which 1
2ε(ε(·)) = skw (·), has been used; moreover,

the tensor product � between third-rank tensors has the following components

(G � S)i j := Gi HKS j HK . (74)

Furthermore, we introduce the local wrenchingW (decomposing it as the velocity gradient L in Eq. (38))
and the wrenching gradient W:

W := ĠG−1 = D̃ − Ỹ, W := ∇ W (75)
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where D̃ := sym
(
ĠG−1

)
and Ỹ := −skw

(
ĠG−1

)
are the micro-stretching and micro-spin tensors, respec-

tively, for which the stress power w in the expression (39)4 reduces to the following

w = sym (PFT ) · D + K · (Ġ + YG) + S ·
{

∇ Ġ −
[
(∇ G)T � Y

]T
}

= sym (PFT ) · D +
(
KGT + S � ∇ G

)
· (W + Y) +

(
St � GT

)
· Wt

= sym (PFT ) · D + sym
(
KGT + S � ∇ G

)
· D̃

+skw
(
KGT + S � ∇ G

)
· (Y − Ỹ) +

(
St � GT

)
· Wt , (76)

where the relations (36)2 and (75)1,2 have been used, respectively, in the first, second and third rows. In the last
line (76)3, the symmetric tensors D and D̃, the skew-symmetric tensor (Y − Ỹ) and the third-rank wrenching
gradient W are all frame indifferent.

The general constraint that we now consider is an affine microdeformation with constrained stretching, a
truly anholonomic case as it does not necessarily imply constrained microdeformations. In particular, we set

sym (L − W ) = D − D̃ = O, (77)

i.e., affine microdeformations are only allowed when the micro- and macro-stretching are equal.
Furthermore, the characterization (41) for reaction fields is now

sym
(
PrFT + KrGT + Sr � ∇ G

)
· D

+ skw
(
KrGT + Sr � ∇ G

)
· (Y − Ỹ) +

(
St
r � GT

)
· Wt = O, (78)

for all the choices of D ∈ Sym, (Y − Ỹ) ∈ Skw, G ∈ Lin and W ∈ Lin3, where Skw is the set of skew-
symmetric tensors, Lin the space of second-order tensors identified with linear transformations of TxB into
itself and Lin3 is likewise the space of third-order tensors (linear transformations of ordinary vector space TxB
into Lin, or of Lin into TxB). Therefore, we have

sym
(
PrFT + KrGT + Sr � ∇ G

)
= O,

skw
(
KrGT + Sr � ∇ G

)
= O, Sr = O, (79)

and, consequently,
(
PaFT + KaGT + Sa � ∇ G

)
∈ Sym,

(
KaGT + Sa � ∇ G

)
∈ Skw, Sa ∈ Lin3; (80)

at the end we obtain the following constitutive restrictions
(
PaFT

)
∈ Sym,

(
KaGT + Sa � ∇ G

)
∈ Skw, S = Sa ∈ Lin3,

sym
(
PrFT + KrGT

)
= O, skw

(
KrGT

)
= O. (81)

Proceeding as in the previous sections, we get

PFT = sym
(
PFT

)
+ skw

(
PFT

)

= sym
(
PaFT

)
+ sym

(
PrFT

)
− skw

(
KGT + S � ∇ G

)

= sym
(
PaFT

)
− sym

(
KrGT

)
− skw

(
KaGT + Sa � ∇ G

)
, (82)
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where we used Eqs. (73), (40) and (81)3,4,5; the balance of micro-forces is now

C − K + DivS = O, (83)

and multiplying the left side from the right by the operator GT and rearranging the addenda using relations
(81), we have

sym
(
KrGT

)
+ skw

(
KaGT + Sa � ∇ G

)
= CGT + Div

[(
St
a � GT

)t
]

, (84)

so, substituting in (82), it is

P =
{

sym
(
PaFT

)
− CGT − Div

[(
St
a � GT

)t
]}

F−T , (85)

and the Cauchy’s equation (19) for a continuum with affine microdeformation with constrained stretching
becomes pure. The other pure equation is obtained by taking the skew part of Eq. (84)

skw
[
(C − Ka + DivSa)GT

]
= O. (86)

The only left reaction Kr is obtained from Eqs. (83) and (81)3

Kr = C − Ka + DivSa . (87)

Remark 5 We observe that the anholonomic constraint (77) of bound stretching D = D̃ does not necessarily
give us the possibility to identify kinematical parameters ν f and νc, as defined in (42), even if themicrostructure
itself results partially constrained (see, also, [15]).

7 Specific examples

7.1 Suspension of rigid granules in a fluid matrix

In the study of the mechanics of a large number of discrete inelastic particles at relatively high concentrations
and with interstices filled with a fluid of negligible mass (as it is the case of soil without cohesion, such as sand
with rough surface grains, or of fluidized particulate beds), we must introduce two distinct features to describe
the micro-motion: (a) the volume distribution function of the solid granular constituent ξ (firstly introduced in
[45]), namely the volume fraction of the solid grains with values on the real interval (0,1) and correlated, in
soil mechanics terminology, to the porosity n by the relation n = 1− ξ (see, also, [37,44]); (b) the rotation of
the rigid granules relative to each other, identified by a proper orthogonal tensor R′ not necessarily related to
the macro-rotation R of the body itself (see, e.g., [1,21,39,51]).

Point (a) is better understood if we introduce the proper mass density ρm of a typical suspended grain
in B, which corresponds to the mass density of the granule itself, and the fact that the fluid mass density is
considered negligible compared to ρm , then the bulk mass density ρ of the material element equals ρm times
the volume fraction ξ of the grains

ρ = ρmξ. (88)

Moreover, the hypothesis of rigid granules implies that ρm is constant, i.e., ρm = ρm∗ (the value in the reference
placementB∗ of the material), therefore, the conservation of mass (29) reduces to a constraint for the parameter
ξ

ξ ι = ξ∗; (89)

in fact, ξ depends only on the determinant ι of the deformation gradient F and we can define the functional ω
in (47) as

ω = ξ∗ι−1 (90)
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and so the total volume change of the granular material with inelastic grains is only due to the increase or
decrease in the volume of interstitial voids: this phenomenon represents the dilatancy introduced by Reynolds
[62] for which, although the volume of granules remains constant, the total volume of the granular medium
the total volume of the granular medium can vary, as can be seen from the fact that, in general, div v(= trL)
is not equal to zero for Eqs. (30) and (88) with ρm constant:

div v = −ρ−1ρ̇ = −ξ−1ξ̇ �= 0 (91)

(see, also, [2]).
The balance equations of motion can be obtained directly from Sect. 6.1 by identifying the parameters

νd with ξ and ν f with R′, except that for the expression of the first Capriz micro-momentum equation (57)1
because here the corotational derivative ν̊ f depends on the skew-symmetric spin tensor Y and so the reaction
condition (54) is modified as follows.

In fact, we have that the free infinitesimal generator A f is now the following third-order tensor field

A f = − (
ε � R′)t (92)

for the definition (8) (see, also, §23 of [6]); therefore, for (37) and (36)2, it is

ν̊ f = Ṙ
′ + (ε � R′)t r = Ṙ

′ − (εr)R′ = Ṙ
′ − YR′ (93)

and moreover, in components,
[(

∇ A f
)t

r
]

i H L
= −

[
∇ (

ε � R′)t] rk = (εr)i j R
′
j H,L

= Yi jR′
j H,L = −

[(∇ R′)T � Y
]T

i HL
; (94)

finally, we observe that also the micro-stress S f is a third-rank tensor, while the co-vectors ζ f and γ̄ f are
second-order tensor fields (denoted, respectively, by the symbols K f and C̄ f ).

In addition, we precise that

dω

dF
= −ξ F−T and O = dω

dF
FT = −ξ I (95)

for (90) and (50), respectively, while Ad vanishes for (49), the micro-stress Sd is a vector field, denoted by
zd , and ζ d , γ̄ d are scalar fields.

Now,we are able to rewrite the condition (54) for a suspension of rigid granules by using relations (93)–(95),

sym
[
PrFT −

(
ξ ζ d

r + ∇ ξ · zdr
)
I
]

· D − ξ(I � zdr ) · ∇ D

+K f
r ·

(
Ṙ

′ − YR′) + S f
r ·

{

∇ Ṙ
′ +

[(∇ R′)T � Y
]T

}

= 0 (96)

or, better,

sym
[
PrFT −

(
ξ ζ d

r + ∇ ξ · zdr
)
I
]

· D − ξ zdr · ∇ (trD)

+
(
K f

r R′T + S f
r � ∇ R′) ·

(
Ṙ

′
R′T − Y

)

+
[
(S f

r )t � R′T ]t · ∇
(
Ṙ

′
R′T )

= 0, (97)

where the usual properties of scalar products and derivations are used. This equation is identically verified
for all totally free tensors D ∈ Sym and (Ṙ

′
R′T −Y) ∈ Skw, vector ∇ (trD) ∈ TxB and third-order tensor

∇
(
Ṙ

′
R′T

)
skew-symmetric in the first two indices.

Therefore, it is
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zdr = 0, sym
(
PrFT − ξ ζ d

r I
)

= O,

skw
(
K f

r R′T + S f
r � ∇ R′) = O, lskw

[
(S f

r )t � R′T ]t = O, (98)

where lskw(·) indicates a third-rank tensor field skew in the first two indices, i.e., (lskwT)i jk := 1
2 (Ti jk−T j ik),

and so

zda ∈ TxB,
[
PaFT −

(
ξ ζ d

a + ∇ ξ · zda
)
I
]

∈ Sym,
(
K f

a R′T + S f
a � ∇ R′) ∈ Skw, R′(S f

aw)T ∈ Skw, ∀ vectorw. (99)

Also now we split up the Capriz’s balance (25) into a scalar equation, which governs the fluctuations of
the volume fraction, and a tensor equation, which rules the micro-rotation rate of change, respectively:

γ̄ d − ζ d + Div zd = 0 and C̄
f − K f + DivS f = O. (100)

Using the principle (40) and the result (98)1, we have

ζ d
r = γ̄ d − ζ d

a + Div zda , (101)

while, proceeding as in Sect. 6.3 with the micro-rotation R′ instead of G, we obtain

skw
[(

C̄
f − K f

a + DivS f
a

)
R′T ]

= O and

sym
[(

C̄
f − K f

r + DivS f
r

)
R′T ]

= O, (102)

where results (98)3,4 were used.
In the end, following the same procedure used for the relation (82) and also using the result (98)2, we get

the Piola–Kirchhoff stress tensor

P =
[
sym

(
PaFT

)
+ ξ

(
γ̄ d − ζ d

a + Div zda
)
I

+ skw
(
K f

a R′T + S f
a � ∇ R′)]

F−T ; (103)

we then acquire the two pure balance equations of the rotational micro-momentum (102)1 and macro-
momentum (19) in order to study the micro- and macro-motions of the suspension of rigid granules in a
fluid matrix described in this subsection; here, the influence of its peculiar microstructural variables is put in
evidence in the spherical and skew-symmetric parts of PF in the expression (103).

Furthermore, in addition to the relations (98), we also need Eqs. (101) and (102)2 to obtain the expressions
for reactions to the constraint.

Remark 6 The dilatant granular material with rotating rigid grains, presented in this example, could also be
seen as a continuum with a spherical structure and, therefore, as a particular example of Sect. 6.3 (see, also,
[16,36]). Precisely, introducing the following fields: the second-rank skew tensors of total external and internal
rotational moments per unit volume M̄ and N, respectively, and the third-order spinning hyperstress tensor T,
skew in the first two indices, defined as

M̄ := skw
(
C̄

f
R′T )

, N := skw
(
K f

a R′T + S f
a � ∇ R′) , (104)

Tw := skw
[(

S f
aw

)
R′T ]

, ∀ vectorw, (105)

we can rewrite the rotational micro-momentum balance (102)1 in a more classical form

M̄ − N + DivT = O, (106)

as it appears for the microrigid Cosserat continua (see equation (23.1) of [6] or equation (63) of [48]). In
particular, if we decompose the volume external rotational moment M̄, as made in §9 of [36], in its inertial
and non-inertial contributions as

M̄ = −ρ∗μ2∗
˙̃Y + ρ∗M, (107)
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where Ỹ is the micro-spin tensor field defined in (75)2, μ∗ is a constant coefficient depending on the shape of
the granules andM is the bulk non-inertial part, we have the most expressive formula

ρ∗μ2∗
˙̃Y = ρ∗M − N + DivT. (108)

7.2 Pseudo-Cosserat continua

In the classical case, studied by the Cosserat brothers [22], the affine microstructure is rigid in the sense that
ν := R′, with R′ a proper orthogonal tensor. Here, we remove the rigidity constraint of the microdeformation,
but we impose that the micro- and macro-motions have the same stretch, so we can use the procedure of
Sect. 6.3.

In particular, if we use the right polar decomposition of the second-rank tensor field G ∈ Lin+, which
describes the local affine structure, i.e., G ≡ R′U ′ with R′ ∈ Orth+ the micro-rotation and U′ ∈ Sym+ the
right micro-stretch tensor such that U′ = √

GTG, the partial holonomic constraint we consider here is such
that the right micro- and macro-stretches U′ and U, respectively, coincide.

Therefore, using the notations of Eq. (42), we pose

ν =
(

ν f

νc

)

:=
(
R′
U′

)

=
(
R′
U

)

; (109)

and, hence, for definition (8) the third-order tensor A f and the constrained one Ac are now the following
fields, in components,

A f
i Jk = εilk R

′
l J and Ac

i Jk = 0, (110)

because, for each two observer differing by a rotation Q in (7), different values of the order parameters are
read: the proper orthogonal tensor R′ changes as follows R′

q = QTR′, while the right stretch is invariant, i.e.,
Uq = U; we observe that A f is like in (92).

Consequently, due to (110), the corotational derivatives are now

R̊′ = Ṙ
′ − YR′ and Ů = U̇, (111)

while the balance of moment of momentum (27) is obtained exactly as for (73) by replacing G with R′

skw
(
PFT

)
= skw

[
R′(K f )T + ∇ R′ � S f

]
. (112)

Finally, in the pseudo-Cosserat continua, proceeding as in (97), the expression (45) for the stress power w
reduces to

w = sym(PFT ) · D + Kc · U̇ + Sc · ∇ U̇ + K f · (Ṙ
′ − YR′)

+S f ·
{

∇ Ṙ
′ +

[
(∇ R′)T � Y

]T
}

= sym(PFT ) · D + Kc U · U̇U−1

+Sc · ∇ U̇ +
(
K fR′T + S f � ∇ R′) · (Ṙ

′
R′T − Y)

+ lskw

[(
S f

)t � R′T
]t

· ∇
(
Ṙ

′
R′T )

= sym
[(
P + RKc)FT

]
· D + skw

(
RKcFT

)
· skw

(
R U̇U−1RT

)

+ lsym Sc · ∇ U̇ + skw
(
K fR′T + S f � ∇ R′) · (Ṙ

′
R′T − Y)

+ lskw

[(
S f

)t � R′T
]t

· ∇
(
Ṙ

′
R′T )

, (113)

where lsym(·) indicates the left symmetry in the first two indices (as for lskw in (98)), while the following
expression for themacro-stretching tensorD is used in the last row:D = sym

(
ḞF−1

) = R sym
(
U̇U−1

)
RT ,

with R (= FU−1) the rotation of the polar decomposition of the deformation gradient F.
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As usual, we obtain the following results for reactions and actions of fields PKc,K f ,Sc and S f , respec-
tively:

sym
[(
Pr + RKc

r

)
FT

]
= O, skw

(
RKc

rF
T
)

= O, lsym Sc
r = O

skw
(
K f

r R′T + S f
r � ∇ R′) = O, lskw

[(
S f
r

)t � R′T
]t

= O (114)

and

skw
[(
Pa + RKc

a

)
FT

]
= O, sym

(
RKc

aF
T
)

= O,

skw
(
Sc
aw

) = O, ∀ vectorw, sym
(
K f

a R′T + S f
a � ∇ R′) = O,

sym
[(

S f
aw

)
R′T ]

= O, ∀ vectorw. (115)

Againwe use the splitting of theCapriz’s balance (25) in order to obtain the appropriate set of pure equation;
then we have

K f
r − DivS f

r = C̄
f − K f

a + DivS f
a and Kc

r = C̄
c − Kc

a + DivSc
a, (116)

where all the tensors in the second equation, which regulates the rate of change of the micro-elongation U, are
symmetric and we applied (114)3; so, multiplying the two sides of Eq. (116)1 from the right by the operator
R′T , considering the symmetric and skew parts of them and using relations (114)4,5 and (115)4,5, respectively,
we have

skw
[(

C̄
f − K f

a + DivS f
a

)
R′T ]

= O and

sym
[(

K f
r − DivS f

r

)
R′T ]

= sym
(
C̄

f
R′T)

; (117)

similarly, making the same with equation (116)2 by multiplying the two side from the left by the operator R
and from the right by FT , we obtain

sym
(
RKc

rF
T
)

= sym
[
R

(
C̄
c + DivSc

a

)
FT

]
(118)

for relations (114)3 and (115)2.
The macro-motion is always governed by the Cauchy equation (19), with the Piola–Kirchhoff stress tensor

given by

PFT = sym
(
PFT

)
+ skw

(
PFT

)
= sym

(
PaFT

)
+ sym

(
PrFT

)

+skw
[
R′(K f )T + ∇ R′ � S f

]

= sym
(
PaFT

)
− sym

(
RKc

rF
T
)

− skw
[
K f

a R′T + S f
a � ∇ R′]

= sym
{[

Pa − R
(
C̄
c + DivSc

a

)]
FT

}
− skw

[
C̄

f
R′T + ∇

(
S f
a � R′T)]

, (119)

where the moment of momentum balance (112) was used in the first row, relations (114)1,4 in the second
and balances (117)1 and (118) in the last. This pure Cauchy equation, together with the pure balance for the
rotational micro-momentum (117)1, rules the mechanical behavior of the pseudo-Cosserat medium on the
macro- and micro-scale, respectively. As usual the reactions could be obtained from the remaining dynamical
equations (116)2 and (117)2.

Remark 7 An expression like Eq. (108) could be easily obtained also here, instead we want to focus on the
expression of the Piola–Kirchhoff stress tensor P in (119)5 and observe once again the lack of symmetry of the
Cauchy tensor T and its possible dependence on higher-order derivatives without incurring certain apparent
inconsistencies with rational thermodynamics, when constitutive laws are considered (see, e.g., [5] or [41]).

Remark 8 The pseudo-Cosserat continuum is a generalization of the classical model of Cosserat brothers [22]
that we could easily recover from our model when the right micro-stretch tensor coincides with the identity
tensor, i.e., U′ = I.
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8 Closing remarks

The proposals and developments of the preceding paragraphs may appear to be nothingmore than a speculative
exercise with no practical value. So perhaps it is deserving to show that some other continuummodels currently
in use are special cases of partially constrained continua and that they presuppose, albeit tacitly, the properties
made explicit here.

For example, the generally accepted model for an incompressible continuumwith finely dispersed cavities,
e.g., a liquid containing compressible gas bubbles [8], or an elastic solid with nano-pores filled with an inviscid
fluid [35], can be inserted in the class of partially constrained continua, as well as the classical Grioli–Toupin
theory [47,66] which can therefore be derived from an affine microstructured body by requiring the micro-
spin to be equal to the macro-one, or yet the smectic-C liquid crystal elastomers which are layered materials
exhibiting a solid-like elastic response along the normal to the layer, and a rubbery one in the plane, hence
possess microstructures both of the material and local type (the nematic microstructure and the lamellae,
respectively) represented with a vectorial microstructure partially constrained (see [3,38]).

Manyother topics deserve to be analyzed andhavenot been touchedupon in thiswork.Themain ones,which
we intend to consider in a future paper, are the study of the contributions of inertia to externalmacro- andmicro-
forces of mass in the pure equations of motion and, moreover, the generalization to internal thermodynamical
constraints, in order to develop a complete constitutive theory.

Acknowledgements This research is part of the activities of the PRIN Project 2017 J4EAYB: “Multiscale innovative materials
and structures (MIMS).” The support of the “Gruppo Nazionale di Fisica Matematica” of the “Istituto Nazionale di Alta Matem-
atica ‘F. Severi’ (GNFM-INDAM)” is also recognized.

Funding Open access funding provided by Universitá degli Studi Mediterranea di Reggio Calabria within the CRUI-CARE
Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Declarations

Conflict of interest The author declares that he has no conflict of interest.

References

1. Ahmadi, G.: A generalized continuum theory for granular materials. Int. J. Non-Linear Mech. 17, 21–33 (1982)
2. Amoddeo, A., Giovine, P.: Micromechanical modelling of granular materials and FEM simulations. Meccanica 54, 609–630

(2019)
3. Buonsanti, M., Giovine, P.: On a Minimum problem in smectic elastomers. In: Santini, A., Moraci, N. (eds.) 2008 Seismic

Engineering Conference: Commemorating the 1908Messina and Reggio Calabria Earthquake. American Institute of Physics
Conference Proceedings, vol. 1020, pp. 1350–1357. AIP, New York (2008)

4. Capriz, G.: Continua with latent microstructure. Arch. Ration. Mech. Anal. 90, 43–56 (1985)
5. Capriz, G.: Continua with constrained or latent microstructure. In: Ball, J.M. (ed.) Material Instabilities in Continuum

Mechanics and Related Mathematical Problems, pp. 53–64. Oxford Univ. Press, Oxford (1988)
6. Capriz, G.: Continua with Microstructure. Springer Tracts in Natural Philosophy, vol. 35. Springer, New York (1989)
7. Capriz, G.: Continua with Substructure. Phys. Mesomech. 3(5–14), 37–48 (2000)
8. Capriz, G., Cohen, H.: The bubbly fluid as a continuum with microstructure. Mech. Res. Commun. 10, 359–367 (1983)
9. Capriz, G., Giovine, P.: On microstructural inertia. Math. Mod. Methods Appl. Sci. 7, 211–216 (1997)

10. Capriz, G., Giovine, P.: Remedy to omissions in a tract on continua with microstructure. Atti del XIII Congresso Nazionale
di Meccanica Teorica e Applicata, General Mechanics, AIMETA’97, Siena, vol. I, pp. 1–6 (1997)

11. Capriz, G., Giovine, P.: Weakly nonlocal effects in mechanics. In: Contributions to Continuum Theories, Krzysztof Wilman-
ski’s Anniversary Volume,Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Report n.18 - ISSN 0946-8838,
pp. 37–44 (2000)

12. Capriz, G., Giovine, P.: Classes of ephemeral continua. Math. Methods Appl. Sci. 41, 1175–1196 (2018)
13. Capriz, G., Mazzini, G.: Invariance and balance in structured continua. ZAMM 76(S4), 121–124 (1996)
14. Capriz, G., Mazzini, G.: Invariance and balance in continuum mechanics. In: Butazzo, G., Galdi, G.P., Lanconelli, E., Pucci,

P. (eds.) Nonlinear Analysis and Continuum Mechanics, pp. 27–35. Springer, New York (1998)

http://creativecommons.org/licenses/by/4.0/


294 P. Giovine

15. Capriz, G., Podio Guidugli, P.: Formal structure and classification of theories of oriented materials. Ann. Mat. Pura Appl.
(IV) CXV, 17–39 (1977)

16. Capriz, G., Podio Guidugli, P.: Materials with spherical structure. Arch. Ration. Mech. Anal. 75, 269–279 (1981)
17. Capriz, G., Podio Guidugli, P.: Internal constraints. In: Truesdell, C. (ed.) Rational Thermodynamics, 2nd edn., pp. 159–170.

Springer, New York (1984)
18. Capriz, G., Trebeschi, P.: Reflections upon the axioms of continuummechanics prompted by the study of complex materials.

Bull. Tech. Univ. Istanb. 47, 1–12 (1994)
19. Capriz, G., Virga, E.G.: Interactions in continua with microstructure. Arch. Ration. Mech. Anal. 109, 323–342 (1990)
20. Capriz, G., Virga, E.G.: On singular surfaces in the dynamics of continuawithmicrostructure. Quart. Appl.Math. 52, 509–517

(1994)
21. Chen, K.C., Lan, J.Y., Tai, Y.C.: Description of local dilatancy and local rotation of granular assemblies by microstretch

modeling. Int. J. Sol. Struct. 46, 3882–3893 (2009)
22. Cosserat, E.F.: Théorie des Corps Déformables. Hermann, Paris (1909)
23. Degiovanni, M., Marzocchi, A., Musesti, A.: Cauchy fluxes associated with tensor having divergence measure. Arch. Ration.

Mech. Anal. 147, 197–223 (1999)
24. Demiray, H.: A continuum theory of diatomic solids: viewed as directed media. J. Eng. Math. 11, 257–271 (1977)
25. Di Carlo, A.: A non-standard format for continuum mechanics. In: Batra, R.C., Beatty, M.F. (eds.) Contemporary Research

in the Mechanics and Mathematics of Materials, pp. 92–104. CIMNE, Barcelona (1996)
26. Dinculeanu, N.: Vector Measures. Pergamon Press, Berlin (1967)
27. Dunn, J.E.: Interstitial working and a nonclassical continuum thermodynamics. In: Serrin, J. (ed.) New Perspectives in

Thermodynamics, pp. 187–222. Springer, Berlin-Heidelberg (1986)
28. Dunn, J.E., Serrin, J.: On the thermomechanics of interstitial working. Arch. Ration. Mech. Anal. 88, 95–133 (1985)
29. Eringen, A.C.:Mechanics ofmicromorphic continua. In: Kröner, E. (ed.) Proceedings of the IUTAMSymposium onMechan-

ics of Generalized Continua. Freudenstadt and Stuttgart 67, pp. 18–35. Springer, Berlin-Heidelberg-New York (1968)
30. Focardi,M.,Mariano, P.M., Spadaro, E.N.:Multi-valuemicrostructural descriptors for complexmaterials: analysis of ground

states. Arch. Ration. Mech. Anal. 217(3), 899–933 (2015)
31. Giovine, P.: Porous solids as materials with ellipsoidal structure. In: Batra, R.C., Beatty, M.F. (eds.) Contemporary Research

in the Mechanics and Mathematics of Materials, pp. 335–342. CIMNE, Barcelona (1996)
32. Giovine, P.: Nonclassical thermomechanics of granular materials. Math. Phys. Anal. Geom. 2, 179–196 (1999)
33. Giovine, P.: A continuum description of diatomic systems. In: Brocato, M., Podio Guidugli, P. (eds.) Rational Continua,

Classical and New, pp. 97–109. Springer, Milano (2003)
34. Giovine, P.: A continuum theory of soils: viewed as peculiar immiscible mixtures.Math. Comput.Model. 37, 525–532 (2003)
35. Giovine, P.: On adsorption and diffusion inmicrostructured porousmedia. In: Huyghe, J.M., Raats, P.A.C., Cowin, S.C. (eds.)

IUTAM Symposium on Physico-Chemical and Electromechanical Interactions in Porous Media. Series on Solid Mechanics
and Its Applications, vol. 125, pp. 183–191. Springer, Dordrecht (2005)

36. Giovine, P.: An extended continuum theory for granular media. In: Capriz, G., Giovine, P., Mariano, P.M. (eds.)Mathematical
Models of Granular Matter. Series: Lecture Notes in Mathematics, vol. 1937, pp. 167–192. Springer, Berlin (2008)

37. Giovine, P.: Remarks on constitutive laws for dry granular materials. In: Giovine, P., Goddard, J.D., Jenkins, J.T. (eds.)
IUTAM-ISIMM Symposium on Mathematical Modeling and Physical Instances of Granular Flows. AIP Conference Pro-
ceedings Series, pp. 314–322. AIP, New York (2010)

38. Giovine, P.: On constitutive choices for smectic elastomers. In: Albers, B. (ed.) Continuous Media with Microstructure,
Collection in honor of Krzysztof Wilmanski on the Occasion of his 70th Birthday, pp. 69–79. Springer, Berlin (2010)

39. Giovine, P.: Extended Granular Micromechanics. In: Radjai, F., Nezamabadi, S., Luding, S., Delenne, J.Y. (eds.) Powders
and Grains 2017—8th International Conference on Micromechanics on Granular Media, France: EPJ Web of Conferences,
vol. 140, pp. 11009 (2017). https://doi.org/10.1051/epjconf/201714011009

40. Giovine, P.: Amultiscale approximationmethod to describe diatomic crystalline systems: constitutive equations. J.Multiscale
Model. 9(3), 1840001 (2018). ((13 pages))

41. Giovine, P.: Notes on constitutive relations for porous solids. In: Giovine, P., Mariano, P.M., Mortara, G. (eds.) Views on
Microstructures in Granular Materials. Series: Advances in Continuum Mechanics, vol. 44, pp. 61–85. Birkhauser, Basel
(2020)

42. Giovine, P.: Internal constraints in the theories of immiscible mixtures for soils. Int. J. Solids Struct. 187, 3–22 (2020)
43. Giovine, P., Margheriti, L., Speciale, M.P.: On wave propagation in porous media with strain gradient effects. Comp. Math.

Appl. 55, 307–318 (2008)
44. Giovine, P., Oliveri, F.: Dynamics and wave propagation in dilatant granular materials. Meccanica 30, 341–357 (1995)
45. Goodman, M.A., Cowin, S.C.: A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44, 249–266 (1972)
46. Green, A.E., Naghdi, P.M., Trapp, J.A.: Thermodynamics of a continuumwith internal constraints. Int. J. Eng Sci. 8, 891–908

(1970)
47. Grioli, G.: EIasticità asimmetrica. Ann. Matem. Pura Appl. 4(50), 387–417 (1960)
48. Grioli, G.: Microstructures as a refinement of Cauchy theory. Problems of physical concreteness. Cont. Mech. Thermodyn.

15, 441–450 (2003)
49. Gurtin, M.E., Podio Guidugli, P.: The thermodynamics of constrained materials. Arch. Ration. Mech. Anal. 51, 192–208

(1973)
50. Ichikawa, Y., Selvadurai, A.P.S.: Transport Phenomena in Porous Media: Aspects of Micro/Macro Behaviour. Springer,

Berlin, Heidelberg (2012)
51. Kanatani, K.I.: A micropolar continuum theory for the flow of granular materials. Int. J. Eng. Sci. 17, 419–432 (1979)
52. Lee, J.M.: Introduction to Smooth Manifolds. Springer Graduate Texts in Mathematics, vol. 218. Springer, Berlin, New York

(2003)
53. Liu, I.S.: Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Ration. Mech. Anal. 46, 131–148

(1972)

https://doi.org/10.1051/epjconf/201714011009


Continua with partially constrained microstructure 295

54. Mariano, P.M.: Multifield theories in mechanics of solids. Adv. Appl. Mech. 38, 1–93 (2002)
55. Mariano, P.M., Stazi, F.L.: Computational aspects of the mechanics of complex materials. Arch. Comput. Methods Eng.

12(4), 391–478 (2005)
56. Mariano, P.M.: Cracks in complex bodies: covariance of tip balances. J. Nonlinear Sci. 18, 99–141 (2008)
57. Mariano, P.M.: Mechanics of material mutations. Adv. Appl. Mech. 47, 1–91 (2014)
58. Noll, W.: La Mécanique Classique, Basée sur un Axiome d’Objectivité. La Méthode Axiomatique dans les Mécaniques

Classiques et Nouvelles, (Colloque International, Paris, 1959), Gauthiers–Villars, Paris, 47–56 (1963). [Reprinted in The
Foundations of Mechanics and Thermodynamics, Selected Works by W. Noll & C. A. Truesdell (Eds.), Springer, Berlin,
135–144 (1974)]

59. Noll, W., Virga, E.G.: Fit regions and functions with bounded variation. Arch. Ration. Mech. Anal. 102, 1–21 (1988)
60. Noll, W., Virga, E.G.: On edge interactions and surface tensions. Arch. Ration. Mech. Anal. 111, 1–31 (1990)
61. Nunziato, J.W., Cowin, S.C.: A nonlinear theory of elastic materials with voids. Arch. Ration. Mech. Anal. 72, 175–201

(1979)
62. Reynolds, O.: On the dilatancy of media composed of rigid particles in contact. Philos. Mag. 20, 469–481 (1885)
63. Segev, R.: Forces and the existence of stresses in invariant continuum mechanics. J. Math. Phys. 27, 163–170 (1986)
64. Segev, R.: A geometrical framework for the static of materials with microstructure. Math. Mod. Methods Appl. Sci. 4,

871–897 (1994)
65. Segev, R.: Fluxes and flux-conjugated stresses. In: Capriz, G., Mariano, P.M. (eds.) Advances in Multifield Theories of

Continua with Substructure, pp. 149–163. Birkhäuser, Boston (2004)
66. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)
67. Truesdell, C.: A First Course in Rational Continuum Mechanics, vol. 1. Academic Press, New York (1977)
68. Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Handbuch der Physik, III/3. Springer,

Berlin-Heidelberg-New York (1965)
69. Truesdell, C., Toupin, R.A.: The classical field theories. In: Flügge, S. (ed.) Handbuch der Physik, III/1. Springer, Berlin

(1960)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.


	Continua with partially constrained microstructure
	Abstract
	1 Introduction
	2 Deformations, configuration spaces and motions in materials with microstructure
	3 Balance laws
	4 Stress power and objectivity
	5 Internal constraints in microstructured materials
	6 Continua with partially constrained microstructure
	6.1 Partially constrained elastic materials
	6.2 Partially constrained micro-spins
	6.3 Partially constrained affine microstructure

	7 Specific examples
	7.1 Suspension of rigid granules in a fluid matrix
	7.2 Pseudo-Cosserat continua

	8 Closing remarks
	Acknowledgements
	References




