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Abstract The equilibrium equations and the traction boundary conditions are evaluated on the basis of the
condition of the stationarity of the Lagrangian for coupled strain gradient elasticity. The quadratic form of
strain energy can be written as a function of the strain and the second gradient of displacement and contains a
fourth-, a fifth- and a sixth-order stiffness tensorC4,C5 andC6, respectively. Assuming invariance under rigid
body motions the balance of linear and angular momentum is obtained. The uniqueness theorem (Kirchhoff)
for the mixed boundary value problem is proved for the case of the coupled linear strain gradient elasticity
(novel). To this end, the total potential energy is altered to be presented as an uncoupled quadratic form of the
strain and the modified second gradient of displacement vector. Such a transformation leads to a decoupling of
the equation of the potential energy density. The uniqueness of the solution is proved in the standard manner
by considering the difference between two solutions.

Keywords Coupled strain gradient elasticity · Coupling fifth-rank tensor · Uniqueness of solution

1 Introduction

Strain gradient elasticity, in which the strain energy density is a function of the strain and the second gradient
of the displacement vector, is a natural extension of the classical theory of elasticity. Strain gradient elasticity
is a particular case of higher-order gradient material theories and has a long history. Since the beginning of the
last century, in order to avoid the shortcomings of the classical theory of elasticity, a variety of non-classical
theories have been proposed. Cosserat andCosserat [11] have created the polarmedia, inwhich the independent
rotations and the associated coupled stresses were firstly introduced in the Eulerian equations of motion. After
almost half century the more general theories have been originated in Toupin [50], Mindlin [36], Germain
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[25]. In these theories it was assumed that the potential energy density depends not only on the strain, but also
on higher derivatives of the displacement vector. More recently, the generalized non-classical theories have
been also applied to modeling of materials at the micro- and nano-scale [10,23] to describing of phenomena
like dislocations [21], to analyzing of composites with a high difference of the material properties at a lower
scale [2,20,42,45,51] to describing some phenomena in regions with stress concentrations [5], to accounting
for boundary and surface energies [14,28] or to removing singularities caused by discontinues of boundary
conditions (e.g., [6,24,46,49]). It has been shown in numerous papers (see, for example, [22,34,35,41]) that
some restrictions of the classical theory of elasticity can be overcome with such gradient expansion.

The uniqueness of solution of equilibrium equations is a crux of any theory. Within the framework of the
classical linear elasticity theory the first uniqueness theorem is given for isotropic materials in Kirchhoff [29],
which has been completed by Cosserat and Cosserat [11] for boundary value problems with displacement
boundary conditions. The generalization to anisotropic materials can be found in Knops and Payne [30] or
Bertram and Glüge [9]. A uniqueness theorem for linearly elastic body with surface stresses is proved in Gurtin
andMurdoch [26]. Sufficient condition for the uniqueness of the solution of the mixed boundary value problem
is the definiteness of the stiffness tetradC4. Requiring additionally stability of the solution yields the condition
that C4 needs to be positive definite. The necessity of this condition has been shown by Cosserat and Cosserat
[11].

Modern existence and uniqueness theorems employ different versions of Korn’s inequality [31,32], which
is an adaption of Poincaré’s inequality [43] to problems that involve a projection of the differential operator into
the symmetric part. With its help, the requirements for existence and uniqueness of a solution to a variational
form of the boundary value problem of classical linear elasticity are reduced to requirements according to the
theorem of Babuška–Lax–Milgram [7,33,48].

Conditions sufficient for uniqueness solution are considered for uncoupled isotropic gradient elasticity in
Mindlin andEshel [38].Usually, positive definiteness of the stored elastic energy is assumed, see Sect. 2, Eq. (1),
which reduces to positive definiteness of the stiffness tensors C4, and C6, while C5 = O was presumed as
well. These are sufficient conditions, but they are surely not necessary. The number of possibilities of boundary
value problems in gradient elasticity is much larger compared to classical elasticity. Nevertheless, Mindlin’s
uniqueness proof is of reasonable generality: it holds for mixed boundary conditions, and no restrictions
regarding the shape of the domain are necessary. Neglecting of the constitutive coupling tensor of fifth-
rank C5 leads to requirement of positive definiteness of both first and second gradient constitutive stiffness
tensors of fourth- and sixth-ranksC4 andC6. Inequality constraints on first and on second gradient constitutive
parameters in absence of coupling termswere also presented inMindlin [36], dell’Isola et al. [12]. InNazarenko
et al. [39] results of Mindlin [36] and dell’Isola et al. [12] have been extended for the case of coupled strain
gradient elasticity. In this regard, it has been introduced a block diagonalization of the composite stiffness in
strain gradient elasticity. By such a formal transformation, which contains a fourth-, a fifth- and a sixth-order
stiffness tensor C4, C5 and C6, necessary conditions for positive definiteness and convexity of the isotropic
strain and strain gradient energy, accounting for the coupling stiffness C5 have been obtained. Closed-form
relations for the compliance tensors in the frame of the linear theory of coupled gradient elasticity have been
given for arbitrary material symmetry classes in Nazarenko et al. [40].

The uniqueness of the solution for an isotropic material featured by four constants (simplified Aifantis
model, see, e.g., [3,47]) has been proved for the dynamic evolution problem in Polizzotto [44]. An existence
and uniqueness theorem for weak solutions of the equilibrium problem for the simplified case of the linear
isotropic strain gradient elasticity (dilatational strain gradient elasticity) is given in Eremeyev et al. [14] and
was extended to nonlinear case in Eremeyev et al. [18] and to non-smooth domains with edges in Eremeyev
and dell’Isola [15]. In particular, the presence of edges changes the regularity of solutions. In the case of
degeneration of the elastic moduli, uniqueness of solutions is proved for a specific boundary conditions, see,
e.g., Eremeyev et al. [13,17].

The aim of the paper is to study the uniqueness of solution of the mixed boundary problem in the frame of
the linear coupled strain gradient elasticity, which was not done in the previous papers (novelty). This paper
has the following structure. Notations used in the paper are introduced in the next section. The equilibrium
equation and the traction boundary conditions for the coupled strain gradient elasticity are re-derived on the
basis of the principle of virtual power in Sect. 3. The difference between the equations presented here and in
Mindlin and Eshel [38] is in index associations of the scalar products. This is the result of the presence of a
coupled term in the strain and strain gradient energy Eq. (1) and of the symmetry of the stiffness tensor of
fifth-rank. The potential energy density Eq. (1) of Sect. 2 is assumed to be a function of the strain and the
second gradient of the displacement vector and contains a fourth-, a fifth- and a sixth-order stiffness tensors
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C4, C5 and C6, respectively. In Sect. 4, the balances of the linear and the angular momentum are employed
in the derivation of the equations of strain gradient elasticity. Starting with the balance of the linear and the
angular momentum we recover the principle of virtual power. The uniqueness theorem (Kirchhoff) for mixed
boundary value problem is extended to the coupled linear strain gradient elasticity in Sect. 5. Conclusions and
discussion are presented in the last section.

2 Notation

Scalars, vectors, second- and higher-rank tensors are denoted by italic letters (like a or A), boldminuscules (like
a), bold majuscules (like A), and blackboard bold majuscules (like A), respectively. The basic mathematical
operations are given, for example, in Altenbach [4], Eremeyev et al. [16].

The elastic energy density taking into account strain and strain gradient tensors can be written as

w = 1

2
E2 · ·C4 · ·E2 + E2 · ·C5 · · · E3 + 1

2
E3 · · · C6 · · · E3 , (1)

where C4, C5, C6 are the stiffness tensors of 4th, 5th and 6th order, respectively. The strain tensor and the
second gradient of displacement vector are

E2 = 1

2
(u ⊗ ∇ + ∇ ⊗ u) = sym(u ⊗ ∇) , E3 = u ⊗ ∇ ⊗ ∇ (2)

functions of u(x), where u(x) is the displacement field, with the position vector of a material point x. For the
sake of simplicity, the independent variable x is dropped.∇ is the three-dimensional nabla operator defined as

∇ ≡ ∂

∂xi
ei (i = 1, 2, 3),

where ei is an orthonormal base vector. It is implied a summation by the repeating indices. ⊗ denotes the
dyadic product. A gradient of the displacement field u is defined by action of the nabla operator on u:

u ⊗ ∇ = ∂ui
∂x j

ei ⊗ e j = ui, jei ⊗ e j . (3)

On a surface, the spatial nabla operator can be split into a normal and a tangential (surface) part,

∇ = ∇n + ∇s , (4)

with

∇n ≡ n ⊗ n · ∇ = ∇ · n ⊗ n = ∂

∂x j
n jn , (5)

and

∇s ≡ ∇ · (I − n ⊗ n) . (6)

Here I is the three-dimensional unit dyadic.
The stresses and the double stresses are defined as

T2 = ∂w

∂E2
= C4 · ·E2 + C5 · · · E3 , (7)

T3 = ∂w

∂E3
= C

T
5 · ·E2 + C6 · · · E3. (8)
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The subscript indices correspond the order of tensorsE2,E3,C4,C5,C6, which have the following symmetries
(see, e.g., [27])

Ei j = E ji , (9)

Ei jk = Eik j , (10)

Ci jkl = Ckli j = C jikl = Ci jlk , (11)

Ci jklm = C jiklm = Ci jkml , (12)

Ci jklmn = Clmni jk = Cik jlmn = Ci jklnm . (13)

The dots denote scalar contractions

a1 ⊗ · · · ⊗ ak · . . . ·
︸︷︷︸

n dots

b1 ⊗ · · · ⊗ bl

= (ak−n · b1) . . . (ak · bn)a1 ⊗ ak−n−1 ⊗ bn+1 ⊗ . . .bl . (14)

The double and triple scalar contractions in Eqs. (1), (7), (8) act in accordance with the following rules

ei ⊗ e j · ·ekei ⊗ e j · ·ek ⊗ el = δikδ jl , (15)

ei ⊗ e j ⊗ ek · · · elei ⊗ e j ⊗ ek · · · el ⊗ emei ⊗ e j ⊗ ek · · · el ⊗ em ⊗ en = δilδ jmδkn , (16)

where δi j is the Kronecker symbol.
For a dyadicD2, the symmetric part is sym(D2), the skew part is skw(D2), and the axial vector of the skew

part of D2 is noted as axi(D2). axi(D2) is defined by its action on arbitrary vector a according to the rule

skw(D2) · a = axi(D2) × a . (17)

Here × denotes the vector product.

3 Variational formulation of the equilibrium equation in the linear strain gradient elasticity

The equilibrium equations and the corresponding natural boundary conditions can be derived on the basis of
the Lagrangian variational principle (see, e.g., [1,14]) applied to the coupled linear strain gradient continua.

3.1 Variation of the strain energy for coupled linear strain gradient continua

The total potential energy in a volume V with a variation of u is

δ

∫

V

w dV =
∫

V

(T2 · ·δE2 + T3 · · · δE3) dV

=
∫

V

[T2 · ·(δu ⊗ ∇) + T3 · · · (δu ⊗ ∇ ⊗ ∇)] dV , (18)

where the stresses T2 and the double stresses T3 are determined in Eqs. (7) and (8).
Applying the chain rule and the divergence theorem, the right-hand of Eq. (18) is reduced to the sum of

volume and surface integrals

δ

∫

V

w dV = −
∫

V

δu · (T2 − T3 · ∇) · ∇ dV

+
∫

S

δu · (T2 − T3 · ∇) · n dS

+
∫

S

δu ⊗ ∇ · ·T3 · n dS , (19)
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where S is the boundary of V and n is the unit outward normal to S.
It should be noted, that gradient of the displacement variation δu ⊗ ∇ and variation of the displacement

δu on the surface S are dependent. Indeed, knowing δu on S it is possible to determine the surface gradient of
δu. Following Toupin [50] and Mindlin [37] we decompose the gradient of δu into its normal and tangential
parts in accordance with Eqs. (4)–(6)

δu ⊗ ∇ = δu ⊗ (∇n + ∇s) . (20)

Using identity Eq. (20) the last term, in the integrand in Eq. (19), can be written down as a sum

δu ⊗ ∇ · ·T3 · n = δu ⊗ ∇n · ·T3 · n + δu ⊗ ∇s · ·T3 · n . (21)

After applying the chain rule, the last term in Eq.(21) containing the surface gradient can be presented in the
following form:

δu ⊗ ∇s · ·T3 · n = (δu · T3 · n) · ∇s − δu · (T3 · n) · ∇s . (22)

We use the surface divergence theorem in the form (see, [37], p. 435)

∫

S

v · ∇s dS =
∫

S

(n · ∇s)v · n dS +
∮

C

v · m dC , (23)

where C is the union of all edges of the domain V , t is the unit tangent to the edge, andm = t × n is the unit
outward normal to C tangent to t. Taking v = δu · T3 · n in (23) gives

∫

S

(δu · T3 · n) · ∇s dS =
∫

S

δu · [T3 · ·n ⊗ n] (n · ∇s) dS

+
∮

C

δu · [T3 · ·n ⊗ m] dC . (24)

Using identity (24) and Eq. (21) the last term, in Eq. (19) for the variation of the total potential energy can be
written down in the following form:

∫

S

δu ⊗ ∇ · ·T3 · n dS

=
∫

S

{δu ⊗ ∇n · ·T3 · n + (δu · T3 · n) · ∇s − δu · (T3 · n) · ∇s} dS

=
∫

S

δu ⊗ ∇n · ·T3 · n dS

+
∫

S

δu · {T3 · ·[(n · ∇s)n ⊗ n − n ⊗ ∇s] − (T3 · ∇s) · n} dS

+
∮

C

δu · [T3 · ·n ⊗ m] dC . (25)
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Substituting this into Eq. (19) we obtain

δ

∫

V

w dV = −
∫

V

δu · (T2 − T3 · ∇) · ∇ dV

+
∫

S

δu · {(T2 − T3 · ∇ − T3 · ∇s) · n

+ T3 · ·[(n · ∇s)n ⊗ n − n ⊗ ∇s]} dS
+

∫

S

δu ⊗ ∇n · ·T3 · n dS

+
∮

C

δu · [T3 · ·n ⊗ m] dC . (26)

Remark 1 There is a qualitative difference between converting volume integrals into surface integrals and
surface integrals into edge integrals. While the surface of the volume divides space into inside and outside of
the body, this does not hold for edges on the surface. The surface is, so to say, unbounded, unlike the volume.
The surface divergence theorem produces two integrals (Eq. 24), the first contains (n · ∇s)dS and the second
contains δu · [T3 · ·n ⊗ m] dC . Both can be zero, but not at the same time:

– for bodies bounded only by planar facets, n · ∇s = 0, hence the first integral vanishes, and
– for bodies without edges, the edge integral disappears because the surface is unbounded.

One might argue that the second case is the more general case, as one can regularize sharp corners by a tiny
but smooth edge radius, and get the first case as the limit to a zero edge radius. Therefore, for simplicity the
edge integrals can be summarized into the surface integrals, in the sense of a regularization, which allows to
drop the edge integrals. In the remainder we keep the edge integrals for the sake of completeness, but it may
be possible to neglect the edges and all the quantities that are defined on them if one is willing to regularize
sharp corners, which simplifies the derivation considerably.

3.2 Variational equation of equilibrium and boundary conditions

The Lagrangian l can be written down in the following form:

l = a −
∫

V

w dV , (27)

where a is a work of external forces and double forces and w is a strain and strain gradient energy density
Eq. (1). Then the principle of the Lagrangian stationary (the principle of virtual power) is

δl = δa − δ

∫

V

w dV .

The variation of the strain and strain gradient energy requires an admissible form of the work:

a =
∫

V

u · f dV +
∫

S

(u · p + u ⊗ ∇n · ·R) dS +
∮

C

u · c dC . (28)

Here f is a body force per unit volume, p is a surface traction, R is a surface normal double force on S (e.g.,
[14]), and c is a line force on edge C .

Since the normal gradient of displacement is described as

u ⊗ ∇n = ∂ui
∂x j

n jei ⊗ n = (Du) ⊗ n , (29)
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or

Du = (u ⊗ ∇) · n = ∂ui
∂x j

n jei , (30)

the work of external forces can be written as

a =
∫

V

u · f dV +
∫

S

(u · p + Du · rn) dS +
∮

C

u · c dC , (31)

where rn is a double traction in normal direction on S (e.g., [8])

rn = R · n . (32)

For all admissible functions δu the variation of the potential energy has a form

δ

∫

V

w dV =
∫

V

δu · f dV +
∫

S

(δu · p + Dδu · rn) dS +
∮

C

δu · c dC , (33)

which leads with Eq. (26) to the equation of equilibrium:

(T2 − T3 · ∇) · ∇ + f = 0, (34)

and to the dynamic boundary conditions for the surface tractions and the edge forces, which can be prescribed:

– the vector field of the tractions on the part of the surface of the body Sd

ppr = (T2 − T3 · ∇ − T3 · ∇s) · n + T3 · ·[(n · ∇s)n ⊗ n − n ⊗ ∇s] , (35)

– the double tractions in normal direction on the Sd

rn pr = T3 · ·n ⊗ n , (36)

– the line forces on edge on the part of edge Cd

cpr = T3 · ·n ⊗ m . (37)

Here, the subscript pr denotes prescribed.
The displacement or kinematic boundary conditions in terms of the displacement fields u and its normal

gradient Du on the part of the surface of the body Sg (Sd ∪ Sg = S), and the displacement u on the part of the
edge are apparent from Eq. (33)

upr = u on Sg , (38)

Dupr = Du on Sg , (39)

upr = u on Cg . (40)

3.3 Equilibrium equation based on the balance of the virtual power

Let us consider the Lagrangian variational principle (principle of virtual power) Eq. (33) for rigid body motion

δu = u0 + ω × x , (41)

where u0 and ω are two constant vectors. For such δu from Eq. (33) it is possible to obtain the equilibrium
equation for a free solid body (e.g., [9,14])

δa − δ

∫

V

w dV = u0 ·
⎧

⎨

⎩

∫

V

f dV +
∫

S

p dS +
∮

C

c dC

⎫

⎬

⎭

+ ω ·
⎧

⎨

⎩

∫

V

x × f dV +
∫

S

x × p dS + m +
∮

C

x × c dC

⎫

⎬

⎭

= 0 , (42)

Thus we have two balance laws for the total force and the total torque in the form:
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– the balance of linear momentum
∫

V

f dV +
∫

S

p dS +
∮

C

c dC = 0 , (43)

– the balance of angular momentum
∫

V

x × f dV +
∫

S

x × p dS + m +
∮

C

x × c dC = 0 , (44)

where the tractions p on S, and the line forces on edge c on C are described as

p = (T2 − T3 · ∇ − T3 · ∇s) · n + T3 · ·[(n · ∇s)n ⊗ n − n ⊗ ∇s] , (45)

c = T3 · ·n ⊗ m , (46)

and m is the torque induced by double forces on the surface of the body by the rotational field ω × x

ω · m =
∫

V

(ω × x) ⊗ ∇n · ·R dV , (47)

with

R = T3 · n . (48)

For an arbitrary rotational field ω × x, where x is position vector and ω - any constant vector

(ω × x) ⊗ ∇n = ω × (x ⊗ ∇n) = ω × n ⊗ n , (49)

is antisymmetric. Thus

axin[(ω × x) ⊗ ∇n] = axin(ω × n ⊗ n) = ω , (50)

and, consequently

(ω × x) ⊗ ∇n · ·R = (ω × x) ⊗ ∇n · ·skw(R)

= axin[(ω × x) ⊗ ∇n] · 2axin(R) = ω · 2axin(R) . (51)

Here the axial part of the vector axi(ω×n⊗n) is defined according toEq. (17) and its normal part axin(ω×n⊗n)
analogically as for normal gradient Eqs. (4)–(6).

With the above identity we achieve the balance of angular momentum in the form [8]
∫

V

x × f dV +
∫

S

{x × p + 2axin(R)} dS +
∮

C

x × c dC = 0 . (52)

It is possible to obtain from the balance of linear and angular momentum the local balance of linear momentum
or first Eulerian law of motion

(T2 − T3 · ∇) · ∇ + f = 0. (53)

Since p is determined from Eq. (45) and using the following integral transformation
∫

S

x × (T2 · n) dS =
∫

V

(x × T2) · ∇ dV =
∫

V

[x × (T2 · ∇) + 2axi(T2)] dV , (54)

one can show that axi(T2) = 0 and as a consequence the symmetry of the stress tensor (second Eulerian law
of motion)

T2 = TT
2 (55)

follows.
We are now able to reformulate the principle of virtual power.
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Theorem 1 A motion of the body is dynamically admissible if and only if the balance of virtual power in the
form

∫

V

δu · f dV +
∫

S

(δu · p + δu ⊗ ∇n · ·R) dS +
∮

C

δu · c dC

=
∫

V

(T2 · ·sym(δu ⊗ ∇) + T3 · · · δu ⊗ ∇ ⊗ ∇) dV , (56)

holds for all differentiable vector fields δu.

Proof Let us assume that a motion of the body is dynamically admissible so that Eqs. (53)–(55) hold. Then
the balance of linear momentum is fulfilled if

(T2 − T3 · ∇) · ∇ + f = 0, (57)

holds in every point, and also

δu · {(T2 − T3 · ∇) · ∇ + f} = 0, (58)

for any differentiable vector fields δu. The integral over the body also vanishes
∫

V

δu · {(T2 − T3 · ∇) · ∇ + f} dV = 0. (59)

Accounting for Eqs. (18), (26) we obtain
∫

V

δu · f dV +
∫

S

(δu · p + δu ⊗ ∇n · ·R) dS +
∮

C

δu · c dC

=
∫

V

(T2 · ·δu ⊗ ∇ + T3 · · · δu ⊗ ∇ ⊗ ∇) dV . (60)

In addition, the balance of moment of momentum Eq. (55) is fulfilled if

T2 · ·skw(δu ⊗ ∇) = 0 , (61)

or
∫

V

T2 · ·skw(δu ⊗ ∇) dV = 0 (62)

holds for any differentiable vector fields δu. We subtract this from equation (60) and obtain Eq. (56). ��

4 Extension of Kirchhoff’s uniqueness theorem to coupled strain gradient elasticity

In this subsection it is demonstrated that the solution of the mixed boundary value problem, if exists, is unique.
We consider a mixed boundary value problem:

– the stress equation of equilibrium

(T2 − T3 · ∇) · ∇ + f = 0, (63)

– prescribed are:
– the body force f in the interior of the body V ,
– the vector field of the tractions ppr on the surface of the body Sd ,
– the displacement fields u on the surface of the body Sg ,
– the double tractions in normal direction rn pr on the surface of the body Sd ,
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– the normal gradient of the displacement fields Du on the surface of the body Sg ,
– the line forces on edge cpr on the edges Cd of the surface of the body S,
– the displacement fields u on the edge Cg of the surface of the body S,
where the tractions ppr , the double tractions in normal direction rn pr and the line forces on edge cpr are
determined in Eqs. (35)–(37).

Both parts of the surface Sd and Sg and the edge Cd and Cg should be almost everywhere disjoint and should
form the entire surface and its edges

Sd ∪ Sg = S, Cd ∪ Cg = C . (64)

Since all equations of the gradient elasticity theory are linear, we can use the principle of superposition:

Theorem 2 Consider two sets {uk, E2 k, E3 k, T2 k, T3 k} for k = 1, 2 of solutions of two mixed boundary
value problems for given body forces fk , surface tractions pk and rn k on the part of surface Sd and the line
forces ck on the part of edge Cd and the displacement u and the normal gradient of the displacement Du on the
complementary part of surface Sg. Then for all real numbers αk ∈ 	, k = 1, 2, the same equations are fulfilled
by {α1u1 + α2u2, α1E2 1 + α2E2 2, α1E3 1 + α2E3 2, α1T2 1 + α2T2 2, α1T3 1 + α2T3 2} for the body forces
{α1f1 + α2f2} , the surface tractions {α1p1 + α2p2} and {α1rn 1 + α2rn 2} on Sd , the line forces {α1c1 + α2c2}
on Cd and the displacement {α1u1 + α2u2}, the normal gradient of the displacement {α1Du1 + α2Du2} on
Sg.

Now we can consider the uniqueness of the solution in the usual manner (see, e.g., [9]) - based on
assumption of the positive definiteness of the strain and strain gradient energy. The extension of the uniqueness
theorem is the next theorem.

Theorem 3 For linear elastic gradient material with positive definite potential energy density, two solutions
u1 and u2 of the mixed boundary value problem differ only by an infinitesimal rigid body motion

u1(x) = u2(x) + u0 + � · (x − x0) , (65)

where u0 and x0 are two constant vectors and � is a constant anti-symmetric tensor. If the displacements are
prescribed for at least three not collinear points then the solution is unique

u1(x) = u2(x) . (66)

Proof The theorem assumptions and the principle of superposition lead to the following stating:

δu(x) = u1(x) − u2(x) (67)

is a solution of the mixed boundary value problem with zero-boundary conditions: f = 0 in V , p = 0 and
rn = 0 on Sd , c = 0 on Cd , δu = 0 and Dδu = 0 on Sg . Following the principle of virtual displacements
Eqs. (33) and (56) we have for the zero-boundary value problem

∫

V

δu · f dV +
∫

Sd

(δu · p + Dδu · rn) dS

+
∫

Sg

(δu · p + Dδu · rn) dS

+
∮

Cd

δu · c dC +
∮

Cg

δu · c dC

=
∫

V

(T2 · ·sym(δu ⊗ ∇) + T3 · · · δu ⊗ ∇ ⊗ ∇) dV = 0 , (68)

considering that at least one factor under each integral on the left-hand side of the above equation is zero in
the integration domain. Here the constitutive relations are defined as

T2 = C4 · ·sym(δu ⊗ ∇) + C5 · · · δu ⊗ ∇ ⊗ ∇
= C4 · ·δE2 + C5 · · · δE3 , (69)
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T3 = C
T
5 · ·sym(δu ⊗ ∇) + C6 · · · δu ⊗ ∇ ⊗ ∇

= C
T
5 · ·δE2 + C6 · · · δE3 , (70)

where

δE2 = sym(δu ⊗ ∇) , δE3 = δu ⊗ ∇ ⊗ ∇ . (71)

With Eqs. (69) and (70) the integrand in equation (68) can be presented as

T2 · ·δE2 + T3 · · · δE3

= δE2 · ·C4 · ·δE2 + 2δE2 · ·C5 · · · δE3 + δE3 · · · C6 · · · δE3 . (72)

The presence on the right-hand side of the coupling term C5 complicates essential obtaining the inequality
constraints needed for positive definiteness of w.

In order to separate the contributions of the strain and of the strain gradient, this equation can be transformed
by using a formal modification of the second gradient of displacement and of the stiffness tensor of fourth-rank
as shown in Nazarenko et al. [39]:

T2 · ·δE2 + T3 · · · δE3 = δE2 · ·Cm
4 · ·δE2 + δEm

3 · · · C6 · · · δEm
3 . (73)

The modified second gradient of displacement and the modified stiffness tensor are marked by superscript m,
and are specified as

δEm
3 = δE3 + δE2 · ·C5 · · · C−1

6 (74)

and

C
m
4 = C4 − C5 · · · C−1

6 · · · CT
5 . (75)

Because of the assumed positive definiteness of the quadratic form of the potential energy density,

δE2 · ·Cm
4 · ·δE2 + δEm

3 · · · C6 · · · δEm
3 (76)

must be nonnegative everywhere. Then integrating the last expression gives
∫

V

δE2 · ·Cm
4 · ·δE2 + δEm

3 · · · C6 · · · δEm
3 dV

≥
∫

V

δE2 · ·Cm
4 · ·δE2 dV ≥ 0, (77)

and after Korn’s inequality (see, e.g., [19,30])

k
∫

V

|δE2|2 dV ≥
∫

V

|δu ⊗ ∇|2 dV (78)

can be zero, if and only if the integrand δu ⊗ ∇ is zero everywhere. Here the magnitude of a second-rank
tensorM is defined as

|M| = √
M : M , (79)

and k is a constant depending only on the region of integration V .
Therefore, the displacement δu can be strain-free only, and with Eq. (67)

δu(x) = u1(x) − u2(x) = u0 + � · (x − x0) . (80)

It is the proof of the first part of the theorem. The second part of the theorem proof is rather evident, indeed, if
Sg has at least three not collinear points, for which the displacements are prescribed, then δu must vanish in
these points, and that δu will be zero field everywhere

u1(x) = u2(x) . (81)
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Remark 2 We would like to point out that Eq. (72) can also be modified in order to present the variation of the
strain energy density as block matrices by introducing the variation of the modified strain and the modified
stiffness tensor of sixth-rank (see [40])

T2 · ·δE2 + T3 · · · δE3 = δEm
2 · ·C4 · ·δEm

2 + δE3 · · · Cm
6 · · · δE3 , (82)

with

δEm
2 = δE2 + δE3 · · · CT

5 · ·C−1
4 (83)

and

C
m
6 = C6 − C

T
5 · ·C−1

4 · ·C5 . (84)

Such a transformation is mathematically equivalent to Eq. (73) and leads to the same proving scheme. Thus, the
both modifications can be used for proving and can be considered as an additional validation of the presented
proof.

5 Conclusions

The equilibrium equation and the corresponding natural boundary conditions are re-derived on the basis of the
Lagrange variational principle modified for the coupled linear strain gradient continua. The potential energy
density Eq. (1) is assumed to be a function of the strain and the second gradient of displacement and contains
a fourth-, a fifth- and a sixth-order stiffness tensor C4, C5 and C6 .

Assuming rigid body motion the balance lows for the total forces and total torque are obtained from the
principle of virtual power. These balance lows are employed in the derivation of the equilibrium equations of
the coupled strain gradient elasticity. It is shown that the balance of angular momentum leads to the symmetry
of the stress tensorT2 as a consequence. Then starting with the balance of the linear and the angular momentum
the principle of the virtual power is recovered.

Kirchhoff’s uniqueness theorem for the mixed boundary value problem is proven for the equilibrium
problem for the coupled linear strain gradient elasticity. The existence of the coupling term C5 makes the
problem more complicated. By a transformation which may be considered as a block diagonalization, the
equation of the potential energy density Eq. (1) was modified to present w as an uncoupled quadratic form
of the strain and the modified second gradient of displacement (see details in [39,40]). Then, one may apply
Mindlin’s uniqueness proof for isotropic materials. Here we proved the uniqueness of the solution in the
usual way by contradiction by considering two solutions and their difference, similar to Kirchhoff’s proof
in classical elasticity. The proof requires positive definiteness of the potential energy density. The positive
definiteness conditions for constitutive parameters are presented in Nazarenko et al. [39] in a tensorial form
without restricting the symmetry class, but the inequalities are therein given for the 8 elasticity parameters in
hemitropy (invariance under the action of the special orthogonal group).
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