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Abstract We apply the Stroh octet formalism to derive the electroelastic field for an anisotropic piezoelectric
solid weakened by a blunt crack. The blunt crack itself is represented by a parabolic cavity with traction-free
and charge-free boundary. Using identities developed in the Stroh octet formalism, we obtain explicit and full-
field expressions for stresses, electric displacements, displacements and electric potential valid everywhere in
the material. In particular, we obtain real form representations of the stresses, strains, electric displacements,
electric fields and rigid-body rotation specifically at the tip of the blunt crack (i.e. at the vertex of the parabolic
boundary of the solid).
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1 Introduction

The crack problem in piezoelectricmaterials is strongly influenced by the phenomenon associatedwith intrinsic
electromechanical coupling. This has stimulated great interest in this area and led to extensive investigations
by several researchers (see, for example, [1–7]). In these discussions, the crack is regarded as an ideal slit
resulting in an electroelastic field describing stresses, strains, electric displacements and electric fields which
is singular at the crack tip. Although the elastic field for a blunt crack in an isotropic elastic material was first
obtained by Creager and Paris [8] and most recently for a blunt crack in an anisotropic elastic material by
Wang and Schiavone [9], to the best of our knowledge, the electroelastic field for a blunt crack in a generally
anisotropic piezoelectric solid remains absent from the literature.

In this paper, we thus examine the electroelastic field for a blunt crack in an anisotropic piezoelectric
material. The blunt crack is represented by a parabolic cavity with traction-free and charge-free boundary. A
complete solution is derived bymeans of theStroh octet formalism [4,10–12]. Furthermore, explicit expressions
for the stresses, electric displacements, displacements and electric potential are obtained by utilizing the inverse
of a 4 × 4 Vandermonde matrix constructed from the four distinct Stroh eigenvalues [13] and by utilizing the
identities developed as part of the Stroh octet formalism [10,12]. Real form expressions for the stresses, strains,
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electric displacements, electric fields and rigid-body rotation at the vertex of the parabola (or at the tip of the
blunt crack), which are valid for any mathematically degenerate materials, are derived.

2 The Stroh octet formalism

In a fixed rectangular coordinate system {xi } (i = 1, 2, 3), the governing equations for an anisotropic piezo-
electric solid are given by [4]

σi j = Ci jkluk,l + eki jφ,k, Dk = eki j ui, j− ∈kl φ,l ,
σi j, j = 0, Di,i = 0, (1)

in which we sum over repeated indices and an indicial comma represents differentiation; σi j and Di are the
stresses and electric displacements; ui and φ are the displacements and electric potential; Ci jkl , eki j and ∈i j
are, respectively, the elastic, piezoelectric and dielectric constants.

In the case of two-dimensional problems in which all quantities depend only on x1 and x2, the general
solution can be expressed as [4,10–12]

u = [
u1 u2 u3 φ

]T = Af(z) + Āf(z),
ϕ = [

ϕ1 ϕ2 ϕ3 ϕ4
]T = Bf(z) + B̄f(z),

(2)

where

A = [
a1 a2 a3 a4

]
, B = [

b1 b2 b3 b4
]
,

f(z) = [
f1(z1) f2(z2) f3(z3) f4(z4)

]T
,

zi = x1 + pi x2, Im {pi } > 0, (i = 1, 2, 3, 4),
(3)

with

N
[
ai
bi

]
= pi

[
ai
bi

]
, (i = 1, 2, 3, 4) (4)

N =
[
N1 N2

N3 NT
1

]
, (5)

N1 = −T−1RT,N2 = T−1,N3 = RT−1RT − Q, (6)

and

Q =
[
QE e11
eT11 − ∈11

]
, R =

[
RE e21
eT12 − ∈12

]
, T =

[
TE e22
eT22 − ∈22

]
, (7)

(QE )ik = Ci1k1, (RE )ik = Ci1k2, (TE )ik = Ci2k2, (ei j )m = ei jm . (8)

In addition, the extended stress functionvectorϕ is defined in termsof the stresses and electric displacements
as follows

σi1 = −ϕi,2, σi2 = ϕi,1, i = 1, 2, 3;
D1 = −ϕ4,2, D2 = ϕ4,1.

(9)

The two matrices A and B satisfy the following orthogonality relations

BTA + ATB = I = B̄
T
Ā + Ā

T
B̄,

BTĀ + ATB̄ = 0 = B̄
T
A + Ā

T
B.

(10)

Thus, we can introduce the following three 4×4 real generalized Barnett–Lothe tensors S,H andL [10,12]

S = i(2ABT − I), H = 2iAAT, L = −2iBBT. (11)

Furthermore, the two matrices H and L are symmetric but no longer positive definite, while
SH,LS,H−1S,SL−1 are all skew-symmetric.
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The following identities can be proved [10,12]

A < pnβ > B−1 =
(
N(n)
2 − N(n)

1 SL−1
)

− iN(n)
1 L−1,

A < pnβ > A−1 =
(
N(n)
1 + N(n)

2 STH−1
)

+ iN(n)
2 H−1,

B < pnβ > B−1 =
(
(N(n)

1 )T − N(n)
3 SL−1

)
− iN(n)

3 L−1,

B < pnβ > A−1 =
(
N(n)
3 + (N(n)

1 )TSTH−1
)

+ i(N(n)
1 )TH−1,

(12)

where < ∗ > represents a 4 × 4 diagonal matrix in which each component is varied according to the Greek
index β (from 1 to 4), n is an integer which can be positive or negative, and

Nn =
⎡

⎣
N(n)
1 N(n)

2

N(n)
3

(
N(n)
1

)T

⎤

⎦ , (13)

where

N(n)
1 ,N(n)

2 ,N(n)
3 =

{
N1,N2,N3 when n = 1,
I, 0, 0 when n = 0. (14)

3 The electroelastic field

As shown in Fig. 1, we consider an anisotropic piezoelectric solid that occupies the region

x1 ≥ −ax22 , a > 0, (15)

the traction-free and charge-free boundary L of which is a parabola described by

L : x1 = −ax22 . (16)

Introduce the following mappings [9]:

zβ = x1 + pβx2 = ωβ(ξβ) = pβξβ − aξ2β,

ξβ = ω−1
β (ξβ) = pβ

2a

(
1 −

√
1 − 4azβ

/
p2β

)
, β = 1, 2, 3, 4,

(17)

which map the region on the right of the parabola onto the lower half-plane in the ξβ -plane. In addition,
ξ1 = ξ2 = ξ3 = ξ4 = x2 for x1 + ix2 ∈ L .

The traction-free and charge-free (or insulating) boundary conditions on the parabola L can be expressed
in terms of the analytic vector function f(z) as

Bf(z) + B̄f(z) = h, x1 + ix2 ∈ L , (18)

where h is an arbitrary constant real vector.
By enforcing the traction-free and charge-free conditions on L in Eq. (18) and using the mapping functions

in Eq. (17), the analytic vector function f(z) is found to take the following simple form:

f(z) = − i

2
√
2πa

< pβ

√
1 − 4azβ

/
p2β > B−1k, (19)

where

k = [
KII KI KIII KIV

]T
, (20)

with KI, KII, KIII denoting, respectively, the real-valued mode I, II and III stress intensity factors while KIV
represents the real-valued electric displacement intensity factor.
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Fig. 1 An anisotropic piezoelectric material containing a parabolic cavity with a traction-free and charge-free boundary

By substituting Eq. (19) in Eq. (2) and making use of Eq. (9), the stresses, electric displacements, dis-
placements and electric potential are distributed in the anisotropic piezoelectric solid with traction-free and
charge-free parabolic boundary as follows

σ1 = − 1√
2π

Re

⎧
⎨

⎩
B <

pβ√
zβ − 1

2ρp
2
β

> B−1

⎫
⎬

⎭
k, (21)

σ2 = 1√
2π

Re

⎧
⎨

⎩
B <

1
√
zβ − 1

2ρp
2
β

> B−1

⎫
⎬

⎭
k, (22)

u =
√

2

π
Re

{
A <

√
zβ − 1

2ρp
2
β > B−1

}
k, (23)

where ρ = 1
/
(2a) is the radius of curvature at the vertex of the parabola, and

σ1 = [
σ11 σ21 σ31 D1

]T
, σ2 = [

σ12 σ22 σ32 D2
]T

. (24)

The 4 × 4 diagonal matrices < 1√
zβ− 1

2ρp2β

> and <

√
zβ − 1

2ρp
2
β > appearing in Eqs. (21)–(23) can be

further expressed in the following form

< 1√
zβ− 1

2ρp2β

>=< r
− 1
2

β e− i θβ

2 >=
4∑

n=1
< pn−1

β > cn,

<

√
zβ − 1

2ρp
2
β >=< r

1
2
β e

i θβ

2 >=
4∑

n=1
< pn−1

β > dn,

(25)

where

rβ =
∣
∣∣zβ − 1

2ρp
2
β

∣
∣∣ , θβ = Arg

(
zβ − 1

2ρp
2
β

)
, (26)

cn =
4∑

m=1

hnmr
− 1
2

m e− iθm
2 , dn =

4∑

m=1

hnmr
1
2
m e

iθm
2 , (27)
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with the complex constants hnm determined by

⎡

⎢
⎣

h11 h12 h13 h14
h21 h22 h23 h24
h31 h32 h33 h34
h41 h42 h43 h44

⎤

⎥
⎦ =

⎡

⎢⎢
⎣

1 p1 p21 p31
1 p2 p22 p32
1 p3 p23 p33
1 p4 p24 p34

⎤

⎥⎥
⎦

−1

. (28)

Note that the right-hand side of Eq. (28), which is simply the inverse of a 4× 4 Vandermonde matrix [13],
exists when p1 �= p2 �= p3 �= p4. Consequently, by substituting Eq. (25) in Eqs. (21)–(23) and applying the
identities in Eq. (12), explicit expressions for the stresses, electric displacements, displacements and electric
potential in the piezoelectric material with a parabolic cavity can be obtained as follows

σ1 = − 1√
2π

4∑

m=1

4∑

n=1

r
− 1
2

m

⎡

⎣

[
h′
nm

(
(N(n)

1 )T − N(n)
3 SL−1

)
+ h′′

nmN
(n)
3 L−1

]
k cos θm

2

+
[
h′′
nm

(
(N(n)

1 )T − N(n)
3 SL−1

)
− h′

nmN
(n)
3 L−1

]
k sin θm

2

⎤

⎦, (29)

σ2 = 1√
2π

4∑

m=1

4∑

n=1

r
− 1
2

m

⎡

⎣

[
h′
nm

(
(N(n−1)

1 )T − N(n−1)
3 SL−1

)
+ h′′

nmN
(n−1)
3 L−1

]
k cos θm

2

+
[
h′′
nm

(
(N(n−1)

1 )T − N(n−1)
3 SL−1

)
− h′

nmN
(n−1)
3 L−1

]
k sin θm

2

⎤

⎦, (30)

u =
√

2

π

4∑

m=1

4∑

n=1

r
1
2
m

⎡

⎣

[
h′
nm

(
N(n−1)
2 − N(n−1)

1 SL−1
)

+ h′′
nmN

(n−1)
1 L−1

]
k cos θm

2

+
[
h′
nmN

(n−1)
1 L−1 − h′′

nm

(
N(n−1)
2 − N(n−1)

1 SL−1
)]

k sin θm
2

⎤

⎦, (31)

where h′
nm and h′′

nm are, respectively, the real and imaginary parts of hnm . We can see from the above analysis
that in order to obtain the full-field electroelastic field for a blunt crack, it is still necessary to determine the
four distinct Stroh eigenvalues p1, p2, p3, p4 with positive imaginary parts by solving the eigenvalue problem
in Eq. (4).

In particular, at the vertex of the parabola, we have the following real form expressions

σ1 = 0, σ2 = 1√
πρ

N(−1)
3 L−1k, ε1 = 1√

πρ
N(−1)
1 L−1k, ε2 = 1√

πρ
L−1k, (32)

where

ε1 = [
ε11, ε12 + �, 2ε31, −E1

]T
, ε2 = [

ε12 − �, ε22, 2ε32, −E2
]T

, (33)

with εi j being the strains, Ei the electric fields and � = 1
2 (u2,1 − u1,2) the rigid-body rotation.

In Eq. (32), N(−1)
1 and N(−1)

3 can be expressed in terms of the reduced generalized compliances [14] while
the generalized Barnett–Lothe tensor L can be computed directly from the electroelastic constants via an
integral formalism without solving the eigenvalue problem in Eq. (4) [10]. Thus, Eq. (32) is valid for any
mathematically degenerate materials. It is seen from Eq. (32) that the field intensity factors can be obtained
once the electroelastic field at the vertex of the parabola is known.

4 Conclusions

We have derived full-field explicit expressions describing the electroelastic field in an anisotropic piezoelectric
solid weakened by a blunt crack here described by a parabolic cavity with traction-free and charge-free
boundary. These expressions are valid not only in the region very close to the tip of the blunt crack (as in
[8] in the case of an isotropic elastic material) but, in fact, everywhere in the piezoelectric solid. A real form
solution of the electroelastic field at the vertex of the parabola valid for mathematically degenerate materials
is obtained in Eq. (32). Using a variation of the Stroh octet formalism [5,10,14], we can similarly derive the
complete solution for an anisotropic piezoelectric solid with traction-free and conducting parabolic boundary.
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