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Abstract The present study approaches the theory of Moore–Gibson–Thompson thermoelasticity in the con-
text of the materials with double porosity structure. The main results of the present study are based on a
reciprocity theorem for the thermoelastic materials with double porosity that leads us in determining of the
uniqueness theorems for the solution of mixed problems for the materials with double porosity. The reciprocity
theorem is a Betti-type result that has the main goal to establish the connection between the external action
systems and their thermoelastic states. In order to obtain the uniqueness results, it was introduced a new form
of energy equation.

Keywords MGT thermoelasticity · Double porosity bodies · Uniqueness

1 Introduction

In the last years, theMoore–Gibson–Thompson (MGT) equations have drawn the attention ofmany researchers.
Although initially, the MGT equation modeled the physical phenomena from fluid mechanics, [1], in the last
years it was approached under the thermoelasticity theory from theMGT perspective, where the heat transfer is
governed by an integro-differential equation, [2]. The MGT thermoelasticity with two temperatures is studied
in [3]. Many scholars approached this theory from a theoretical point of view [4–7] and also from a practical
point of view [7–11]. The domain of influence under the MGT thermoelasticity theory was studied recently,
[16,17]. Some papers deal with the linear elasticity theory for bodies with a dipolar structure [14,15]. In the
present study, we considered the MGT theory in the context of materials with double porosity. The bodies
with double porosity are encountered in many technical domains having applicability in building materials or
geology, [18,19] as well as in medicine, having applications in the study of the bones [20].

The materials with double porosity structure present a high interest, fact that is proved by the numerous
papers that deal this type of media, [21–28]. Also, this type of material was approached by us in some previous
studies, [29–31].

The present paper is structured as follows. In Sect. 2 is defined themixed problem forMGT thermoelasticity
with double porosity structure. Section 3 highlights the main results of the present study that are based on a
reciprocity theorem for the anisotropic thermoelasticmaterialswith double porosity that leads us in determining
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of the uniqueness theorems for the solution of mixed problems for the materials with double porosity. The
reciprocity theorem is a Betti-type result that has the main goal to establish the connection between the external
action systems and their thermoelastic states. In order to obtain the uniqueness results, it was introduced a new
form of energy equation.

2 Basic equations

The motion equations of a double porous material are:

ρüi = t j i, j + ρFi . (1)

The balance equations are:

κ1φ̈ = σ j, j + p + ρM,

κ2ψ̈ = τ j, j + r + ρN . (2)

In the equations that govern the linear thermoelasticity of the double porous material (1), (2), we have the
following notations: ρ is the density of the body, κ1, κ2 are the equilibrated inertia coefficients, τ j and σ j are
the stress vectors and ti j is the stress tensor on the surface of the body ∂Ω . The forces that act on the double
porous body are:

– the direct forces Fi ;
– the forces that act on the pores: p is the intrinsic force and M is the extrinsic force;
– the forces that act on the cracks: r is the intrinsic force and N is the extrinsic force.

In these equations, we have noted by dot the variation in report with time of the displacement field ui and the
volume fraction fields φ, ψ .

The differential Moore–Gibson–Thompson (MGT) equation for thermoelasticity was obtained by Quin-
tanilla (MMS/2019) for the relaxation parameter γ > 0 in the context of Maxwell and Cattaneo heat conduc-
tion:

γ · c(x)d
3θ

dt3
+ c(x)

d2θ

dt2
=

(
Ki j (x)θ,i + K ∗

i j (x)θ,i

)
, j

, (3)

where Ki j is the conductivity rate tensor, θ is the temperature and c is the thermal capacity.
In order to have a mixed-initial boundary value problem, we have the initial conditions:

θ(x, 0) = θ0(x); dθ

dt
(x, 0) = θ1(x); d2θ

dt2
(x, 0) = θ2(x), (4)

for all x ∈ Ω , where Ω is the three dimensional domain that is considered smooth enough in order to apply
the divergence theorem.

The Dirichlet boundary conditions are:

θ(x, t) = 0, (∀)x ∈ ∂Ω, t > 0. (5)

Further, we consider the following assumptions:

(a) The thermal capacity c(x) is a positive function such as there is a positive constant c0 > 0 : c(x) ≥ c0 > 0;

(b) For every vector ζi , there is a positive constant k∗ such as:

K ∗
i jζiζ j ≥ k∗ζiζi ; (a.1)

(c) For every vector ζi , there is a positive constant k̃ such as

hi jζiζ j ≥ k̃ζiζi , (a.2)

where hi j (x) = Ki j (x) − γ K ∗
i j (x);
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(d) For every vector ζi , there is a positive constant k0 such as:

Ki jζiζ j ≥ k0ζiζi . (a.3)

The deformations of the bodies with double porosity are given by the following variables: ui (x, t), φ(x, t),
ψ(x, t), θ(x, t), (∀)(x, t) ∈ Ω × [0,∞).

The energy function has the following quadratic form in the context of the linear thermoelasticity for
materials with double porosity structure:

E =1

2
Ci jkluk,lui, j + Bi jφui, j + Di jψui, j

+ 1

2
αi jφ,iφ, j + bi jφ,iψ, j + 1

2
γi jψ,iψ, j + 1

2
α1φ

2

+ α3φψ + 1

2
α2ψ

2 − 1

2
c(γ θ̈ + θ̇ )2 + 1

2
Ki jθ,iθ, j

− (βi j ui, j + a1φ + a2ψ)(γ θ̈ + θ̇ ). (6)

The constitutive equations for the bodies with double porosity in the context of linear thermoelasticity are:

ti j =Ci jkluk,l + Bi jφ + Di jψ − βi j (γ θ̈ + θ̇ );
σi j =αi jφ, j + bi jψ, j ;
τi =bi jφ, j + γi jψ, j ;
p = − Bi j ui, j − α1φ − α3ψ + a1((γ θ̈ + θ̇ );
r = − Di jui, j − α3φ − α2ψ + a2(γ θ̈ + θ̇ );
η =βi j ui, j + a1φ + a2ψ + c(γ θ̈ + θ̇ );
qi =Ki jθ, j . (7)

The relations (7) are obtained based on the quadratic form of internal energy (6), i.e.,

ti j = ∂E
∂ui, j

; σi j = ∂E
∂φ,i

; τi = ∂E
∂ψ,i

; ξ = −∂E
∂φ

; ζ = − ∂E
∂ψ

;

η = − ∂E
∂(γ θ̈ + θ̇ )

; qi = ∂E
∂θ,i

.

The energy equation is:

ρT0η̇ = qi,i + ρδ, (8)

where δ is the heat supply, qi is the heat flux, η is the entropy and T0 is the absolute temperature that is
considered constant in the reference configuration. Taking into account the constitutive equation regarding the
entropy (7)6 and the flux equation (7)7, the energy equation will have the following form:

ρT0
[
βi j u̇i, j + a1φ̇ + a2ψ̇ + c(γ

...
θ + θ̈ )

] = (Ki jθ, j ),i + ρδ. (9)

In the context of MGT theory of thermoelasticity for materials with double porosity structure, it is necessary
to insert the initial conditions for t = 0:

ui (x, 0) = 0; φ(x, 0) = 0; ψ(x, 0) = 0; θ(x, 0) = 0;
u̇i (x, 0) = 0; φ̇(x, 0) = 0; ψ̇(x, 0) = 0; θ̇ (x, 0) = 0; θ̈ (x, 0) = 0. (10)

The mixed problem for the MGT theory has the boundary conditions:

ui = u∗
i on ∂Ω1 × [0, t∗); ti = t∗i on ∂Ωc

1 × [0, t∗)
φ = φ∗ on ∂Ω2 × [0, t∗); λ = λ∗ on ∂Ωc

2 × [0, t∗)
ψ = ψ∗ on ∂Ω3 × [0, t∗); m = m∗ on ∂Ωc

3 × [0, t∗)
θ = θ∗ on ∂Ω4 × [0, t∗); ν = ν∗ on ∂Ωc

4 × [0, t∗) (11)
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where u∗
i , t

∗
i , φ∗, ψ∗,m∗, θ∗, ν∗ are prescribed functions for a specific moment of time t∗ that can be finite or

infinite.
The boundary of the domain Ω is divided in four surfaces ∂Ω1, ∂Ω2, ∂Ω3, ∂Ω4. The complement of

the considered surface is noted by superscript index “c” such that: ∂Ωi ∩ ∂Ωc
i = ∅ and ∂Ωi ∪ ∂Ωc

i = ∂Ω ,
∀i = 1, 4.

The components of the surface force traction, surface couple and flux are expressed by:

ti = ti j ni ; λ = σi ni ; m = τi ni ; ν = qini . (12)

In the context of MGT theory of thermoelasticity for materials with double porosity structure, the mixed
problem is formed from Eqs. (1), (2), (7) and (8) with initial conditions (10) and the boundary conditions (11).

The solution of the considered problem is the ordered array (ui , φ, ψ, θ) and it is represented by the effect
of the external actions (EA) on the system that are defined by the ordered array:

EA = (Fi , M, N , δ, u∗
i , φ

∗, ψ∗, θ∗, t∗i , λ∗,m∗, ν∗).

The thermoelastic state (TS) generated by the external forces is defined by:

TS = (ui , φ, ψ, θ, ti j , σi , τi , p, r, qi , η).

Further, we will consider that on the double porous material act two different loading systems:

E (i)
A = (F (i)

i , M (i), N (i), δ(i), u∗(i)
i , φ∗(i), ψ∗(i), θ∗(i), t∗(i)

i , λ∗(i),m∗(i), ν∗(i)), i = 1, 2,

and for each loading system, we have two thermoelastic states:

T (i)
S = (u(i)

i , φ(i), ψ(i), θ (i), t (i)i j , σ
(i)
i , τ

(i)
i , p(i), r (i), q(i)

i , η(i)), i = 1, 2.

3 Reciprocity and uniqueness theorems

In this section, we will enunciate some reciprocity theorems that are of Betti’s type. These theorems are
useful in order to determine a reciprocity relation between the external action systems and their corresponding
thermoelastic states. Further, we consider the convolution product ∗.
Theorem 1 Let us consider the external action systems E (i)

A for two different types of loadings and their

thermoelastic states T (i)
S , respectively. The following reciprocity relation takes place:

∫

Ω

ρ(F (1)
i ∗u(2)

i −F (2)
i ∗u(1)

i +M (1)∗φ(2)−M (2)∗φ(1)+N (1)∗ψ(2)−N (2)∗φ(1))dV

−
∫

∂Ωc
1

(t∗(2)
i ∗u(1)

i − t∗(1)
i ∗u(2)

i )d A −
∫

∂Ω1

(t (2)j i ∗u∗(1)
i − t (1)j i ∗u∗(2)

i )n jd A

−
∫

∂Ωc
2

(λ∗(2)∗φ(1) − λ∗(1)∗φ(2))d A −
∫

∂Ω2

(σ
(2)
j ∗φ∗(1) − σ

(1)
j ∗φ∗(2))n jd A

−
∫

∂Ωc
3

(m∗(2)∗ψ(1) − m∗(1)∗ψ(2))d A −
∫

∂Ω3

(τ
(2)
j ∗ψ∗(1) − τ

(1)
j ∗ψ∗(2))n jd A

= 1

ρT0

⎧⎪⎨
⎪⎩

∫

∂Ωc
4

[
ν∗(1) ∗

(
θ(2) + α

∂θ(2)

dt

)
− ν∗(2) ∗

(
θ(1) + α

∂θ(1)

dt

)]
d A

+
∫

∂Ω4

[
q(1)
i ∗

(
θ∗(2) + α

∂θ∗(2)

dt

)
− q(2)

i ∗
(

θ∗(1) + α
∂θ∗(1)

dt

)]
nid A
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+
∫

∂Ω

[
q(2)
i ∗

(
θ

(1)
,i + α

∂θ
(1)
,i

dt

)
− q(1)

i ∗
(

θ
(2)
,i + α

∂θ
(2)
,i

dt

)]
dV

+ρ

∫

∂Ω

[
δ(1) ∗

(
θ(2) + α

∂θ(2)

dt

)
− δ(2) ∗

(
θ(1) + α

∂θ(1)

dt

)]
dV

⎫
⎬
⎭ . (13)

Proof In order to obtain the reciprocity relation of Betti type, we will apply the Laplace transform to Eqs. (1)
and (2). Let us consider that the image through the Laplace transform of the original function f (x, t) will be
f (x, t). Therefore, the governing equations for the double porous materials will have the following form:

ρs2u(i
i ) = t (i)j i, j + ρF

(i)
i

κ1s
2φ

(i) = σ
(i)
j, j + p(i) + ρM

(i)
, i = 1, 2

κ2s
2ψ

(i) = τ
(i)
j, j + r (i) + ρN

(i)
. (14)

The energy equation (9) through the Laplace transform will be:

ρT0
[
βi j su

(i)
i + a1sφ

(i) + a2sψ
(i) + c(γ s3θ

(i) + s2θ
(i)

)
]

= Ki jθ
(i)
,i j + ρδ

(i)
, i = 1, 2. (15)

The constitutive equations through the Laplace transform will have the following form:

t (i)i j = Ci jklu
(i)
k,l + Bi jφ

(i) + Di jψ
(i) − β

(
γ s2θ

(i) + sθ
(i)

)

σ
(i)
i j ) = αi jφ

(i)
, j ) + bi jψ

(i)
, j

τ
(i)
i = bi jφ

(i)
, j + γi jψ

(i)
, j

p(i) = −Bi j u
(i)
i, j − α1φ

(i) − α3ψ
(i) + a1

(
γ s2θ

(i) + sθ
(i)

)

r (i) = −Di ju
(i)
i, j − α3φ

(i) − α2ψ
(i) + a2

(
γ s2θ

(i) + sθ
(i)

)

η(i) = βi j u
(i)
i, j + a1φ

(i) + a2ψ
(i) + c

(
γ s2θ

(i) + sθ
(i)

)

q(i)
i = Ki jθ

(i)
, j . (16)

The boundary conditions (11) through the Laplace transform become:

ui = u∗(i)
i on ∂Ω1 × [0, t∗); t i = t∗(i)

i on ∂Ωc
1 × [0, t∗)

φ = φ
∗(i)

on ∂Ω2 × [0, t∗); λ = λ
∗(i)

on ∂Ωc
2 × [0, t∗)

ψ = ψ
∗(i)

on ∂Ω3 × [0, t∗); m = m∗(i) on ∂Ωc
3 × [0, t∗)

θ = θ
∗(i)

on ∂Ω4 × [0, t∗); ν = ν∗(i) on ∂Ωc
4 × [0, t∗). (17)

Writing Eq. (14)1 for each loading and multiplying with u(2)
i and u(1)

i , respectively, and after that subtract and
integrate on the considered domain, we obtain:

∫

Ω

ρ
(
F

(1)
i u(2)

i − F
(2)
i u(1)

i

)
dV

=
∫

Ω

(
t (2)j i u

(1)
i − t (1)j i u

(2)
i

)
, j
dV +

∫

Ω

(
t1)j i u

(2)
i, j − t (2)j i u

(1)
i, j

)
dV . (18)
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In the first integral from the right side of (18), we apply the divergence theorem, and in the second integral
from the right side of (18), we will take into account the constitutive Eq. (16). Therefore, Eq. (18) will have
the following form:

∫

Ω

ρ
(
F

(1)
i u(2)

i − F
(2)
i u(1)

i

)
dV

=
∫

∂Ωc

(
t∗(2)
i u(1)

i − t∗(1)
i u(2)

i

)
d A +

∫

∂Ω1

(
t (2)j i u

∗(1)
i − t (1)j i u

∗(2)
i

)
n jd A

+
∫

Ω

[
Bi j

(
φ

(1)
u(2)
i, j − φ

(1)
u(2)
i, j

)
+ Di j

(
ψ

(1)
u(2)
i, j − ψ

(1)
u(2)
i, j

)

− βi j s(1 + γ s)
(
θ

(1)
u(2)
i, j − θ

(2)
u(1)
i, j

)]
dV . (19)

Next, we write Eq. (14)2 for the both loading systems and compute the subtraction after each equation is

multiplied by φ
(2)

, φ
(1)
, respectively. Integrating on Ω , we obtain:

∫

Ω

ρ
(
M

(1)
φ

(2) − M
(2)

φ
(1)

)
dV

=
∫

Ω

(
σ

(2)
j, jφ

(1) − σ
(1)
j, jφ

(2)
)
dV +

∫

Ω

(
p(2)φ

(1) − p(1)φ
(2)

)
dV . (20)

In the first integral from the right side, we apply the divergence theorem, and for both integrals, we take into
account the constitutive equations. Therefore, the relation (20) will have the following form:

∫

Ω

ρ
(
M

(1)
φ

(2) − M
(2)

φ
(1)

)
dV =

∫

∂Ωc
2

(
λ

∗(2)
φ

(1) − λ
∗(1)

φ
(2)

)
d A

+
∫

∂Ω2

(
σ

(2)
j φ

∗(1) − σ
(1)
j φ

∗(2)
)
n jd A +

∫

Ω

bi j
(
ψ

(1)
, j φ

(2)
, j − ψ

(2)
, j φ

(1)
, j

)
dV

−
∫

Ω

[
Bi j

(
u(2)
i, j φ

(1) − u(1)
i, jφ

(2)
)

+ α3

(
ψ

(2)
φ

(1) − ψ
(1)

φ
(2)

)

−a1s(γ s + 1)
(
θ

(2)
φ

(1) − θ
(1)

φ
(2)

)]
dV . (21)

At last, we multiply the equations from (14)3 with ψ
(2)

and ψ
(1)

written for each load of the system, making
the subtraction and integrate on the considered domain. Now we have:

∫

Ω

ρ
(
N

(1)
ψ

(2) − N
(2)

ψ
(1)

)
dV

=
∫

Ω

(
τ

(2)
j, jψ

(1) − τ
(1)
j, jψ

(2)
)
dV +

∫

Ω

(
r (2)ψ

(1) − r (1)ψ
(2)

)
dV . (22)

Using the divergence theorem and the constitutive equations and taking into account the boundary conditions
(11), the relation (22) will have the form:

∫

Ω

ρ
(
N

(1)
ψ

(2) − N
(2)

ψ
(1)

)
dV =

∫

∂Ωc
3

(
m∗(2)ψ

(1) − m∗(1)ψ
(2)

)
d A

+
∫

∂Ω3

(
τ

(2)
j ψ

∗(1) − τ
(1)
j ψ

∗(2)
)
n jd A +

∫

Ω

bi j
(
φ

(2)
, j ψ

(1)
, j − φ

(1)
, j ψ

(2)
, j

)
dV
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−
∫

Ω

[
Di j

(
u(2)
i, jψ

(1) − u(1)
i, jψ

(2)
)

+ α3

(
φ

(2)
ψ

(1) − φ
(1)

ψ
(2)

)

−a2s(γ s + 1)
(
θ

(2)
ψ

(1) − θ
(1)

ψ
(2)

)]
dV . (23)

Next, we write the energy equation (15) for both loadings and we multiply them by θ
(2)

and θ
(1)
, respectively,

and after that subtracting the relations and integrating on the domain Ω , we have:
∫

Ω

[
βi j s

(
u(1)
i, j θ

(2) − u(2)
i, j θ

(1)
)

+ a1s
(
φ

(1)
θ

(2) − φ
(2)

θ
(1)

)

+a2s
(
ψ

(1)
θ

(2) − ψ
(2)

θ
(1)

)]
dV

= 1

ρT0

∫

Ω

Ki j

(
θ

(1)
,i j θ

(2) − θ
(2)
,i j θ

(1)
)
dV + 1

T0

∫

Ω

(
δ
(1)

θ
(2) − δ

(2)
θ

(1)
)
dV . (24)

Using the divergence theorem and taking into account the boundary conditions, the relation (24) becomes:
∫

Ω

[
βi j s

(
u(1)
i, j θ

(2) − u(2)
i, j θ

(1)
)

+ a1s
(
φ

(1)
θ

(2) − φ
(2)

θ
(1)

)

+a2s
(
ψ

(1)
θ

(2) − ψ
(2)

θ
(1)

)]
dV

= 1

ρT0

∫

∂Ωc
4

(
θ

(2)
ν∗(1) − θ

(1)
ν∗(2)

)
d A + 1

ρT0

∫

∂Ω4

(
θ

∗(2)
q(1)
i − θ

∗(1)
q(2)
i

)
nid A

− 1

ρT0

∫

Ω

(
θ

(2)
,i q(1)

i − θ
(1)
,i q(2)

i

)
dV + 1

T0

∫

Ω

(
δ
(1)

θ
(2) − δ

(2)
θ

(1)
)
dV . (25)

We may observe that in Eq. (25) appear the terms from (19), (21) and (23); therefore, the relation (25) will
take the following form:

∫

Ω

[
ρ

(
F

(1)
i u(2)

i −F
(2)
i u(1)

i

)
+ρ

(
M

(1)
φ

(2)−M
(2)

φ
(1)
)
+ρ

(
N

(1)
ψ

(2)−N
(2)

ψ
(1)
)]

dV

−
∫

∂Ωc
1

(
t∗(2)
i u(1)

i − t∗(1)
i u(2)

i

)
d A −

∫

∂Ω1

(
t (2)j i u

∗(1)
i − t (1)j i u

∗(2)
i

)
n jd A

−
∫

∂Ωc
2

(
λ

∗(2)
φ

(1) − λ
∗(1)

φ
(2)

)
d A −

∫

∂Ω2

(
σ

(2)
j φ

∗(1) − σ
(1)
j φ

∗(2)
)
n jd A

−
∫

∂Ωc
3

(
m∗(2)ψ

(1) − m∗(1)ψ
(2)

)
d A−

∫

∂Ω3

(
τ

(2)
j ψ

∗(1)−τ
(1)
j ψ

∗(2)
)
n jd A

= 1 + γ s

ρT0

⎡
⎢⎣

∫

∂Ωc
4

(
θ

(2)
ν∗(1)−θ

(1)
ν∗(2)

)
d A+

∫

∂Ω4

(
θ

∗(2)
q∗(1)
i −θ

∗(1)
q∗(2)
i

)
nid A

+
∫

Ω

(
θ

(1)
,i q(2)

i − θ
(2)
,i q(1)

i

)
dV +

∫

Ω

ρ
(
δ
(1)

θ
(2) − δ

(2)
θ

(1)
)
dV

⎤
⎦ . (26)

In the relation (26), we apply the inverse Laplace transform L and the convolution product noted by ∗ is
obtained. Thus, we use:

F
(1)
i u(2)

i = L[F (1)
i ](s) · L[u(2)

i ](s) = F (1)
i ∗ u(2)

i
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sθ
(2)

ν∗(1) = L[ν∗(1)](s) · L
[

∂θ(2)

∂t

]
(s) = ν∗(1) ∗ ∂θ(2)

∂t
.

The result from Theorem 1 is obtained. 
�
Based on the theory of Green and Lindsay, let us introduce the scalar function:

Φ = T0 + θ̇ + γ θ̈ + θ̇ θ̈ + 1

2
d θ̈2. (27)

The energy function of Moore–Gibson–Thompson thermoelasticity will have the expression:

E = Ei − ηΦ, (28)

where according to Biot, the generalized free energy function E is given by:

E = Ei − ηT0, (29)

where Ei is the internal energy. Taking into account the initial conditions of the MGT thermoelasticity from
(10), the energy function E will have the following quadratic expression:

E=1

2
Ci jklui, j uk,l+Bi jφui, j+Di jψui, j+1

2
φ,iφ, j+bi jφ,iψ, j+1

2
γi jψ,iψ, j

+ 1

2
α1φ

2 + α3φψ + 1

2
α2ψ

2 + 1

2
Ki jθ,iθ, j − Aθ̇2 − Bθ̇ θ̈ + C θ̈2, (30)

where A = 3
2c, B = 3

2cγ + bM,C = 3
2cγ

2 + d
2M andM = βi j ui, j + a1φ + a2ψ. The kinetic energy per

mass unit is given by:

EK(t) = 1

2

[
ρu̇i (t)u̇i (t) + κ1φ̇(t)φ̇(t) + κ2ψ̇(t)ψ̇(t)

]
. (31)

Based on the relation of function of energy (30) and kinetic energy (31), we can enunciate the following
theorem:

Theorem 2 The variation of energy in the MGT thermoelasticity for double porous materials is expressed by:

d

dt

∫

Ω

(EK+E)dV=ρ

∫

Ω

(
Fi u̇i + Mφ̇ + N ψ̇

)
dV +

∫

∂Ω

(
t j i u̇i+σ j φ̇+τ j ψ̇

)
n jd A

+
∫

Ω

(
qi θ̇, j + 1

ρT0
(qi,i + ρδ)(γ θ̈ + θ̇ )

)
dV

−
∫

Ω

(
2

3
A(γ θ̈+θ̇ )(γ

...
θ + θ̈ )+(2A + B)θ̇ θ̈+Bθ̈2+2C θ̈ · ...θ

)
dV . (32)

Proof The variation of the kinetic energy in report with time is:

ĖK = ρu̇i (t)üi (t) + κ1φ̇(t)φ̈(t) + κ2ψ̇(t)ψ̈(t). (33)

The terms from (34) are obtained from the governing equations for the double porous bodies (1), (2), multiplied
by u̇i , φ̇ and ψ̇ , respectively. Therefore, by integration on the Ω domain, using the divergence theorem and
taking into account the constitutive Eq. (7), Eq. (34) takes the following form:

∫

Ω

ĖK(t)dt =
∫

Ω

ρ(Fi u̇i + Mφ̇ + N ψ̇)dV +
∫

∂Ω

(t j i u̇i + σ j φ̇ + τ j ψ̇)n jd A

−
∫

Ω

[
Bi j ui, j φ̇ + α1φφ̇ + α3ψφ̇ − a1(γ θ̈ + θ̇ )φ̇
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+ Di jui, j ψ̇ + α3φψ̇ + α2ψψ̇ − a2(γ θ̈ + θ̇ )ψ̇

+ Ci jkluk,l u̇i, j + Bi jφu̇i, j + Di jψ u̇i, j − βu̇i, j (γ θ̈ + θ̇ )

+αi jφ, j φ̇, j + bi jψ, j φ̇, j + bi jφ, j ψ̇, j + γi jψ, j ψ̇, j
]
dV . (34)

Integrating on the domain Ω the variation of the function of energy (30) in report with time, we have:
∫

Ω

Ė(t)dV=
∫

Ω

[
Ci jklui, j u̇k,l+Bi j φ̇ui, j+Bi jφu̇i, j+Di j ψ̇ui, j+Di jψ u̇i, j+ αi jφ,i φ̇, j

+ α3φψ̇ + α3φ̇ψ + bi j φ̇,iψ, j + bi jφ,i ψ̇, j + γi jφ,i ψ̇, j + α1φφ̇

+α2ψψ̇ + Ki jθ,i θ̇, j − 2Aθ̇ θ̈ − Bθ̈2 − bθ̇
...
θ + 2C θ̈ · ...θ ]

dV . (35)

Taking into account the energy equation given in (9), we have:

βi j u̇i, j + a1φ̇ + a2ψ̇ = 1

ρT0
(qi,i + ρδ) − c(γ

...
θ + θ̈ ).

Summing the relations (34) and (35) on the domain Ω , we obtain the variation of the energy in the context of
the MGT thermoelasticity for double porous materials. Therefore, the result of Theorem 2 is obtained. 
�
Theorem 3 If the energy function E from (30) is positive defined, then the considered mixed problem for
double porous materials in the MGT thermoelasticity contexts admits only one solution.

Proof In order to prove the uniqueness of the solution of the mixed problem for double porous materials in the
context ofMGT thermoelasticity,we assume that the consideredproblemadmits two solutions: (ui1, φ1, ψ1, θ1)
and (ui2, φ2, ψ2, θ2).

For null loadings Fi , M and N and for zero boundary conditions: u∗
i = 0, φ∗ = 0, ψ∗ = 0, t∗i = 0, λ∗ =

0,m∗ = 0, ν∗ = 0, the difference between these solutions (ui1 − ui2, φ1 − φ2, ψ1 − ψ2, θ1 − θ2) is also a
solution of the mixed problem for double porous materials in the MGT thermoelasticity context.

Therefore, the energy equation (35) will have the following expression:
∫

Ω

(ĖK + Ė)dV = −
∫

Ω

(
2

3
A(γ θ̈+θ̇ )(γ

...
θ + θ̈ )+(2A + B)θ̇ θ̈+Bθ̈2+2C θ̈ · ...θ

)
dV ≤ 0.

Taking into account the null initial conditions for t = 0 from (10), we observe that the kinetic energy from
(31) and the energy function from (30) are zero: EK = 0; E = 0. Hence, their sum is also zero. Based on
the above inequality, on the fact that the energy and the kinetic energy are positive defined, we may draw
the conclusion that the difference between the considered solution is null. Therefore, the mixed problem
with initial and boundary conditions for the double porous materials in the MGT thermoelasticity context is
unique. 
�
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