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Abstract A second strain gradient theory-based continuummodel is presented for the mechanics of an elastic
solid reinforced with extensible fibers in plane elastostatics. The extension and bending kinematics of fibers are
formulated via the second and the third gradient of the continuum deformation. The Euler equations arising
in the third gradient of virtual displacement are then formulated by means of iterated integration by parts
and variational principles. A rigorous derivation of the associated boundary conditions is also presented from
which the expressions of triple forces and stresses are obtained. The obtained triple forces are found to be
in conjugation with the Piola-type triple stress and are necessary to determine energy contributions on edges
and points of Cauchy cuts. In particular, a complete linear model including admissible boundary conditions
is derived within the description of superposed incremental deformations. The obtained analytical solution
predicts smooth deformation profiles and, more importantly, assimilate gradual and dilatational shear angle
distributions throughout the domain of interest.

Keywords Second strain gradient elasticity · Fiber-reinforcedmaterials · In-plane deformations · Superposed
incremental deformations

1 Introduction

The mechanics of materials with distinct microstructures has consistently been the subject of intense study that
has significantly advanced our understanding of materials science and continuum mechanics in general [1,2].
The fiber-reinforced composites are a particular class of such materials where fibers act as a reinforcement
in order to enhance the mechanical properties of matrix materials. Contemporary continuum approaches
incorporating the microstructural effects of fibers on elastic solids are based on the concept of an anisotropic
material followed by the postulation of continuously distributed spatial rods (fibers) of Kirchhoff type [3–5].
Within this continuum setting, the kinematics of fibers are formulated via the first and second gradient of
continuum deformations and integrated into desired response functions which are typically augmented by
the constraint of bulk incompressibility or fiber inextensibility (see, for example, [6–8]. The second gradient
continuum models of Spencer and Soldatos type [9] have been widely adopted in the deformation analysis of
fiber-reinforced materials since they offer compact descriptions in the constitutive modeling and associated
mathematical framework. The second gradient models also resolved the kinematic over determinacy arising in
the earlier studies of first gradient continuum models [10,11]. The author in [6] devised a generalized second
gradient model under the simplified setting of the Cosserat theory of nonlinear elasticity which accommodates
extensible and twistable fibers. The generalized model has been further refined for the analyses of meshed
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structures [12–14], bending motions of fiber composite [15,16] and composites reinforced with extensible
fibers [8,17,18]. Although the second gradient models offer more realistic descriptions of microstructured
continua, they are intrinsically limited in the predictions of phenomena associated with higher-gradient fields
such asmechanical contact interactions on edges and points of Cauchy cuts [19–22], dynamic instability arising
in highly inhomogeneous continua [23–26] and internal boundary layer formations of bone tissues [27–29].
The analysis of such exotic responses of microstructured continua requires the consideration of higher-order
gradient continua which can offer sufficient smoothness up to the desired gradient fields.

The concept of higher-order continua was discussed in Mindlin’s earlier work (see [30] and the references
therein) that has inspired researchers to confront formidable challenges arising in various engineering prob-
lems. For example, authors in [31–33] examined mechanical contact interactions between 3D and 1D continua
in the form of galloping and internal resonance using higher-gradient theory. Recently, the higher-order con-
tinuum theory has been revisited for its applications in the analyses of microstructured continua with complex
topological boundaries (including boundary layers) and associated forces [19–21]. In particular, authors in
[34,35] integrated the third gradient of deformation into the continuum model describing the bending motions
of fiber composites and predict smooth shear angle distributions. However, the implementation of higher-order
gradient theory, especially those arising in finite plane deformations, is largely absent from the literature due
to the intrinsic complexities in the constitutive formulations and the associated mathematical framework.

In the present study, we develop a second strain gradient-based model describing the mechanics of an
elastic solid reinforced with extensible fibers and subjected to plane bias extension. Emphasis is placed on the
incorporation of the second strain gradient field into themodel of continuumdeformationwhilemaintaining the
rigor and relative simplicity in the corresponding constitutive formulation. The extensible fibers are presumed
to be continuously distributed spatial rod of Kirchhoff type in which the kinematics of fibers are defined by
their position and director fields [3–5]. Within this setting, the energy density function of Spencer and Soldatos
type [9] is generalized to accommodate the third gradient of continuum deformation through which contact
forces, couples, double forces and triple forces are assimilated together with the extension and bending resis-
tance of fibers. The Euler equations and the admissible boundary conditions are obtained by utilizing iterated
integrations by parts and the variational formulations arising in the third gradient of continuum deformations
[36–38]. More precisely, the rate of change in curvature, defined at points on the convected curves of fibers,
is formulated via the third gradient of deformation map through which the mechanical contact interactions
between the adjoined fibers and the matrix may be characterized.

In particular, a complete linear model is derived from the proposed nonlinear theory for small deformation
analysis superposed on large. The corresponding boundary conditions are also approximated up to the leading
order expansion in order to obtain the expressions of compatible triple forces and their energy couples (Piola-
type triple stresses) exerted by the third gradient continua (see, also, [19,37,38]). By taking adapted iterative
reduction and eigenfunction expansion methods [39–41], a complete analytical solution is obtained which
describes the responses of an elastic solid reinforcedwith extensible fibers and subjected to plane bias extension.
The proposed linear model assimilates smooth and dilatational shear angle distributions unlike those predicted
by the first and second gradient-based continuum models where the resulting shear zones display either non-
smooth distributions or non-dilatational shear angle transitions (see, for example, [8,18] and the references
therein). Lastly, comparisons with the experimental results of polymeric (PETKM) composites at 20% and
50% elongation have been performed. Despite its limitation for relatively small deformation analyses, the
proposed linear model demonstrates reasonably good agreement with the deformation profiles and shear angle
distributions of PETKM composites throughout the domain of interest.

Throughout the paper, we make use of a number of well-established symbols and conventions such as
AT , A−1, A∗ and tr(A). These are the transpose, the inverse, the cofactor and the trace of a tensor A,
respectively. The tensor product of vectors is indicated by interposing the symbol ⊗, and the Euclidian inner
product of tensors A, B is defined by A · B =tr(ABT ) ; the associated norm is |A| = √

A · A. The symbol
| ∗ | is also used to denote the usual Euclidian norm of three vectors. Latin and Greek indices take values in
{1, 2} and, when repeated, are summed over their ranges. Lastly, the notation FA stands for the tensor-valued
derivatives of a scalar-valued function F(A).
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2 Kinematics

Let τ be the unit tangent to the fiber’s parametric trajectory of r(s) in the current configuration and D and
X(S) are their counterparts in the reference frame. The orientations of a particular fiber are then defined by

λ = |d| and λτ = d; λ ≡ ds

dS
and τ ≡ dr(s)

ds
, (1)

where s and S are, respectively, the arc length parameters in current and reference configuration and d is the
director field of fibers in the reference frame which can be expressed as

d = FD, F =λ τ⊗ D, (2)

and F is the first gradient of the deformation function (χ(X)). Equation (2) is obtained by taking the derivative
of r(S) = χ(X (S)), upon making the identifications of D = dX (S)/dS and d = dr(s)/ds (see, also, [3–5]).
Here d(∗)/ds and d(∗)/dS refer to the arc length derivative of (∗) along fibers’ directions in the deformed and
reference configurations, respectively. Therefore, from Eq. (2), the geodesic curvature of a parametric curve
of fibers (r (S)) and the associated rate of changes in curvature can be obtained by following equations (see,
also, [9] and Eqs. (A2)–(A4) in “Appendix”)

g = r′′ = d2r(S)

dS2
= ∂(FD)

∂X
dX
dS

= ∇[FD]D. (3)

In a typical environment, most of the fibers are straight prior to deformations. Even slightly curved fibers can
be idealized as ‘fairly straight’ fibers, considering their length scales with respect to those of matrix materials.
This further leads to the assumption of vanishing gradients fields of D (i.e., ∇D = 0). Thus, Eq. (3) reduces to

g(G) = G(D ⊗ D), (4)

where we adopt the commonly used convention of strain gradient tensor:

∇F ≡ G. (5)

The corresponding strain gradient field is compatible in the sense of Leibniz differentiation which can be seen
as

Gi AB = Fi A,B = FiB,A = GiBA. (6)

Equations (3)–(6) constitute a second gradient-based energy function in the description of an elastic solid
reinforced with fibers resistant to flexure;

W (F, g(G)) = ̂W (F) + 1

2
C (F) |g(G)|2 , (7)

where ̂W (F) account for the energy function of a matrix material (e.g., ̂W (F) = μ
2 (F · F−3)) for neo-Hookean

(incompressible) type of materials) and 1
2C (F) |g(G)|2 is fiber’s bending energy potential of Spencer and

Soldatos type [9]. Further, C (F) refers to the material parameter associated Piola-type double stress which is,
in general, independent of the deformation gradient, i.e.,

C (F) = C. (8)

Eq. (7) is based on the kinematic relevance between the bending motions of embedded fibers and the adjoined
second gradient fields [9] that has beenwidely and successfully adopted in the relevant studies (see, for example,
[6,15–17,42]). For the desired applications, the above energy potential is now augmented to accommodate
extensible fibers as

W (F, ε(F), g(G)) = ̂W (F) + 1

2
Eε2 + 1

2
C |g(G)|2 , (9)

where 1
2 Eε2 is the quadratic strain potential of fiber’s extension and E is the corresponding modulus. The

expression of ε is given by

ε = 1

2
(λ2 − 1). (10)
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Also, in view of Eqs. (1)–(2), λ2 can be written in terms of the deformation gradient tensor F and the director
field of fibers D as

λ2 = FD · FD = FTFD · D = (FTF) · D ⊗ D. (11)

In particular, the third gradient of deformations is introduced into the models of continuum deformation to
achieve amore comprehensive description of generalized continua of higher order.More precisely, we compute
the rate of changes in curvature at points of the fibers as (see, also, Eqs. (A5)–(A7) in “Appendix”)

α = r′′′ = d(∇[FD]D)

dS
= ∂(∇[FD]D)

∂X
dX
dS

= [∇{∇[FD]D}]D = [∇{∇[FD]}D+∇[FD](∇D)]D, (12)

such that the interactions between the fibers and the surrounding matrix may be characterized. The required
third-order gradient fields can be formulated in the same spirit as Eqs. (4)–(5) that

α = ∇(∇F)(D ⊗ D ⊗ D),

∇(∇F) = ∇(G) ≡ H, and

α = H(D ⊗ D ⊗ D) = α(H,D). (13)

Consequently, the energypotential accommodating the third gradient of continuumdeformation canbeobtained
as

W (F, ε(F), g(G), α(H)) = ̂W (F) + 1

2
Eε2 + 1

2
C |g(G)|2 + 1

2
A(H) |α(H)|2 . (14)

We note here that, similar to Eq. (8), A(H) pertaining to the third gradient of continuum deformations is
assumed to be constant for the sake of simplicity

A(H) = A. (15)

The phenomenological implications vis-a-vis the third gradient of deformations (e.g., interactions between
fibers and a matrix material) and the identification of the associated coefficient (here, denoted as A) are
addressed in the literature [20–22,36–38,43]. In the present study, we place an emphasis on the development
of a mathematical framework and the associated analyses in order to promote the implementation of higher-
order strain gradient theory in plane elastostatics. For uses in the derivation of Euler equations and the necessary
boundary conditions, we continue by evaluating the induced energy variation of the response function with
respect to F,ε, g, and α as

Ẇ (F, ε, g, α) = ̂WF · Ḟ + Wεε̇+Wg · ġ + Wα · α̇, (16)

where the superposed dot refers to derivatives with respect to a parameter ε at the particular configuration of
the composite (ε = 0) that labels a one-parameter family of deformations.

The desired expressions for the induced energy variation can be obtained from Eqs. (4) and (10)–(14) that

ε̇ = 1

2
(λ2 − 1)̇ = 1

2
(FD · FD − 1)̇ = FD · ḞD = FD ⊗ D · Ḟ, Wεε̇ =

(

1

2
Eε2

)

= Eεε̇, (17)

Wg · ġ = Cg · ·
g = Cg jej · Ġi AB DADBei = Cgi DADBĠi AB , (18)

and
Ẇ (H) = A α· ·

α = Aα jej · Ḣi ABC DADBDCei = Aαi DADBDC Ḣi ABC . (19)

Hence, from Eqs. (16)–(19), we find

Ẇ (F, ε, g, α) = ̂WFi A Ḟi A + E

2
(FjC FjDDC DD − 1)(FiBDBDA)Ḟi A

+Cgi DADBĠi AB + Aαi DADBDC Ḣi ABC . (20)

Clearly, the resulting energy variation [Eq. (20)] is dependent on both the second and third gradients of
continuum deformations as intended. It will be seen in the later sections that Eq. (20) furnishes the relevant
mathematical framework to accommodate the triple force (e.g., interaction forces) and its energy couple (Piola-
type triple stress) sustained by the third gradient continua.
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3 Equilibrium

The derivation of the Euler equation and boundary conditions arising in the second gradient elasticity are
well established (see, for example, [36,44,45] and references therein). In this section, we present a variational
formulation arising in the third gradient of the continuum deformation by employing the principles of the
virtual work statement and iterated integrations by parts ([22,36–38,43]).

In a typical environment, volumetric changes in materials’ deformations are energetically expensive pro-
cesses and thus are constrained in most engineering analyses (see, also, [46,47]). This can be achieved by
introducing the weak form of bulk incompressibility condition into the proposed energy potential such that

U (F, ε, g, α,p) = W (F, ε, g, α) − p(J − 1), (21)

where J is determinant of F and p is a Lagrange multiplier filed. Relevant applications regarding the uses of
Lagrange multiplies arising in the continuum-based modeling and analysis may also be found in [48] (and the
references therein). The strain energy of the system is then expressed as

E =
∫

�

U (F, G, H, p)dA, (22)

where � is the referential domain occupied by a fiber-matrix material.
Now, the principle of virtual work states that

Ė = P. (23)

In the above, P is the virtual power of the applied load and the superposed dot refers to the variational and/or
Gateâux derivative. Since the conservative loads are characterized by the existence of a potential L such that
P = L̇ , the problem of determining equilibrium deformations is then reduced to the problem of minimizing
the potential energy E − L . Accordingly, we find

·
E =

∫

�

U̇ (F, G, H, p)dA. (24)

Using the identity J̇ = JFF · Ḟ = F
∗ · Ḟ together with the results in Eqs. (20)–(21), the variational derivative

of the augmented energy potential can be evaluated as

U̇ = Ẇ − p J̇ =
[

̂WFi Aui,A + E

2
(FjC FjDDC DD − 1)(FiBDBDA)ui,A

+C(gi DADB)ui,AB + A(αi DADBDC )ui,ABC − pF∗
i Aui,A

]

, (25)

where ui = χ̇i is the variation of the position field. Hence, Eqs. (24) yield

·
E =

∫

�

[

̂WFi Aui,A + E

2
(FjC FjDDC DD − 1)(FiBDBDA)ui,A

+ C(gi DADB)ui,AB + A(αi DADBDC )ui,ABC − pF∗
i Aui,A

]

dA. (26)

Applying integration by parts on the third and fourth terms in Eq. (26), we find

C(gi DADB)ui,AB = C(gi DADBui,A),B − C(gi DADB),Bui,A, and

A(αi DADBDC )ui,ABC = A(αi DADBDCui,AB),C − A(αi DADBDC ),Cui,AB, (27)

and thereby obtain

·
E =

∫

�

[

̂WFi Aui,A + E

2
(FjC FjDDC DD − 1)(FiBDBDA)ui,A + C(gi DADBui,A),B

−C(gi DADB),Bui,A + A(αi DADBDCui,AB),C − A(αi DADBDC ),Cui,AB − pF∗
i Aui,A

]

dA.

(28)
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Equation (28) may be recast as

·
E =

∫

�

[

̂WFi A − pF∗
i A + E

2
(FjC FjDDC DD − 1)(FiBDBDA) − C(gi DADB),B

]

ui,AdA

−
∫

�

[

A(αi DADBDC ),Cui,AB
]

dA +
∫

∂�

(Cgi DADBui,A)NBdS

+
∫

∂�

(Aαi DADBDCui,AB)NCdS, (29)

where N is the rightward unit normal to the boundary ∂� in the sense of Green–Stokes theorem. To obtain the
desired expression, we again apply integration by parts and the Green–Stokes theorem on the second integral
of the above; i.e.,

∫

�

[

A(αi DADBDC ),Cui,AB
]

dA =
∫

�

[{A(αi DADBDC ),Cui,A},B − A(αi DADBDC ),CBui,A
]

dA

=
∫

∂�

A(αi DADBDC ),Cui,ANBdS −
∫

�

A(αi DADBDC ),CBui,A]dA. (30)

The substitution of Eq. (30) into Eq. (29) then furnishes

·
E =

∫

�

[

̂WFi A − pF∗
i A + E

2
(FjC FjDDC DD − 1)(FiB DBDA) − C(gi DADB),B + A(αi DADBDC ),CB

]

ui,AdA

∫

∂�

[{Cgi DADB − A(αi DADBDC ),C }ui,ANB + Aαi DADBDCui,AB NC
]

dS. (31)

Finally, we obtain

·
E =

∫

�

Pi Aui,AdA +
∫

∂�

[{Cgi DADB − A(αi DADBDC ),C }ui,ANB + Aαi DADBDCui,ABNC
]

dS, (32)

where

Pi A(ei ⊗ EA)

=
[

̂WFi A − pF∗
i A + E

2
(FjC FjDDC DD − 1)(FiB DBDA) − C(gi DADB),B + A(αi DADBDC ),CB

]

(ei ⊗ EA).

(33)

Hence, the Euler equation satisfies
Pi A,Aei = 0 or Div(P) = 0 (34)

which holds in �. It is also note here that, for the sake of clarity and completeness, the appropriate tensorial
notations of Eqs. (32)–( 33) may be found as

·
E =

∫

∂�

[{

C(g ⊗ D ⊗ D)T − (Div(α ⊗ D ⊗ D ⊗ D)T
}

FT + (α ⊗ D ⊗ D ⊗ D)(∇F)T
]

· NdS

+
∫

�

P · ·
FdA, (35)

and

P = ̂WF − pF∗ + E

2
(FD · FD − 1)F(D ⊗ D) − Div(Cg ⊗ D ⊗ D) + Div(Div(Aα ⊗ D ⊗ D ⊗ D)), (36)

which clearly meet the basis agreement requirement arising in multilinear transformations of higher-order
tensors with mixed bases.
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4 Boundary conditions

The incorporation of the high-order gradient fields into the model of the continuum deformation leads to the
necessary existence of their high-order energy conjugate pairs (e.g., triple forces, contact interactions) suitably
imposed on the desired boundaries. Although the roles and phenomenological implications regarding these
higher-order boundary conditions are discussed in a number of studies (see, for example, [19,20,22,37,38]),
their implementations, particularly those arising in plane elastostatics, in an actual analytical platform have not
been well addressed. Throughout the section, we present rigorous derivations vis-a-vis admissible boundary
forces of higher-order exerted on the third gradient continua.

To proceed, we apply integration by parts (i.e., Pi Aui,A = (Pi Aui ),A − Pi A,Aui ) on the first term of Eq.
(32) and thereby obtain

·
E =

∫

∂�

Pi Aui NAdS−
∫

�

Pi A,AuidA+
∫

∂�

[{WGiAB − (WHiABC ),C }ui,ANB + WHiABC ui,ABNC
]

dS, (37)

where we define:
WGiAB ≡ Cgi DADB and WHiABC ≡ Aαi DADBDC , (38)

for the notational simplicity in the forgoing derivations. Since the Euler equation, Pi A,A = 0, holds in �, the
above reduces to

·
E =

∫

∂�

Pi Aui NAdS +
∫

∂�

[{WGiAB − (WHiABC ),C }ui,ANB + WHiABC ui,ABNC
]

dS, (39)

Now, the projection of onto normal and tangential direction yields

∇u =∇u(T ⊗ T)+∇u(N ⊗ N) = u,T ⊗ T + u,N ⊗ N, (40)

In the above u,T and u,N are, respectively, the tangential and normal derivatives of u such that

ui,T ei = ui,ATAei , ui,N ei = ui,ANAei , (41)

and T = X
′
(S) = k × N is the unit tangent to the boundary (∂�) and N is the associated unit normal. Hence,

invoking Eqs. (40)–(41), the projections of the first and second coordinate derivatives of ui can be found,
respectively, as

ui,A(ei ⊗ EA) =
(

dui
ds

ds

dXA
+ dui

dN

dN

dXA

)

(ei ⊗ EA) = (ui,T TA + ui,N NA)((ei ⊗ EA)), and (42)

ui,AB(ei ⊗ EA ⊗ EB)

= [ui,T T TATB + ui,T (TA,T TB + TA,N NB) + ui,N (NA,T TB + NA,N NB)

+ui,T N (NATB + TANB) + ui,NN NANB](ei ⊗ EA ⊗ EB). (43)

We then substitute Eq. (43) into Eq. (39) and thereby obtain

·
E =

∫

∂�

Pi Aui NAdS +
∫

∂�

[WGiAB − (WHiABC ),C ](ui,T TA + ui,N NA)NBdS

+
∫

∂�

WHiABC [ui,T T TATB + ui,T (TA,T TB + TA,N NB) + ui,N (NA,T TB + NA,N NB)

+ui,T N (NATB + TANB) + ui,NN NANB]NCdS. (44)

In order to obtain desired expressions, we apply iterated integration by parts on the tangential derivatives of u
in Eq. (44). For example,

WGiAB TANBui,T = (

WGiAB TANBui
)

,T − (

WGiAB TANB
)

,T ui , (45)

WHiABC (NATBNC + TANBNC )ui,T N

= [

WHiABC (NATBNC + TANBNC )ui,N
]

,T − [

WHiABC (NATBNC + TANBNC )
]

,T ui,N ,

(46)
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WHiABC TATBNCui,T T

= (

WHiABC TATBNCui
)

,T T + (

WHiABC TATBNC
)

,T T ui − 2
[

(

WHiABC TATBNC
)

,T ui
]

,T
,

(47)

and similarly for other terms. Therefore, Eq. (44) can be replaced with

·
E =

∫

∂�

[

Pi ANA −
{

WGiAB TANB − (

WHiABC

)

,C TANB

}

,T

]

uidS

−
∫

∂�

[

{

WHiABC (TA,T TBNC + TA,N NBNC )
}

,T − (WHiABC TATBNC ),T T

]

uidS

+
∫

∂�

[{

WGiAB TANB − (

WHiABC

)

,C TANB − 2
(

WHiABC TATBNC
)

,T

}

ui
]

,T
dS

+
∫

∂�

[

WHiABC (TA,T TBNC + TA,N NBNC )ui
]

,T dS +
∫

∂�

[

WHiABC (NATBNC + TANBNC )ui,N
]

,T dS

+
∫

∂�

[{

(

WGiAB

) − (

WHiABC

)

,C

}

NANB + WHiABC (NA,T TB + NA,N NB)NC

]

ui,NdS

−
∫

∂�

[

{

WHiABC (NATBNC + TANBNC )
}

,T

]

ui,NdS

+
∫

∂�

(

WHiABC TATBNCui
)

,T T dS +
∫

∂�

WHiABC ui,NN NANBNCdS. (48)

The above may be further recast as

·
E =

∫

∂�

[

Pi ANA − {

(Cgi − Aαi,C DC )DATADBNB
}

,T − {

Aαi DC NC (DATA,T DBTB + DATA,N DBNB)
}

,T

]

uidS

+
∫

∂�

[

(Aαi DATADBTBDC NC ),T T
]

uidS +
∑

∥

∥Aαi (DATA,T DBTBDC NC + DATA,N DBNBDC NC )ui
∥

∥

+
∑

∥

∥

[

(Cgi − Aαi,C DC )DATADBNB − 2 (Aαi DATADBTBDC NC ),T
]

ui
∥

∥

+
∑

∥

∥Aαi (DANADBTBDC NC + DATADBNBDC NC )ui,N
∥

∥ +
∑

∥

∥

∥

∥

d

ds
(Aαi DATADBTBNC DCui )

∥

∥

∥

∥

+
∫

∂�

[

(Cgi − Aαi,C DC )DANADBNB + Aαi DC NC (DANA,T DBTB + DANA,N DBNB)
]

ui,N dS

−
∫

∂�

[{Aαi DADBDC (NATBNC + TANBNC )},T ui,N
]

dS +
∫

∂�
(Aαi DANADBNBDC NCui,NN )dS,

(49)

where the double bar symbol refers to the jump across the discontinuities on the boundary ∂� (i.e., ‖∗‖ =
(∗)+ − (∗)−) and the sum refers to the collection of all discontinuities. But the virtual work statement suggests
that the admissible powers are of the form

P =
∫

∂wt

ti uidS +
∫

∂w

miui,NdS +
∫

∂w

ri ui,NNdS +
∑

fi ui +
∑

hiui,N , (50)

Consequently, by comparing Eqs. (49) and (50), we obtain

tiei = Pi ANAei + d2

ds2
(Aαi DATADBTBDCNC ) ei

− d

ds

[(

Cgi − Aαi,C DC
)

DATADBNB − Aαi DC NC
(

DATA,T DBTB + DATA,N DBNB
)]

ei ,

miei = (

Cgi − Aαi,C DC
)

DANADBNBei + Aαi DC NC
(

DANA,T DBTB + DANA,N DBNB
)

ei

− d

ds

(

2Aαi DADBDCNATBNC
)

ei ,
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riei = Aαi DANADBNBDCNCei ,

fiei = (

Cgi − Aαi,C DC
)

DATADBNBei − d

ds
(2Aαi DATADBTBDCNC ) ei

+Aαi
(

DATA,T DBTBDCNC + DATA,N DBNBDCNC
)

ei ,
d( fi )

ds
ei = d

ds
(Aαi DATADBTBNC DC ) ei ,

hiei = 2Aαi DANADBTBDCNCei , (51)

In the above ti , mi and fi are, respectively, the expressions of edge tractions, edge moments and the corner
forces. But more importantly, additional interaction boundary conditions (i.e., ri , d( fi )/ds, hi ) are obtained
via the introduction of the third gradient of deformations. These boundary conditions can be understood as
the set of admissible contact interactions suitably sustained by the third gradient continua (see, for example,
[22,36,43]). Moreover, the induced interaction forces are, in turn, coupled with the Piola-type triple stress and
thus fall into the category of triple forces that characterize the mechanical contacts on the edges and points of
Cauchy cuts ([19,22,37]). In the present case, the letter wouldmean the effects of local interactions between the
fiber and matrix which are assimilated via the computation of the third gradient of the continuum deformation
on the convected curves of fibers.

We remark here that the obtained triple forces are meaningful only if there exist their conjugate pairs
(a class of Piola-type triple stresses) and are necessary to capture the internal energy contributions to the
mechanical contact interactions induced on the adjoined boundary. In fact, such necessary mutual existence
arising in the third gradient of continuum deformation is equally valid to a class of forces and stresses exerted
by lower-order continua. For example, the prescribed double force mi is the energy pair of the Piola-type
double stress (Cgi,BDADB).

If fibers are aligned along the directions of either normal and/or tangential to the boundary (such cases
are commonly observed in meshed composites, fabric composites and particulate composites produced under
controlled environment), we find

DATADBNB = 0 and TA,N = TA,T = NA,N = NA,T = 0, (52)

and thus Eq. (51) reduces to

tiei = Pi ANAei
miei = (Cgi − Aαi,C DC )DANADBNBei
riei = Aαi DANADBNBDCNCei ,
fiei = 0ei ,

d( fi )

ds
ei = 0ei ,

hiei = 0ei . (53)

Further, the expression of the associated Piola-type stress now becomes

Pi A(ei ⊗ EA) =
(

̂WFi A − pF∗
i A + E

2
(FjC FjDDC DD − 1)(FiB DBDA) − Cgi,B DADB + Aαi,BC DADBDC

)

(ei ⊗ EA),

giei = Fi A,B DADB eiand αiei = Fi A,BC DADBDCei . (54)

It is clear from Eq. (54) that, in the cases of aligned fibers, ri is the only meaningful boundary conditions due
to the third gradient of continuum deformations (i.e., fi , d( fi )/ds and hi vanish identically). We also note
that the imposition of ri is necessary to determine unique solution when solving the associated Euler equation
[i.e., Eq. (51)]. The classifications of the obtained triple forces and boundary conditions may be of practical
interests. In this respect, a number of cases are investigated within the prescription of superposed incremental
deformations in the forgoing sections. Lastly, details regarding the implementation of the resulting boundary
conditions [Eq. (53)] are reserved in “Appendix”.
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5 Linear theory

Based on the constitutive formulations presented in the previous sections, we develop a compatible linearmodel
which describes the mechanical responses of an elastic solid reinforced with fiber’s resistance to extension and
flexure.

For this purpose, we consider superposed ‘small’ deformations defined by

χ ≈ χo +εχ̇ ; |ε| 	 1, (55)

where (∗̇) = ∂(∗)/∂ε, χ̇ = u and (∗)o denote configuration of ∗ evaluated at ε = 0, (∗̇) = ∂(∗)/∂ε.
Here caution needs to be taken that the present notation is not confused with the one used for the variational
computation. Therefore, the deformation gradient tensor can be approximated as

F ≈ Fo + ε∇u, where
·
F = ∇u. (56)

In a typical environment, the body is initially undeformed and stress-free. This can be accommodated by
imposing the initial conditions of

Fo = I and Po = 0, at ε = 0, (57)

from which we subsequently reduce Eq. (56) to

F = I + ε∇u. (58)

Eq. (58) further leads to

F−1 = I − ε∇u+o(ε) and J = det F =1 + εdivu+o(ε), (59)

which are the linearized expressions of the inverse and determinant of deformation gradient tensorF. Similarly,
the constraint of bulk incompressibility can be approximated as

(J − 1)· = F∗
o · ·

F = divu = 0. (60)

Now, using Eq. (55), the Euler equation [Eq. (30)] can be expanded as

Div(P) = Div(Po) + εDiv(Ṗ) + o(ε) = 0. (61)

Dividing the above by ε and limiting ε → 0, we obtain

Div(Ṗ) = 0 or Ṗi A,A = 0, (62)

For the use in Eq. (62), the expression of Ṗi A can be obtained from Eq. (29) that

Ṗi A(ei ⊗ EA)

= [

( ̂WFi A )̇ − ṗ(F∗
i A)o − pḞ∗

i A + E
{

ḞjC (FjD)oDCDD
} {(FiB)oDBDA)} ]

(ei ⊗ EA)

+ E

2

[

(FjC )o(FjD)oDCDD − 1
]

(Ḟi B DBDA) − Cġi,BDADB + A(αi DADBDC ),CB
]

(ei ⊗ EA). (63)

Further, evaluating at ε = 0 (e.g., (FjD)o = δ j D, (F∗
i A)o = δi A), we reduce Eq. (63) to

Ṗi A(ei ⊗ EA) = [

( ̂WFi A )̇ + Eu j,BDADBDi D j − ṗδi A − po Ḟ
∗
i A − Cui,BCDDCDDDADB

]

(ei ⊗ EA)

+A
[

(ui,EFGDE DF DG)DADBDC
]

,CB(ei⊗EA), (64)

where δ jCδ j DDC DD = Dj D j = 1, ġi,B = ḞiC,BDDCDD and αi = ui,EFGDE DF DG . It is noted that the
reference and current bases are now merged so that the initial director field D is represented by the current
basis (i.e., Diei ) not by the reference frame (i.e., DAEA). This can be explained by the collapse of the two
different bases dictated by the linear theory of elasticity (i.e., ei ≡ EA; see, also, [46,47]). Hence, from Eqs.
(62) and (64), the linearized Euler equations can be obtained as

Ṗi A,Aei = [( ̂WFi A )̇,A + E(u j,BDADBDi D j ),A − ṗ,i − C(ui,BCDDCDDDADB),A]ei
+A[(ui,EFGDE DF DG)DADBDC ],CBAei , (65)
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where Ḟ∗
i A,A = 0 (Piola’s identity) and ( ṗδi A),A = ṗ,Aδi A = ṗ,i .

In the case of initially straight fibers (i.e., ∇D = 0), the above further reduces to

Ṗi A,Aei = ( ̂WFi A )̇,Aei + Eu j,ABDADBDi D jei − ṗ,iei − Cui,ABCDDCDDDADBei
+Aui,ABCEFGDADBDCDE DF DGei = 0ei . (66)

Lastly, the boundary conditions inEq. (51) can be approximated similarly as in the above (e.g., t = to+εṫ+o(e),
etc.)

ṫiei = Ṗi ANAei + d2

ds2
(Aα̇i DATADBTBDCNC ) ei

− d

ds
[(Cgi − Aα̇i,C DC )DATADBNB − Aα̇i DC NC (DATA,T DBTB + DATA,N DBNB)]ei ,

ṁiei = (Cġi − Aα̇i,C DC )DANADBNBei + Aα̇i DC NC (DANA,T DBTB + DANA,N DBNB)ei

− d

ds
(2Aα̇i DADBDCNATBNC )ei ,

ṙiei = Aα̇i DANADBNBDCNCei ,

ḟiei = (Cġi − Aα̇i,C DC )DATADBNBei − d

ds
(2Aα̇i DATADBTBDCNC ) ei

+Aα̇i (DATA,T DBTBDCNC + DATA,N DBNBDCNC )ei ,

d( ḟi )

ds
ei = d

ds
(Aα̇i DATADBTBNCDC ) ei ,

ḣiei = 2Aα̇i DANADBTBDCNCei . (67)

Hence, Eqs. (60), (66) and (67) determine the deformed configurations of fiber composites for small deforma-
tions superposed on large. In particular, if the fiber’s directions are either normal or tangential to the boundary
[see Eq. (52)], the above becomes

ṫiei = Ṗi ANAei ,
ṁiei = (Cġi − Aα̇i,C DC )DANADBNBei ,
ṙiei = Aα̇i DANADBNBDCNCei ,
ḟiei = 0ei ,

d( ḟi )

ds
ei = 0ei ,

ḣiei = 0ei . (68)

The imposition of the above boundary conditions will be further discussed in the following section.

5.1 Example: Neo-Hookean-type materials

For the implementation of the obtained linear theory, we consider an elastic solid of neo-Hookean type rein-
forced with a single family of fibers subjected to plane bias extension. In the foregoing analysis, we confine
our analysis to the case where fibers are initially straight and aligned along the directions of either normal or
tangential to the boundary (i.e., D = E1, D1 = 1, D2 = 0, see Fig. 1) such that

(D · T)(D · N) = 0 and ∇D =∇T = ∇N = 0. (69)

We also note here that different types of boundaries and fibers alignments can be readily accommodated by
modifying Eq. (69) (e.g., D = E2, D1 = 0, D2 = 1 and D · N = 1, etc.). For example, by expanding the
Einstein summation for A, B...G = 1, 2, the last term of Eq. (66) becomes

Aui,ABCEFGDADBDCDE DF DGei = A
(

ui,111111D1D1D1D1D1D1 + ui,211111D2D1D1D1D1D1

+ui,121111D1D2D1D1D1D1 + ui,112111D1D1D2D1D1D1 + ...

+ui,222222D2D2D2D2D2D2
)

ei . (70)
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Fig. 1 Schematic of the problem

Since D1 = 1 and D2 = 0,, the above further reduces to

Aui,ABCEFGDADBDCDE DF DGei = A(ui,111111D1D1D1D1D1D1)ei = Aui,111111ei . (71)

Accordingly, Eqs. (64) and (66) become

Ṗi A(ei ⊗ EA) = [

( ̂WFi A )̇ + Eu1,1DADi − ṗδi A − po Ḟ
∗
i A − Cui,111DA + A(ui,11111)DA

]

(ei⊗EA), and

Ṗi A,Aei = [

( ̂WFi A )̇,A + Eu1,11Di − ṗ,i − Cui,1111 + Aui,111111
]

ei = 0ei . (72)

Now, the neo-Hookean strain energy function is given by

W (I1, I3) = μ

2
(I1 − 3) − μ log I3 + λ

2
(log I3)

2, (73)

where μ and λ are the material constants, and I1 = tr(FTF) and I3 = det(FTF) are, respectively, the first and
third invariant of the deformation gradient tensor. In the case of incompressible materials (i.e., I3 = 1), Eq.
(73) further reduces to

̂W (F) = μ

2
(F · F − 3). (74)

Thus, we evaluate WFi A = μFi A and thereby obtain from Eq. (72) that

Ṗi A(ei ⊗ EA) = [μui,A + Eu1,1DADi − ṗδi A − po Ḟ
∗
i A − Cui,111DA + A(ui,11111)DA](ei ⊗ EA), and

(75)

Ṗi A,Aei = [μui,AA + Eu1,11Di − ṗ,i − Cui,1111 + Aui,111111]ei = 0ei . (76)

In the above, the unknown constant po can be chosen such that the Piola-type stress admits the initial stress
free state at ε = 0; i.e.,

Ṗo = μḞo − poḞ∗
o = 0, (77)

and thus yielding
po = μ. (78)

In addition, since J∂F∗
j B/∂Fi A = F∗

j B F
∗
i A − F∗

i B F
∗
j A, we evaluate at ε = 0 as

(∂F∗
j B/∂Fi A)o = δ j Bδi A − δi Bδ j A, (79)

and thus find

·
F∗
i A = (∂F∗

j B/∂Fi A)Ḟj B = (δ j Bδi A − δi Bδ j A)u j,B = uB,Bδi A − uA,i = −uA,i , (80)

where uB,B = 0 from Eq. (60).
Consequently, Eq. (76) together with the constraint of bulk incompressibility [Eq. (60)] determines the

deformed configuration of composites.
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6 Solution to the linearized problem

For the purpose of illustration, we consider an elastic solid of neo-Hookean type reinforced with the single
family of fibers and subjected to the double force ti (extension) and triple force ri (see Fig. 1). Accordingly,
we find from Eqs. (60) and (76) that

μ(u1,11 + u1,22) + Eu1,11 − Cu1,1111 + Au1,111111 − .
p,1 = 0,

μ(u2,11 + u2,22) − C2,1111 + Au2,111111 − .
p,2 = 0,

u1,1 + u2,2 = 0. (81)

Let us now introduce scalar field, φ,as

u = k × ∇φ, k(unit normal); ui = ελiφ,λ,

so that the third equation of Eq. (81) can be satisfied (i.e., φ,12 − φ,21 = 0). We note here that the adopted
Ansatz of φ restricts the possible forms of solutions similarly to those cases arising in the use of complex
potentials and plan harmonic functions (see, also, [49–51]). However, this does not necessarily mean that
the predictions from the resulting solution are limited. In fact, the adopted technique has been successfully
adopted in the similar types of problems and produces reasonably accurate prediction results (see, for example,
[7,8,15,17,52]). Accordingly, Eq. (81) becomes

ṗ,1 = −μ(ϕ,211 + ϕ,222) + Cϕ,21111 − Aϕ,2111111,

ṗ,2 = μ(ϕ,111 + ϕ,122) − Cϕ,11111 + Aϕ,1111111. (82)

In addition, we use the compatibility condition of p (i.e.,
·

p,i j = ·
p, j i ) and thereby reduce Eq. (82) to

μ(ϕ,1111 + ϕ,2222 + 2ϕ,1122) − C(ϕ,111111 + ϕ,221111) + A(ϕ,11111111 + ϕ,22111111) = 0. (83)

The above may be reacted into the following compact from

�

(

�φ − C

μ
φ,1111

)

+ E

μ
φ,1122 + A

μ
�(φ,111111) = 0, (84)

which solves the unknown mapping function, φ(x, y).
It is noted here that the solution of Eq. (84) is not accommodated by the conventional methods such as the

Fourier transform or the separation of variables. Instead, we adopt the methods of iterative reduction and the
principle of eigenfunction expansion [39–41] to yield

φ(x, y) = X (x)sin(my), (85)

and subsequently obtain from Eq. (84) that
[

AX,11111111 − (

C + Am2)X,111111 + (

1 + Cm2)X,1111 − m2(2 + E)X,1111 + m4X
]

sinmy = 0. (86)

Hence, the general solution of φ can be found as

φ(x, y) =
∞
∑

m=1

[{

eamx (Am sin(bmx) + Bm cos(bmx)) + e−amx (Cm sin(bmx) + Dm cos(bmx))

+(Em sin(cmx) + Fm cos(cmx)) + Gme
dmx + Hme

−dmx
} × {sin(my)}]. (87)

The expressions of am, bm, cm and dm can then be obtained via the simple algebraic procedures (see
“Appendix”). We note that other approaches such as the method of Lagrange multipliers in [53] may also
be employed in solving the type of PDEs presented in Eq. (81).

Lastly, the unknown constant real numbers Am, Bm,Cm, Dm, Em, Fm,Gm and Hm can be completely
determined by imposing the admissible boundary conditions depicted in Eq. (68). In the assimilation, the
applied forces and triple forces are approximated using the Fourier series expansion. For example,

t1 = ·
P11N1 = μ(u1,1 − u2,2) + Eu1,1 − ·

p − Cu1,111 + Au1,11111 = 5 
30
∑

n=1

20

nπ
(−1)

n−1
2 cos(

nπ

2d
y),
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Fig. 2 Deformation profiles with respect to the number of iterations (N)

ṙi = Aα̇i DANADBNBDCNC , ṙ1 = Au1,111 = 5 
30
∑

n=1

20

nπ
(−1)

n−1
2 cos(

nπ

2d
y),

ṙ2 = Au2,111 = 0. (88)

The obtained solution, φ, is then substituted into the following expression to configure the deformation maps
and the corresponding stress fields.

χ = (X1 − φ,2)E1 + (X2 + φ,1)E2. (89)

We also remark that the required computational cost is minimum (far less expansive then pure numerical
approaches) even with the presence of heavy expressions [Eq. (63)], since Eq. (63) are merely in algebraic
structures once implemented. This is also evidenced by the fast convergence rate of the obtained solutions as
illustrated in Fig. 2. (within 30 iterations).

6.1 Model implementation and discussions

In this section, we simulate the responses of fiber-reinforced composite subjected to plane deformations using
the obtained linear model. Emphasis is placed on the assimilation of the deformation profiles, strain field
distributions and, in particular, the sensitivity analyses of the proposed linear model with respect to the applied
loads and the parameters associated with the Piola-type double stresses and triple stresses. It is noted that
the data are obtained under the normalized setting unless otherwise specified (e.g., C/μ = 20, A/μ = 50,
etc.). Figure 3 illustrates the post-processed deformation mapping for a composite with fibers axial, bending
and triple force moduli of E/μ = 150, C/μ = 150, and A/μ = 150 when the composite is subjected to
the axial extension load of t1/μ = 20. The deformation mapping predicted by the proposed linear solution
demonstrates smooth profiles on the boundaries and within the domain of interest (Fig. 3).

Further, it is shown in Figs. 4 and 5 that the corresponding deformation configurations are sensitive to
both the first and triple stress moduli of Piola-type (i.e., E and A). More precisely, the axial elongation of the
composite gradually decreases with increasing the first stress modulus (E). The deformation configuration is
also affected by the varying triple stress modulus (A). In this case, the gradients of deformation profiles at each
material points become steeper as the triple stress modulus decreases. These results are also closely aligned
with the observations in [8,17,52]. In fact, the obtained solution accommodates the deformation configurations
predicted by the second gradient theory in the limit of the vanishing triple stress modulus (i.e., A = 0, see Fig.
6).

In particular, utilizing the following relations [12], we evaluate the shear strain gradients and the associated
shear angle contours to examine the effects of the third gradient of deformations on the resulting deformation
fields,

φ′ = u′′
2(1 + u′

1) − u′
2u

′′
1

u′2
2 + (1 + u′

1)
2

, (90)
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Fig. 3 Deformation mapping when t1/μ = 20,E/μ = 150, C/μ = 150 , and A/μ = 150
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Fig. 4 Deformation configurations with respect to E/μ when t1/μ = 20, C/μ = 150 and A/μ = 150

and

φ = tan−1
(

χ2,1 − χ1,1

2 + χ1,1 + χ2,1

)

. (91)

Figure 7 clearly indicates that the magnitude of shear strain gradually increases as approach the right
and left boundaries when positive triple force is applied (i.e., ṙi > 0) and vice versa in the case of negative
triple force (i.e., ṙi < 0). The continuous shear strain fields give rise to the smooth and dilatational shear
strain distributions where the rate of dilatation is dependent on the applied triple force ṙi (see Fig. 8). This, in
turn, suggests that the proposed linear model is capable of predicting multiple configurations of shear angle
distributions given the single configuration of the applied force ṫi and double force ṁi , whereas only one
configuration is possible within the description of second gradient-based models (see [8,13,14,17]). In fact,
the shear angle field estimated by the second gradient continuum model is one of the particular configurations
predicted by the proposed model in the limit of vanishing triple force (i.e., ṙi = 0, see, also, Fig. 6). This also
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Fig. 5 Deformation configurations with respect to A/μ when t1/μ = 20, E/μ = 135 and C/μ = 150
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Fig. 6 Comparison with the second gradient model [8]

can be seen by setting Eq. (68) as

ṙiei = Aα̇i DANADBNBDCNCei = 0ei . (92)

Hence, the expressions of force and double force [Eq. (68)] and the associated Piola-type stress [Eq. (75)]
become

ṫiei = Ṗi ANAei , ṁiei = Cġi DANADBNBei , and
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Fig. 7 Shear strain gradient with respect to ṙi : ṙi > 0 (Left) and ṙi < 0 (Right)

Fig. 8 Shear angle contours with respect to ṙi : ṙi > 0 (a) and ṙi < 0 (b)

Fig. 9 Shear strain gradients predicted by the first (Left), second (Middle) and third gradient (Right) models

Ṗi A(ei ⊗ EA) = [

μui,A + Eu1,1DADi − ṗδi A − po Ḟ
∗
i A − Cui,111DA

]

(ei ⊗ EA),

which recover the results in [17] (see Eqs. (61)–(62) therein).
We also summarize the shear strain gradients and the associated shear angle contours computed, respec-

tively, by the first, second and third gradient continuum models for the purpose of further clarification. It is
evident from Fig. 9 that the proposed model (third gradient) predicts smooth and continuous shear strain gra-
dient fields as opposed to those obtained from the first and second gradient models where the corresponding
strain gradient fields display either zero or constant distributions (see Fig. 9). In results, a comprehensive
description of smooth and dilatational shear angle distributions is assimilated by the proposed linear model
(see Fig. 10). On the other hand, conventional lower-order models produce limited predictions of either dis-
continued (first gradient model) or non-dilatational (second gradient model) field distributions (Fig. 10). The
obtained results are also aligned with the earlier discussions regarding higher-order continua that Nth-order
continua can sustain continuous and smooth deformation gradient fields up to (N − 1)th order ([19,20,22]).
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Fig. 10 Shear angle contours predicted by the first (Left), second (Middle) and third gradient (Right) models

Fig. 11 Experimental set up (left): uniaxial tension test of elastomeric composite (50mm × 25mm); schematic illustration of
the uniaxial strain of the reinforced elastomer (right)

6.2 Comparison with the experimental results

Lastly, comparisons with the in-house experimental results are presented to demonstrate the performance and
potential utility of the obtained linear model. For the stated purpose, we consider the uniaxial tension test of an
elastomeric material (Ecoflex 0050; Smooth-on Inc., USA) reinforced with polyester fibers (PETKM2005 and
PETKM2006; Brookfield, CT, USA) (see Fig. 11). We note here that, since the proposed model is linearized
model, the comparisons have beenmade for deformations arising at relatively low strain levels. The correspond-
ing material parameters within the linear regime are found as μ = 0.11 MPa (Ecoflex 0050), E = 3.45 MPa
(PETKM2005) andE = 2.35MPa (PETKM2006). An aspect ratio of length to width of 2 : 1 is maintained for
all samples and a uniform axial tension is applied by using Instron 5943 (Illinois Tool Works Inc., USA) (see
Fig. 11). A Sony A6000 camera was used to capture the deformed image of the elastomeric composites and the
obtained images are post-processed via the MATLAB image processing toolbox to compute the deformation
profiles and the shear angle distributions of PETKM fiber composites.

The shear angle distributions of PETKM2005 composite at 20% and 50% strain levels and transverse
deformation (χ2) of PETKM2005 and PETKM2006 composites at 50% elongations are presented in Figs.
12 and 13. We note that, in Fig. 13, the corresponding deformation profiles are normalized by their initial
length scales (i.e., wo and Lo) for compact demonstrations. Despite the uncertainties arising in the MATLAB
image processing and curve fittings, the proposed linear model produces reasonably accurate predictions in
both the shear strain angle distributions and χ2 deformation of the composites. More precisely, the proposed
linear model predicts smooth and continuous shear angle transitions from the minimum shear zone (blue)
to the maximum shear zone (red) which captures the major characteristics of the shear angle distributions
of the composite under axial tension (Fig. 12). For the transverse deformations (χ2) of PETKM composites,
the experimental results show abrupt changes as they move from the center (x/Lo = 0) to the clamped end
(x/Lo = 0.5) (see Fig. 13). This may be attributed by the imperfections in fiber’s bonding in the vicinity
of the boundaries (refer to the non-symmetric deformation profiles with respect to x axis in Fig. 14) and/or
possible reading errors. Except these sharp variations, the proposed model closely estimates the transverse
deformations of the composites throughout the domain of interest (Fig. 13). In addition, although the proposed
linear model is not intended for relatively large deformation analyses, it produces reasonably good prediction
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Fig. 12 Shear angle distributions of PETKM2005 composite at 20% (top) and 50% (bottom) elongations
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Fig. 13 χ2 deformations of PETKM2005 and PETKM2006 composites at 50% elongation
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Fig. 14 Deformation profiles of PETKM2005 composite at 50% (top) and 100% (bottom) elongations

results for the general deformation profiles of PETKM2005 composite at 50% and 100% strain levels (see Fig.
14).

It should be also noted here that the obtained model may be further extended to include practically more
important problems such as determination of the triple force moduli, analysis of the residual triple stresses
on the mechanical responses of higher-order continua and a microlevel analysis of curved fiber reinforces
shell structures [54,55]. Researches on these subjects certainly deserve further attentions which, however, are
beyond the scope of the present study due to the paucity of available experimental resources and data sets
(especially with the current outbreak).

7 Conclusion

In this study, we present a second strain gradient-based continuum model for the mechanics of an elastic solid
reinforced with extensible fibers and subjected to plane deformations. The fibers are presumed as continuously
distributed spatial rods of Kirchhoff type, under which the kinematics of fibers has been formulated via the
second and third gradient of continuum deformations. In particular, we incorporated the second strain gradient
field into the model of continuum deformation through which mechanical contact forces, couple moments,
double forces and triple forces can be assimilated in addition to the extension and bending resistance of fibers.
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By means of the variational principles and the virtual work statement, the Euler equations and the associated
necessary boundary conditions are obtained. The energy density function of Spencer and Soldatos type is
augmented by the third gradient of continuum deformations to accommodate the third gradient continua and
the associated bulk incompressibility. The rate of change in curvature, defined at points on the convected cures
of fibers, is also formulated in terms of the third gradient of deformations which characterizes the mechanical
contact interactions between the adjoined fibers and the surrounding matrix.

More importantly, we obtained a complete linear model within the prescription of superposed incremental
deformations from which a complete analytical solution has been obtained. The corresponding boundary
conditions are also approximated up to the leading order which were then used to assimilate the triple forces
and their energy couples exerted by the third gradient continua. The presented linear model predicts smooth
deformations profiles and, in particular, predicts gradual and dilatational shear angle distributions of the
composite subjected to plane bias extension. This is due to the sufficient continuity in the resulting deformation
fields suitably sustained by the third gradient continua unlike those from the lower-order continua where sharp
variations are present in the corresponding shear zones. In addition, it is found that the intensity of dilatations
is dependent on both the triple stress modulus and the applied triple force. The results may be employed
to the strain and failure analyses of composite structures subjected to dilatational shear where significant
displacement inconsistencies are often observed. Comparisons with the experimental results of polymeric
(PETKM) composites at 20% and 50% elongation are also performed which indicate that the proposed linear
model provides reasonably accurate predictions in the deformation and shear angle analyses of polyester fiber
(PETKM) composites.

Lastly, we note that the obtained model may be further extended to include practically more important
problems such as determination of the triple force moduli, analysis of the residual triple stresses on the
mechanical responses of higher-order continua and a microlevel analysis of shell structures reinforced with
curved fibers.
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Appendix

• Algebraic procedures for am, bm, cm and dm

am = (T2 + T1)

2
, bm = (T2 − T1)

2i
, cm = T3

i
, dm = T4, m = nπ

2d
(n = 1, 3, 5, etc.),

T1 =
⎡

⎣

T24
4A

− T5 −
{

−T8(T18)
2 − 9T8(T10)

2
3 + 12T17T8 − T6 + 12(T10)

1
3 T8T18

T7

}0.5
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⎦
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T24
4A
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0.5
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T3 =
⎡
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T24
4A

+ T5 −
{

−T8(T18)
2 − 9T8(T10)
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3 + 12T17T8 + T6 + 12(T10)
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3 T8T18
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,
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4A
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2 − 9T8(T10)

2
3 + 12T17T8 + T6 + 12(T10)

1
3 T8T18

T7

}0.5
⎤

⎦

0.5

,

T5 = T 8

6(T9)
1
6

, T6 = 3
√
6T19

[

27(T19)
2 + 3

√
3T15 − 72T17T18 − 2(T18)

3
]0.5

,

T7 = 6(T9)
1
6

[

6T18(T9)
1
3 + 9(T9)

2
3 − T12 + 12m4

A
+ (T18)

2 + T11 − 3T24T16
A2

]
1
4

,
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T8 =
[

6T18(T10)
1
3 + 9(T10)

2
3 − T12 + 12m4

A
+ (T18)

2 − 3T24T22
A2 + T11

]
1
2

,

T9 = (T14)2

2
− 4T18T13

3
+

(√
3

18

)

[

12(T18)
2(T13)

2 + 27(T14)
4 + 16(T18)
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3
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27

]0.5
,

T10 = (T19)2

2
+

√
3T15
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− 4T18T17
3
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27
, T11 = 3(T24)2T23
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64A4 ,
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A
− T20 + T24T16
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8A3 + T16
A

− T24T23
2A2 ,

T15 =
[
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4 + T16T17(T18)

4 + 256(T17)
3 − 4(T18)

3(T19)
2,

+128(T18)
2(T17)

2 − 144T18(T19)
2T17

]0.5
,

T16 = (2 + E)m2, T17 = T21 − m4

A
+ T24T22

4A2 − T20,

T18 = 3(T24)2

8A2 − T23
A

, T19 = (T24)3

8A3 + T22
A

+ T24T23
2A2 , T20 = (T24)2T23

16A3 , T21 = 3(T24)4

256A4 ,

T22 = (2 + E)m2, T23 = Cm2 + 1 and T24 = Am2 + C. (A.1)

• Evaluation of the geodesic curvature of the fibers
The geodesic curvature of a parametric curve (r(S)) can be obtained by evaluating the second derivative of
r(S) with respect to the arc length parameter (S);

g = r′′ = d2r(S)

dS2
. (A.2)

Using the chain rule (i.e., d(∗)/dS = d(∗)
dX

dX
dS ), we obtain from Eq. (A2) that

d2r(S)

dS2
= d

( dr(S)
dS

)

dS
= d

( dχ(S)
dX

dX
dS

)

dS
=

(

d
( dχ(S)

dX
dX
dS

)

dX

)

dX
dS

. (A.3)

Since F = dχ/dX and D = (dX(S))/dS, the above can be rewritten as

g = r′′ =
(

d
( dχ(S)

dX
dX
dS

)

dX

)

dX
dS

=
(

d(FD)

dX

)

D =∇[FD]D, (A.4)

where ∇(FD) = d(FD)/dX is the first gradient of “ FD” .

• Evaluation of the rate of changes in curvature of the fibers
The rate of changes in curvature of the fibers can be formulated by taking third derivative of r(S) with respect
to the arc length parameter (S). Hence, from Eq. (A4), we find

α = r′′′ = d3r(S)

dS3
= d

( d2r(S)

dS2
)

dS
= d

( d(FD)
dX

dX
dS

)

dS
. (A.5)

Now applying the chain rule (i.e., d(∗)/dS = d(∗)
dX

dX
dS ), Eq. (A5) Becomes

d3r(S)

dS3
= d

( d(FD)
dX

dX
dS

)

dS
= d

( d(FD)
dX

dX
dS

)

dX
dX
dS

=
[

d2(FD)

dX2

dX
dS

+ d(FD)

dX
d2X
dS2

]

dX
dS

. (A.6)
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Fig. 15 Schematic demonstration of imposed boundary conditions

Since D = (dX(S))/dS, the above can be rewritten as

α = r′′′ =
[

d2(FD)

dX2

dX
dS

+ d(FD)

dX
d2X
dS2

]

dX
dS

= [∇{∇(FD)}D + ∇(FD)(∇(D))]D, (A.7)

where ∇(∇(FD)) = d2(FD)/dX2 is the second gradient of “ FD ”.

• Implementation of the boundary conditions [Eq. (53)]
The boundary conditions in Eq. (53) can be readily implemented in the desired boundaries via the tangential
and normal vectors of the boundary and the director field of the fibers. For example, in the case of aligned
fibers in the direction of X1, we find

D =D1E1 + D2E2 = D1E1; D1 = 1 and D2 = 0. (A.8)

Now on �1, the unit normal and tangent to the boundary are defined by (see Fig. 15)

T1 = T 1
1 E1 + T 1

2 E2 = T 1
2 E2; T 1

1 = 0 and T 1
2 = 1,

N1 = N 1
1E1 + N 1

2E2 = N 1
1E1; N 1

1 = 1 and N 1
2 = 0. (A.9)

Hence, on �1, the corresponding boundary conditions can be obtained by
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e2 = Aα2e2, (A.10)

where t1 = t11 e1 + t12 e2, m
1 = m1

1e1 + m1
2e2 and r1 = r11e1 + r12e2 are, respectively, the boundary traction,

edge moment and the triple force acting on the �1 boundary.
For �2 boundary, we find (see Fig. 15)

T2 = T 2
1 E1 + T 2

2 E2 = T 2
2 E2; T 2

1 = 0 and T 2
2 = 1,

N2 = N 2
1E1 + N 2

2E2 = N 2
1E1; N 2

1 = 1 and N 2
2 = 0. (A.11)
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Therefore, repeating the same process as done in the above, it can be shown that

t21 e1 = (

P11N
2
1 + P12N

2
2

)

e1 = P12e1,

t11 e1 = (

P21N
2
1 + P22N

2
2

)

e2 = P22e2,

m1
1e1 = 0e1,m1

2e2 = 0e2,

r11e1 = 0e1, r12e2 = 0e2. (A.12)

Lastly, Eq. (A12) indicates that the edge moment and triple force cannot be sustained by the �2 boundary
where no reinforcing fibers are aligned in e2 direction.
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