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Abstract This study is based on continuum damage mechanics and constructs an improved macro–micro-
two-scale model to predict the fatigue life of engineering metallic materials subjected to variable amplitude
loading. To account quantitatively for the fatigue damage retarding effect of higher load on lower ones in a
loading sequence, the cyclic plastic response curve of microscopic weak inclusion is independently designed.
Meanwhile, an improved two-scale fatigue damage model in rate form is proposed by introducing a new
exponent function acted on the equivalent plastic strain term in the model for taking account of fatigue mean
stress effect under variable amplitude loading. The parameters of the two-scale fatigue damage model are
identified through an inverse approach based on fatigue test results under constant amplitude loading. The
predictive accuracy of the proposed model is validated by fatigue test data of Al 2024-T3 standard coupon and
plate with a hole under different variable amplitude loading.

Keywords Continuum damage mechanics · Metallic materials · Fatigue life · Retarding effect · Two-scale
model

1 Introduction

Metallic materials remain a dominate proportion in engineering structure, especially for key load transmission
parts. Fatigue damage caused by cyclic loading in long-term working period is one of the main failure modes
of metal components, which is always the focus of safety and reliability prediction [1]. In the prediction
of engineering fatigue failure, metal components are macroscopically considered as continuum. In fact, the
fatigue damage or crack initiation and growth always originate from large numbers of microscopic dislocation
movement and defects evolution [2,3]. S–N curves and Palmgren–Miner linear damage accumulation principle
are still valid methods [4], but often give unduly conservative prediction results for a variable amplitude or
random loading sequence applied to an engineering component [5]. Themain reason leading to poor prediction
is the so-called retard effect of foregoing higher amplitude loads on subsequent lower ones in a fatigue loading
sequence. The retardation results from the local residual compressive stress effect caused by unloading of
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those higher amplitude loads. The key point to estimate fatigue damage accumulation in a variable amplitude
loading spectrum is to quantify the localized residual compressive stress effect and the influence on evolution
of microstructural defects, the study of which still remains open up to date [6].

A way to avoid a micromechanical analysis for each type of defect and mechanism of damage is to
postulate a principle at the mesoscale [7]. From the perspective of mesoscale machanics, a model to quantify
the microstructural damage evolution can be created by means of a weak inclusion surrounded by infinite
homogenous medium, since the damage evolution always deteriorates or weakens the mechanical behavior of
an engineering component. The theoretical inclusion model is also known as macro–micro-two-scale model.
The macro–micro-two-scale model has developed in the past several decades. Eshelby [8] studied macro–
micro-connecting factor of ellipsoid inclusion. Hill [9,10] and Iwakuma [11] focused on the transmission of
quantities frommacroscale to microscale. [12,13] provides an effective pathway to evaluate microscopic stress
and strain of weak inclusions by means of a set of the derived bridging equations. Pierard [14] studied plastic
theory of ellipsoid inclusion at the microscale.

The two-scale concept has been extended further to study fatigue damage accumulation and predict fatigue
life for high cycles [7,15,16]. Lemaitre et al. [17,18] established a high-cycle fatigue evolution model based
on the stress–strain state of microscopic weak inclusion. The model can reflect the effect of mean stress and
nonlinear damage accumulation. Many researchers predicted the fatigue life of various materials with macro–
micro-two-scale damage model [19–22]. However, there still exist some issues or simplifications in the most
of above-mentioned works. The assumed plastic stress–strain curve for a microscale weak inclusion is fully
similar tomacroscalematrix. The only difference comes from the length of linear elastic segment, which causes
another trouble to determine the yield stress for microscale, and leads to incorrect microscopic hysteresis loop
response to different amplitude loadings at macroscale. The above-mentioned issues cause retardation effect
cannot be adequately quantified in two-scale model. So it is necessary to improve microscopic hysteresis loop
response to macroscale loadings so that the fatigue damage accumulation under variable amplitude or random
spectrum loading can be estimated reasonably.

In this paper, from the engineering point of view, the hysteresis loop curve accounting for nonlinear plastic
hardening for weak inclusion is independently designed to effectively estimate retarding effect. The Lemaitre’s
fatigue damage evolutionmodel ismodified by introducing a newexponent to take account ofmean stress effect.
Fatigue tests of Al-alloy under multi-level constant amplitude loading, especially for high-cycle fatigue, have
been performed to identify the model parameters. The new macro–micro-two-scale fatigue damage evolution
model in this study is coded as post-processor, and the effectiveness of which is verified through fatigue tests
under variable amplitude loading and random loading.

2 Elastoplastic stress–strain curve with hysteresis loop at microscale

In the two-scale model for high-cycle fatigue damage prediction, both to determine the stress–strain curve with
plastic hardening law for weak inclusion and to calculate the microscopic stress–strain field in a critical spot
of engineering structure are two imperative procedures. This section will be devoted to construct the whole
elastoplastic stress–strain curve for the improvement of microscopic hysteresis loop response to any variable
loading spectrum applied to an engineering component.

2.1 A brief overview of two-scale model solution procedure

The analytical solution to stress–strain of an infinitesimal inclusion built into infinite elastoplastic body dates
from middle of twentieth century. The macro–micro-bridging equations [18,23], which combine Eshelby-
Kroner’s localization law with elasto-plastic constitutive equations, can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

εμ = ε + β(εμp − εp)

σμ = Deεμe = σ − aDe (εμp − εp)

f μ = (σμ − Xμ)eq − σ
μ
y = 0

Xμ = Cμ
y εμp

σ
μ
y = σ

μ
y0 + Rμ = σ

μ
y0 + Hμε

μp
eq

(1)
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Fig. 1 Flowchart of solution procedure

where a and β are given by the Eshelby’s closed solution of a spherical inclusion:

a = 1 − β

1 + ν
, β = 2 (4 − 5ν)

15 (1 − ν)
(2)

where ν is Poisson’s ratio.
In Eq. (1), the superscript μ means microscale; σμ, εμe and εμp are the unknown stresses, elastic and

plastic strains of the inclusion; f μ is the yield function; Xμ is the kinematic hardening back stress; Rμ is the
incremental size of the yield surface because of isotropic hardening;Cμ

y and Hμ are the plastic tangent moduli
of kinematic and isotropic hardening quantities, respectively;De is the elasticmoduluswhich is always identical
for the two scales; σ, ε and εp indicate the known uniform stresses, total and plastic strains at macroscale,
respectively.

The stresses and strains at the critical spot of a structure can be calculated by conventional finite element
analysis. The variable peak-valley values in a loading sequence are original inputs for the post-processing
calculation of microscopic stresses and strains. Due to nonlinear plasticity at microscale, an implicit incre-
ment integration process must be implemented, which includes the two major iterative procedures of elastic
prediction and plastic correction. The algorithmic flowchart of integration solution is illustrated in Fig. 1.

2.2 Stress–strain constitutive curve at microscale

As mentioned above, the plastic stress–strain curve at microscale in currently published works was assumed
to be the same as that at macroscale. The yield stress of the microscopic inclusion is taken as macroscopic
engineering fatigue strength σ−1. The macroscopic engineering fatigue strength is a conditioned value and
varies as the function of stress ratio. Thus, the microscopic elastoplastic curve is not unique. Meanwhile, the
same plastic stress–strain curve for two scale will lead to an unreasonable microscopic stress–strain response to
macroscopically variable amplitude loadings. TakeAl 2024-T3 as example, fatigue strength σ−1 is approximate
90 MPa at 107 cycles, which is taken as the yield stress of microscopic inclusion according to traditional
methods. When the macroscopic loading is an asymmetric constant-amplitude load sequence with R = 0.06
and Smax = 200MPa, the microscale hysteresis loops are calculated and illustrated in Fig. 2. It can be seen
that the subsequent microscale hysteresis loops disappear after the first cyclic loading. It means theoretically
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Fig. 2 Microscopic stress–strain hysteresis curves under macroscopically asymmetric elastic loadings

that no fatigue damage at microscale will occur after the first cycle, which is not consistent with fact. It is
because the microscopic yield stress and plastic hardening parameters are not reasonable.

In fact, it is rational to assume stress–strain curve for two scale to be different in view of specifically
microscopic plastic physics and for the purpose to use two-scale model for fatigue damage prediction. To avoid
microscale analysis, themechanical properties of microscale weak inclusion should be designed independently
in accordance with possible requirement to macro–micro-two-scale model. It means that the microscopic
kinematic and isotropic hardening properties different from macroscopic ones need to be built for taking
account of the influence of higher loads on subsequent lower ones.

For most metallic materials in engineering, the uniaxial plastic stress–strain curve can be expressed as an
exponential function [24],

σμ = σ
μ
0 + Qμ∞(1 − e−bεμ

p ) (3)

where σ
μ
0 is initial yield stress, Qμ∞ is plastic hardening increment from initial yield to failure stress, b is model

coefficient and ε
μ
p is equivalent plastic strain.

Most metallic materials in engineering show both kinematic and isotropic hardening behaviors after initial
yield. For the simplicity to determine the relationship between kinematic and isotropic hardening laws at
microscale, a proportional hardening model [25] is chosen in this paper. The isotropic hardening term can be
taken as

Rμ = MQμ∞(1 − e−bεμ
p ) (4)

and then kinematic hardening term is written as

Xμ = (1 − M)Qμ∞(1 − e−bεμ
p ) (5)

The key point to use the proportional hardening model for microscale is to define properly the yield stress σ
μ
0 ,

the constants Qμ∞ and b as well as the proportional parameter M .

2.3 Parameters selection for macro–micro-two-scale model

To attain more accurate prediction of high-cycle fatigue damage accumulation in a variable amplitude loading
sequencewith two-scalemodel, twobasic principles canbe established to avoid the foregoingdeficiencies. First,
from more conservative point of view, any stress lower than the engineering fatigue strength under different
stress ratios can be chosen as yield stress at microscale so that microscopic stresses can easily go beyond its
yielding point under small stress amplitude loading. Second, a stabilized hysteresis loop at microscale should
be obtained under different stress ratio cyclic loading with relative small stress amplitudes at macroscale.

Based on the above principles, plastic parameters at microscale should be set to ensure there are stabilized
plastic hysteresis loops under variable amplitude loading. Therefore, the quantity Qμ∞ inEq. (3) can be relatively
moderate; the exponent factor b should be chosen reasonably to speed up the stabilization of hysteresis loop;
and the proportional parameter M in Eq. (4) cannot be greater than 0.5 to keep hysteresis loop response at
microscale as soon as possible. Thus, plastic parameters at microscale for Al 2024-T3 are set as follows. The
initial yield stress σ

μ
y0 is set to 20 MPa, Qμ∞ to 70 MPa, b to 200 MPa and M to 0.45. Using the designed
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Fig. 3 Comparisons of hysteresis loops under different stress ratio loading

Fig. 4 Microscopic elastoplastic hysteresis loops under variable amplitude loading

Fig. 5 Microscopic elastoplastic hysteresis loops under random loading

parameters, the following numerical examples are completed under different stress ratio cyclic loading with
same maximum stress, 200MPa within the macroscopic elasticity. The resulting hysteresis loops at microscale
are illustrated in Fig. 3. It can be seen that stabilized hysteresis loop still can be reached even when R = 0.3.

To show the variation of microscopic hysteresis loops influenced due to higher load, a variable amplitude
cyclic loading example under macroscale elastic condition is illustrated in Fig. 4. The stress amplitude of first
cyclic loading is 360 MPa, the subsequent stress amplitudes are 200 MPa, and all the stress ratio R = −1.
The resulting microscopic plastic strain range of subsequent stabilized hysteresis loop is 0.559% in this case
as illustrated in Fig. 4. Compared with the first case of constant amplitude loadings in the left side of Fig. 3,
the corresponding plastic strain range is 0.617%, which just reveals that less fatigue damage is accumulated
after higher load. Another example under random loadings is shown in Fig. 5.

3 Fatigue damage model and the parameters identification

Once the stress–strain field at microscale is obtained as shown in section 2, the fatigue damage evolution
under elastic variable amplitude loading can be quantified in a more accurate way. In terms of two-scale
fatigue damage predictive model, the fatigue damage can be evaluated by the sizes of microscopic hysteresis
loops, which is similar to macroscopic low-cycle fatigue prediction. So the fatigue damage evolution model
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at microscale and its parameters should be identified firstly. Moreover, the mean stress effect also needs to be
taken into account for a variable amplitude or random spectrum loading.

3.1 Fatigue damage evolution model

A better fatigue damage evolution equation formicroscale has been proposed through long-term researchworks
by Lemaitre et al. [18]. Lemaitre introduced the crack closure parameter h in the fatigue damage evolution
model to obtain the influence of the mean stress. However, in the case of tension–tension loading, the model
cannot account for influence of mean stress.

Thus, the present study proposes modified version of Lemaitre’s model, which can obtain influence of
mean stress even in case of tension–tension variable amplitude loadings. The model is written as

Ḋ =
(
Yμ

S

)s (
ṗμ

)q

∫

t
Ḋdt = Dc (6)

where Ḋ is fatigue damage evolution rate; ṗμ is equivalent plastic strain rate at microscale; Dc is the threshold
value of fatigue failure at microscale; the quantity Yμ originally denotes the strain energy density release rate
when microscopic fatigue damage occurs progressively and can be derived for multiaxial stress state from
unloading modulus variation,

Yμ = σ
μ2
eq

2E (1 − D)2
Rμ

v , Rμ
v =

[
2

3
(1 + ν) + 3(1 − 2ν)

(
σ

μ
m

σ
μ
eq

)2
]

(7)

where σ
μ
eq is von Mises equivalent stress, σμ

m is spherical stress, E is Young’s modulus, ν is Poisson’s ratio,
and Rμ

v is triaxiality function, which is used to account for the influence of hydrostatic stress or triaxiality
ratio.

In Eq. (6), a controversial issue is how to understand and use the quantity Yμ clearly at microscale. Because
the unloading modulus is not sensitive to fatigue damage before the damage goes up to macroscale threshold.
In this case, we would rather understand Yμ as elastic potential energy stored in the metallic microstructure in
every complete hysteresis loop frommicro-physical perspective. In order to match the released elastic potential
energy when fatigue damage occurs at microscale, the parameter S in Eq. (6) is used to scale down the nominal
quantity Yμ and another exponent term s is used for its nonlinear effect on fatigue damage.

For a variable amplitude or random loading spectrum, another important contributor to fatigue damage
arises from variable mean stress, which is referred as fatigue creep or ratcheting effect. A new exponent term
q is introduced into Eq. (6) to accommodate the nonlinear effect of the equivalent plastic strain rate ṗμ on
fatigue damage, which is written as a function of stress amplitude,

q = B lg Sa + A (8)

where Sa is stress amplitude under R = −1. It is transformed from arbitrary loading with different mean stress
and stress amplitude according to Goodman constant life diagram [26], which is written as Eq. (3). So q is not
only a function of stress amplitude, it also takes account of mean stress effect.

Sa = Sa0 · σ0

σ0 +
(
1+R
1−R − 1+R0

1−R0

)
Sa0

(9)

where σ is ultimate strength, Sa and R are the stress amplitude and stress ratio of practical loading.
For high-cycle fatigue, the damage model at microscale to calculate the accumulated damage in half a

cycle is written in detail as,

dD

dNhal f
=

⎧
⎪⎪⎨

⎪⎪⎩

(
Rμ

v σ
μ
eq,max

2

2ES(1−D)2

)s

(pμ)q , ε
μ
min ≥ 0

0.2 ×
(

Rμ
v σ

μ
eq,max

2

2ES(1−D)2

)s

(pμ)q , ε
μ
min < 0 and ε

μ
max > 0

(10)
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Fig. 6 Fatigue life prediction procedure of two-scale model

The crack closure effect is taken into account by introducing a coefficient for compression which is always 0.2
for metal. The superscript μ means the quantities at microscale. ε

μ
min and ε

μ
max are minimum and maximum

of maximum principal strain, respectively, which are used to determine whether stress state is tension or
compression.

Once parameters S, s and q are achieved. Macroscopic stress and strain fields at critical spot of component
under loading sequence are calculated by FEM analysis. Microscopic stress and strain fields can be solved by
Fig. 1. Fatigue life can be calculated by substituting S, s and q into the microscopic damage evolution model.
Fatigue life prediction procedure is illustrated in Fig. 6.

3.2 Identification of model parameters

S, s and q in Eq. (6) should be identified in advance.When stress level and the other parameters are determined,
fatigue life can be seen as a function of S, s and q , which is written as

N = f (S, s, q) (11)

In general, model parameters can be identified through an inverse approach. In the least squares sense,
an objective function representing difference between experimental and predicted lives has been built and
minimized using SQP algorithm [27]. The optimization procedure is written as,

F (S, s, q) = min

a∑

k=1

[

( fk (S,s,q)−N f k)
2
]

a∑

k=1
N2

f k

s.t.
0 ≤ s ≤ 5
0 ≤ S ≤ 5
0 ≤ q ≤ 5

(12)

where a is number of fatigue test data, N f k is fatigue test lives under different stress levels. It should be noticed
that the inverse identification is robust since the determined damage parameters are insensitive to the initial
values. Indeed, using two different initial values, the algorithm converges to identical identified results which
are the global minimum values.

Fatigue test of aluminum alloy 2024-T3 coupons has been performed under 6 different constant amplitude
stress levels and stress ratio R = −1. Test machine is Instron 8802. Test is conducted according to ASTM
E466-15, i.e., standard practice for conducting force controlled constant amplitude axial fatigue tests ofmetallic
materials. The configuration of tested specimen is illustrated in Fig. 7. All dimensions are in millimeters (mm).
Controlled parameter is force. Loading frequency is 10 Hz. Stress amplitude range should be less than yield
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Fig. 7 Configuration of tested coupons

Fig. 8 Specimens for fatigue test

Table 1 Fatigue test results under constant amplitude loading

Stress amplitude/MPa Test life Mean value

360 5503, 7355, 7983, 6016 6714
315 14,542, 19,515, 12,181, 17,905, 14,202 15,669
270 36,770, 39,729, 32,528, 53,710, 26,296 37,807
225 1,03,802, 1,59,956, 1,49,417, 1,13,396, 1,88,604 1,43,035
200 7,75,796, 4,21,346, 1,90,824, 2,53,911, 3,89,915 4,06,358
180 2,004,958, 7,24,338, 9,05,673, 3,512,550 1,786,880

Table 2 Fitted results of S, s and q

Stress amplitude/MPa 360 315 270 225 200 180

S 3.6782 3.6714 3.6750 3.6679 3.6755 3.6916
s 1.5638 1.5708 1.5748 1.5678 1.5754 1.5810
q 0.7066 0.8391 0.9499 1.1607 1.3002 1.5132

stress. End of fatigue test criterion is complete separation. Some specimen samples are shown in Fig. 8. Test
results are listed in Table 1.

Eventually, the fitting S, s and q under 6 stress levels are obtained and listed in Table 2. It can be seen that
S and s almost keep unchanged under 6 stress levels. So S and s can be regarded as material constant. The
mean value of S and s under 6 stress levels is 3.6766 and 1.5723, respectively. Meanwhile, q changes with
stress amplitude. Fitted results of Eq. (2) are listed in Table 3, where R is linear correlation coefficient.

Table 3 Fitted results of coefficient B and A

B A R

−2.5621 7.2250 −0.9890
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Fig. 9 Finite element model of specimen

4 Verification of the proposed model and discussions

The macro–micro-two-scale model along with fatigue damage evolution model is coded as a post-processor to
calculate accumulated damage in every cycle.When accumulated damage D reaches threshold Dc, the number
of cycles is fatigue life. The implementation of proposed model can be divided into two stages. First, obtain
peak-valley value of macroscopic stresses and strains at critical spot for every cycle through finite element
analysis. Especially for high cycle, if the loading is proportional, only one elastic FE computation under
reference loading is needed. Then peak-valley value of stresses and strains for every cycle can be computed
directly through the proportion to reference loading. Second, the obtained quantities in first stage are the input
of post-processor. Then the fatigue life can be estimated.

4.1 Verification under constant amplitude loading

The finite element model of specimen is established in ABAQUS as Fig. 9. The element type is C3D8R, which
is three-dimensional, 8-node linear brick, reduced integration and hourglass control element.

Under the 6 stress levels, the fatigue life is predicted by proposed model. The comparisons between
predicted fatigue lives and test lives are listed in Table 4.

It can be seen that the maximum error is 14.85%, which is acceptable in engineering. However, results are
obtained only under stress ratio R = −1. Tests under different stress ratio are needed to validate applicability
of the macro–micro-two-scale fatigue damage model.

Tests under two stress levels when stress ratio R = 0.06 were performed. Results are listed in Table 5.
Similarly, comparisons between predicted fatigue life and test life under R = 0.06 are listed in Table 6. It

should be noted that stress amplitude Sa under R = 0.06 should be converted through Eq. (3).
It can be concluded that the maximum error under R = 0.06 is −19.02%. The macro–micro-two-scale

damage model can predict fatigue life properly under constant amplitude loading under different stress ratio.

Table 4 Comparisons between predicted lives and test lives under constant amplitude loading

Stress amplitude/MPa 360 315 270 225 200 180

Test mean life 6714 15,669 37,807 1,43,035 4,06,358 1,786,880
Predicted life 6022 14,758 42,740 1,49,578 4,66,720 1,594,000
Error −10.31% −5.81% 13.05% 4.57% 14.85% −10.79%

Table 5 Fatigue test results under R = 0.06

Stress amplitude/MPa Test life Mean value

200 19,333, 36,277, 29,700 28437
180 69,652, 94,344, 62,589 75528

Table 6 Comparisons between predicted life and test life under R = 0.06

Stress amplitude/MPa Test mean life Predicted life Error

200 28,437 23,029 −19.02%
180 75,528 62,381 −17.41%
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Fig. 10 Configuration of tested specimen

Fig. 11 The fractured specimens

Table 7 Stress and number of cycles for each level in group B1

Level Smax(MPa) R Number of cycles f (Hz)

1 71.0 0.06 600 10
2 53.4 0.06 To failure 18

Table 8 Stress and number of cycles for each level in group B2

Level Smax(MPa) R Number of cycles f (Hz)

1 53.4 0.06 3500 20
2 130.0 0.06 100 5
3 53.4 0.06 3500 20

4.2 Verification under blocked and random spectrum loading

Most complex components are subjected to blocked or random spectrum loading in engineering. To validate
the more general applicability of the two-scale damage model, fatigue tests of aluminum alloy 2024-T3 plate
with hole under 7 groups of blocked spectrum loading and 1 group of random spectrum loading have been
performed. The configuration of tested specimen is illustrated in Fig. 10. All dimensions are in millimeters
(mm). Some fractured specimen samples are illustrated in Fig. 11.

The maximum stress, minimum stress and number of loading cycles for each level in 7 groups of blocked
spectrum loading are listed in Tables 7, 8, 9, 10, 11, 12 and 13. The test results of blocked spectrum loading
are listed in Table 14.

Table 9 Stress and number of cycles for each level in group B3

Level Smax(MPa) R Number of cycles f (Hz)

1 53.4 0.06 500 20
2 130.0 0.06 10 5
3 53.4 0.06 500 20
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Table 10 Stress and number of cycles for each level in group B4

Level Smax(MPa) R Number of cycles f (Hz)

1 40.0 0.06 10,000 20
2 53.4 0.06 1600 18
3 130.0 0.06 100 5
4 53.4 0.06 1600 18
5 40.0 0.06 10,000 20

Table 11 Stress and number of cycles for each level in group B5

Level Smax(MPa) R Number of cycles f (Hz)

1 40.0 0.06 10,000 20
2 53.4 0.06 1600 18
3 130.0 0.06 27 5
4 53.4 0.06 1600 18
5 40.0 0.06 10,000 20

Table 12 Stress and number of cycles for each level in group B6

Level Smax(MPa) R Number of cycles f (Hz)

1 40.0 0.06 10,000 20
2 53.4 0.06 1600 18
3 90.7 0.06 115 5
4 53.4 0.06 1600 18
5 40.0 0.06 10,000 20

Table 13 Stress and number of cycles for each level in group B7

Level Smax(MPa) R Number of cycles f (Hz)

1 40.0 0.06 10,000 20
2 53.4 0.06 1600 18
3 71.0 0.06 304 5
4 53.4 0.06 1600 18
5 40.0 0.06 10,000 20

Similarly, stress and strain fields of critical spot near the hole for every cycle in 7 groups of blocked
spectrum loading are obtained. The estimated results of fatigue life with post-processor program are listed in
Table 15. In addition, S-N curve can be obtained by fitting test results under constant amplitude loading. Then
fatigue life predicted by Miner rule [28] are also calculated and listed as comparisons with results obtained
by proposed model. It can be seen that maximum error of fatigue life predicted by the proposed model is
−21.88%, which is acceptable in engineering. The error of predicted life byMiner rule is larger. This suggests
that macro–micro-two-scale damagemodel takes loading sequential effect into account and the fatigue damage
accumulation is nonlinear while Miner rule is only linear accumulation. Besides, all the predicted lives by

Table 14 Test results of 7 groups

Group Test life Mean value of life

B1 1,63,432, 2,11,870, 1,78,504, 2,66,364, 1,89,127, 3,56,668, 3,31,557, 2,33,564, 3,25,297 2,50,709
B2 3,79,884, 3,19,442, 3,62,052 3,53,793
B3 4,60,559, 4,48,434, 2,41,388, 3,34,302 3,71,170
B4 5,32,729, 6,14,684, 5,67,869, 5,91,359, 5,91,354 5,79,599
B5 1,716,198, 2,017,294, 2,110,305, 1,911,960, 2,214,947 1,994,140
B6 1,716,276, 2,091,168, 2,243,471 2,016,972
B7 2,755,039, 2,255,047, 1,860,186, 1,993,181 2,215,863
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Table 15 Comparisons between test life and predicted life of 7 groups

Group Test mean life Predicted life Error (%) Miner predicted life Miner error (%)

B1 2,50,709 2,09,435 −16.46 1,72,190 −31.32
B2 3,53,793 2,78,450 −21.3 1,17,539 −66.78
B3 3,71,170 3,70,250 −0.24 1,30,007 −64.97
B4 5,79,599 4,76,011 −17.87 2,46,532 −57.47
B5 1,994,140 1,557,684 −21.88 3,60,343 −81.93
B6 2,016,977 1,743,970 −16.78 3,55,853 −82.36
B7 2,215,863 1,744,226 −21.28 3,62,483 −83.64

Fig. 12 Part of random loading sequence

Table 16 Statistical result of random spectrum loading

Number Normalized peak-valley value Number of peak-valley value Smax(MPa)

1 1 119 195.60
2 0.88235 360 172.58
3 0.765 870 149.63
4 0.647 1995 126.55
5 0.529 3874 103.47
6 0.411 7036 80.39
7 0.294 12,540 57.50
8 0.088 24,494 17.21
9 −0.029 2180 −5.67
10 −0.147 116 −28.76
11 −0.264 4 −51.64

Table 17 Test and predicted results under random spectrum loading

Test life Mean life Predicted life Error (%) Miner life Miner error (%)

4,63,603, 4,57,200, 5,04,980, 5,17,070, 3,48,022, 3,65,568 4,42,740 3,95,692 −10.63 171,646 −61.23

macro–micro-two-scale damage model are shorter than tested mean lives which means the predicted results
are conservative.

The random spectrum is a practical loading sequence obtained from a critical component in certain airplane.
Part of random loading sequence is illustrated in Fig. 12, and the statistical result of peak-valley stress is listed
in Table 16. The test and predicted results are listed in Table 17. It can be seen that the conclusion is consistent
with that under blocked spectrum loading.

4.3 Discussions

Although the predicted fatigue life under different loading cases are consonant with test results, it is necessary
to note some aspects from the engineering application point of view.
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First, the key issue is to identify parameters, such as S, s and q , in macro–micro-two-scale damage model,
which requires some basic fatigue test data. So some groups of fatigue test under constant amplitude loading
should be performed in advance to identify model parameters for different metal. Second, the proposed model
is only used in situation that macroscopic stress is in elastic. Besides, to consider retardation effect properly in
random loading sequence, the post-processor calculates microscopic stresses, strains and accumulated damage
cycle by cycle, which will increase computational cost.

5 Conclusions

An improved macro–micro-two-scale damage model for metallic material is proposed in the paper. The algo-
rithm framework to compute microscopic elasto-plastic stress–strain along with proposed model is established
and coded as post-processor.

Fatigue damage evolution equation at microscale is modified based on Lemaitre damage equation, which
accounts for nonlinear plastic hardening, crack closure and mean stress effect. Parameters S, s and q in the
equation are fitted using an optimization procedure through 6 groups of constant amplitude fatigue tests under
R = −1.

To test the validity of the proposed model, 8 groups of constant amplitude tests under different stress
ratio have been performed. The maximum error of predicted mean life is −19.02%, which is acceptable in
engineering. Besides, tests under 7 groups of blocked spectrum and 1 group of random spectrum loading are
added to verify the general applicability of the model. The maximum error is −21.88%. Meanwhile, the error
of predicted life byMiner rule is about 3–4 times larger than that by proposedmodel, which shows the proposed
model can quantify loading sequence and mean stress effect under variable amplitude loading.
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