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Abstract The purpose of the paper is to establish vector-valued rate-type models for the hysteretic properties
in deformable ferroelectrics within the framework of continuum thermodynamics. Unlike electroelasticity and
piezoelectricity, in ferroelectricity both the polarization and the electric field are simultaneously independent
variables so that the constitutive functions depend on both. This viewpoint is naturally related to the fact that
an hysteresis loop is a closed curve in the polarization–electric field plane. For the sake of generality, the
deformation of the material and the dependence on the temperature are allowed to occur. The constitutive
functions are required to be consistent with the principle of objectivity and the second law of thermodynamics.
Objectivity implies that the constitutive equations are form invariant within the set of Euclidean frames. Among
other results, the second law requires a general property on the relation between the polarization and the electric
field via a differential equation. This equation shows a dependence fully characterized by two quantities: the
free energy and a function which is related to the dissipative character of the hysteresis. As a consequence,
different hysteresis models may have the same free energy. Models compatible with thermodynamics are then
determined by appropriate selections of the free energy and of the dissipative part. Correspondingly, major
and minor hysteretic loops are plotted.

Keywords Deformable ferroelectrics · Rate-type models · Thermodynamics · Gibbs free energy · Hysteretic
function · Major and minor hysteretic loops

1 Introduction

Ferroelectrics belong to a large class of materials that exhibit a spontaneous alignment of dipoles which is
ascribed to their mutual interaction. All polar crystal classes show a spontaneous polarization without applying
a mechanical load and in the absence of an external electric field. Such a behaviour is due to a non-vanishing
electric dipole moment associated with their unit cell and depends on temperature. Polar crystals such as poled
piezoelectric ceramics exhibit both piezoelectricity and pyroelectricity. The direct piezoelectric effect is the
change of polarization when applying a mechanical stress, whereas in the converse piezoelectric effect the
application of an electrical field creates mechanical deformation in the crystal. Pyroelectricity can be described
as the ability to generate a temporary electric potential in response to a temperature change. A recent review
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of mathematical theories appropriate for the description of the nonlinear coupling of electrical forces and
mechanical deformation is presented in [1].

Ferroelectric materials may be strongly polarized even in the absence of any applied electric field provided
the temperature lies below a characteristic temperature θC , called the Curie temperature. Such materials are
required by symmetry considerations to be also piezoelectric and pyroelectric at temperatures higher than θC .
They are thus a challenging subject for mathematical modelling in that they exhibit nonlinear behaviour and
hysteresis [2,3]. Moreover, the combined properties of memory, piezoelectricity, and pyroelectricity make
ferroelectrics very useful, e.g. for sensor applications [4].

However, unlike piezoelectricity and pyroelectricity, in ferroelectricity both the polarization and the electric
field are simultaneously independent variables so that the constitutive functions, including free energy, depend
on both.

On the basis of these ideas, the physical literature developed constitutive properties of deformable ferro-
electrics by requiring that the equilibrium configuration is determined by finding theminimum free energywith
respect to polarization. In turn, according to the Ginzburg–Landau–Devonshire model [5,6], the free energy is
evaluated as the sum of the Landau potential, the exchange energy due to gradient terms, the dipolar term, and
the electrostatic term. The Landau–Devonshire potential is a polynomial of even-order powers of the polariza-
tion P , usually limited to the sixth order. To account for the transition, the lowest order term is parameterized
by the Curie temperature θC so that the material shows hysteretic properties when the temperature is below θC
(see [7, §69]). Many phase-field models for piezo-ferroelectric materials are based on this approach (see, for
instance, [8,9] and reference therein).

Thoughmainly in connectionwith ferromagnetism and plasticity, an alternative dissipation-based approach
was considered on the basis of an evolution function that should generate the hysteretic curve of the material.
Borrowing from the ferromagnetic context, various one-dimensional models are investigated [10–13] where
the time derivative Ṗ of P is given by

Ṗ = P̂(P, E, Ė),

E being the electric field. A special subclass is represented by the unidimensional Duhem model

Ṗ = g1(P, E)Ė + g2(P, E)|Ė |.
Many models of this kind have been proposed within the ferromagnetic context depending on the choice of the
characteristic functions g1 and g2 (see, for instance, [11, pp.130–150]). In some special cases, the corresponding
free energies (or storage functions) have been determined [14,15]. As pointed out in [14], however, for a fixed
Duhem model a large class (really, a convex set) of free energy potentials is allowed. On the other hand, as
we prove in this paper, for a fixed free energy potential many different Duhem models are thermodynamically
compatible.

In this paper, we follow a dissipation-based approach. To our mind, the present modelling of hysteresis
deserves significant improvements and the continuum thermodynamics is likely to be the natural framework
wheremodels can be established. For the sake of generality, the deformation of thematerial and the dependence
on the temperature are allowed to occur.

1.1 Plan of the paper

The paper develops two main topics. First we set up a joint model of electroelasticity and piezoelectricity,
in deformable media, by a systematic application of the second law instead of minimum properties. In this
regard, we select the pertinent variables of electromagnetism in matter such as the electric field E and the
electric polarization Π in the reference configuration, the electric polarization being given by a constitutive
equation that involves, besides deformation and electric field, also spontaneous polarization P as a function
of temperature only. Next hysteresis modelling is developed for deformable ferroelectrics, where both E and
P are taken as independent variables.

In a one-dimensional setting, where the deformation and the temperature are viewed as parameters, the
contemporary dependence on both E and P is related to the fact that an hysteresis loop is a closed curve
surrounding a region in the (E, Π)-plane or that Π(E) would not be a single-valued function. Accordingly,
along any hysteretic curve, Ṗ and Ė are not independent of each other and a connection follows from the entropy
inequality. Remarkably, the corresponding relation between Ṗ and Ė consists of a twofold dependence: the
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former is fully characterized by the free energy and the latter is related to the dissipative character of the
hysteresis. One-dimensional models compatible with thermodynamics can then be determined by appropriate
selections of the free energy and of the dissipative part. For definiteness, four thermodynamically consistent
models are established and, correspondingly, hysteretic loops are plotted. Each model is characterized by an
anhysteretic function A (E), entering the free energy, and a hysteretic function ξ(E,P) closely related to the
form of the hysteresis loops.

2 Balance equations and second law inequality

We consider a body occupying the time dependent region Ω ⊂ E 3. The motion is described by means of
the function χ(X, t) providing the position vector x ∈ Ω in terms of the position vector X in a reference
configuration R, and the time t , so that Ω = χ(R, t) and u = x − X denotes the displacement vector. The
deformation is described by means of the deformation gradient F = ∂Xχ , or in suffix notation, FiK = ∂XK χi .
The symbol ∇ denotes the gradient in the current configuration Ω , whereas a superposed dot denotes time
differentiation, namely · = ∂t + (v · ∇).

L = ḞF−1. (1)

Throughout, E and H denote the effective electric and magnetic fields, whereas P is the polarization
vector, M is the magnetization, q and J are the free electric charge and current, respectively. Since all these
fields are dependent on the frame of reference, for definiteness we let E, H and J (as well as P and M) be
the fields in the moving body as measured by an observer following each material particle that is in the local
frame of reference at rest with the material; all points of the frame move with the velocity v of the body at the
point under consideration. Owing to the polar character of ferroelectrics, the stress T need not be symmetric.

We restrict our attention to non-conducting ferroelectrics. Inside the body, we assume the magnetization
and the electric current are zero, M = J = 0, whereas the magnetic induction B and the displacement vector
D are given by

D = ε0E + P, B = μ0H .

Their time evolution is ruled by Maxwell’s equations within matter.
We let ε be the internal energy density (per unit mass), T the Cauchy stress, b the mechanical body force

(per unit mass), q the heat flux vector, r the external heat supply (per unit mass), ρ the mass density, and q the
electric charge density. For later convenience, let π = P/ρ denote the polarization density per unit mass. The
balance equations of linear momentum, angular momentum, and energy can be written in the form1

ρv̇ = ∇ · T + ρb + qE + (P · ∇)E + �
P × B,

skwT = skw(P ⊗ E),

ρε̇ = ρπ̇ · E + T · L − ∇ · q + ρr,

(2)

where
�
P denotes the convective time derivative of P [16, eq.(3.6)],

�
P = ∂t P + ∇ × (P × v) + (∇ · P)v = Ṗ − LP + (∇ · v)P,

also referred to as Truesdell vector rate (see, for instance, [20]).
Consider the entropy inequality

ρη̇ + ∇ · (q/θ) − ρr/θ ≥ 0,

where θ indicates the absolute temperature, η denotes the entropy density (per unit mass) and q represents the
heat flux vector. Substitution of ∇ · q − ρr from the energy equation (2)3 gives

ρθη̇ − ρε̇ + ρπ̇ · E + T · L − 1

θ
q · ∇θ ≥ 0.

1 To obtain these equations, we follow the Pao and Hutter approach [16], but here μ0H is replaced by B since M = 0. In
addition, here E stands for Ee, the effective electric field [16, eqn (3.12)].
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Letting ψ = ε − θη (Helmholtz free energy), we may rewrite this inequality as follows

−ρ(ψ̇ + ηθ̇ − E · π̇) + T · L − 1

θ
q · ∇θ ≥ 0. (3)

Introducing the Gibbs free energy

φ = ψ − E · π = ε − θη − E · π ,

upon some rearrangements we can write (3) in the form

−ρ(φ̇ + ηθ̇ + π · Ė) + T · L − 1

θ
q · ∇θ ≥ 0. (4)

We state the second law of thermodynamics by saying that either inequality (3) or (4) has to hold for any
process consistent with the balance equations.

Since ferroelectrics exhibit an hysteretic behaviour at temperature below some critical value, we allow
constitutive equations to involve both the electric field E and the polarization density π as independent
variables. For generality, the temperature and the deformation are taken to affect the response of the material,
too. Accordingly, thermodynamic restrictions may be scrutinized in the Eulerian description, by assuming

(F, θ, ∇θ, E,π , Ė, π̇) (5)

as the set of independent variables (see, for instance, [17]). In this case, all thermodynamic potentials and
constitutive relations must fulfil some universal principles, such as the principle of objectivity and the second
law of thermodynamics.

2.1 Objective fields and rates

By the principle of objectivity (sometimes referred to as principle of material frame indifference [18,19]), the
material properties of a body should not depend on the observer, no matter how he moves. More precisely,
as the statement of the principle of objectivity, we assume that the constitutive equations are form invariant
within the set of Euclidean frames [20]. Accordingly, they have to be invariant under any change of frame with
rotation matrix Q,

x → x∗, x∗ = c(t) + Q(t)x, det Q = 1.

In particular, vectors E and π transform according to

E → QE, π → Qπ .

Since ∂x x∗ = Q, the deformation gradient F transforms as a vector, too,

F → QF.

It is easy to check that the Cauchy–Green tensor C = FT F is an invariant tensor, whereas FT E and FTπ
are invariant vectors. Other invariant vectors are F−1E and F−1π . In particular, we let

E = FT E, Π = F−1π = F−1P/ρ.

Remark 1 It is worth noting that E and Π are strictly related to the Lagrangian electric and polarization fields
in the reference configuration, ER and P R . Indeed, we have ER := FT E = E and P R := J F−1P = ρRΠ,
respectively [7]. That is why, E and Π are considered as electromagnetic fields, in matter, rather than E and
P .

Both fields E and Π are Lagrangian (or material) so that their time derivatives,

Ė(X, t) = ∂tE(X, t), Π̇(X, t) = ∂tΠ(X, t),

are invariant vectors. On the contrary, the standard time derivative of a vector field in the Eulerian (or spatial)
description is not objective, since the velocity field depends on the choice of the Euclidean frame.
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Remark 2 In order to establish a constitutive rate equation for the polarization, it is preferable to use Lagrangian
(or material) rather than Eulerian variables. Indeed, the former approach automatically satisfies the principle
of objectivity. However, the two points of view are somewhat related as it will be shown later when rate-type
constitutive equations are scrutinized. We briefly recall here some well-known objective time derivatives of
the vector field w(x, t) that will be useful in the following (see, for instance, [20]):

	
w = ẇ − Lw Oldroyd rate,


w = ẇ + LTw Cotter–Rivlin rate. (6)

Although different invariant formulations can be used to describe constitutive relations of ferroelectrics (see,
for instance, [21,22]), hereafter we choose

(C, θ, ∇Rθ,E, Π, Ė, Π̇)

as the set of independent field variables instead of (5). Henceforth, abusing the notation, θ indicates the absolute
temperature in the material description, θ(X, t).

In order to express inequalities (3) and (4) in terms of the invariant fields E and Π, we first compute their
time derivatives

Ė = FT (Ė + LT E), Π̇ = F−1(π̇ − Lπ),

so that it follows

ρE · π̇ = ρ(FT E) · Π̇ + ρ(E ⊗ Π) · Ḟ = ρ E · Π̇ + (E ⊗ P) · L,

ρπ · Ė = ρ(F−1π) · Ė + ρ(E ⊗ π) · L = ρ Π · Ė + (E ⊗ P) · L.
(7)

In addition, taking into account (6) we find

w · Π̇ = (F−Tw)· 	
π , w · Ė = (Fw)· 


E , (8)

for any vector field w. Letting for simplicity

T = T + E ⊗ P (9)

and using (7)1, the second law inequality (3) takes the form

−ρ
(
ψ̇ + ηθ̇ − E · Π̇

)
+ T · L − 1

θ
q · ∇θ ≥ 0.

After multiplying this inequality by J/θ , using (1), the Nanson’s formula and the identity ρR = Jρ, we obtain

−ρR

θ

(
ψ̇ + ηθ̇ − E · Π̇

)
+ J

θ
(T F−T ) · Ḟ − 1

θ2
q R · ∇Rθ ≥ 0, (10)

where

q R = J F−1q.

Since E · Π = E · π and then φ = ψ − E · Π, using (7)2 inequality (4) may be rewritten as

−ρR

θ

(
φ̇ + ηθ̇ + Π · Ė) + J

θ
(T F−T ) · Ḟ − 1

θ2
q R · ∇Rθ ≥ 0,

Thermodynamic restrictions follow from these inequalities, but strongly depend on the functional dependence
of the free energy. In the next sections, we will deal with two different scenarios: electroelastic and ferroelectric
deformable materials.



732 C. Giorgi, A. Morro

3 Electroelasticity and piezoelectricity

Restricting our attention to electroelastic materials, the free energy is assumed to be independent of Π, as well
as Ė and Π̇, namely

ψ = ψ(C,E, θ, ∇Rθ).

On the other hand, Π is determined through a constitutive function (see [7, §25])

Π = Π(C,E, θ).

Moreover, ψ and Π are required to be differentiable functions of their arguments. Accordingly,

ψ̇ = ∂Cψ · Ċ + ∂Eψ · Ė + ∂θψ θ̇ + ∂∇Rθψ · ∇R θ̇

E · Π̇ = (E∂CΠ) · Ċ + (E∂EΠ) · Ė + E · ∂θΠ θ̇

and substitution into the entropy inequality (10) results in

− ρR

θ
(∂θψ + η − E · ∂θΠ)θ̇ − ρR

θ
∂∇Rθψ · ∇R θ̇ − ρR

θ
(∂Cψ − E∂CΠ) · Ċ

+ 1

θ
(JT F−T ) · Ḟ − ρR

θ
(∂Eψ − E∂EΠ) · Ė − 1

θ2
q R · ∇Rθ ≥ 0.

The identity

(∂Cψ − E∂CΠ) · Ċ = 2F(∂Cψ − E∂CΠ) · Ḟ
allows us to write the entropy inequality in the form

−ρR
θ

(∂θψ + η − E · ∂θΠ)θ̇ − ρR
θ

∂∇Rθψ∇R θ̇

+ 1
θ
[JT F−T − 2ρRF(∂Cψ − E∂CΠ)] · Ḟ

−ρR
θ

(∂Eψ − E∂EΠ) · Ė − 1
θ2
q R · ∇Rθ ≥ 0.

The arbitrariness and linearity of θ̇ , ∇R θ̇ , Ḟ, and Ė implies the relations

η = −∂θψ + E · ∂θΠ, ∂∇Rθψ = 0,

E∂EΠ = ∂Eψ, T = 2ρF(∂Cψ − E∂CΠ)FT ,
(11)

and the remaining inequality reduces to

1

θ2
q R · ∇Rθ ≤ 0.

Using the Gibbs free energy φ = ψ − E · Π, relations (11) become2

η = −∂θφ, Π = −∂Eφ, ∂∇Rθφ = 0, T = 2 ρ F∂CφFT . (12)

Remark 3 From (12), we can say that η, Π, and T follow from the potential φ via the differentiation with
respect to θ , E , and C , respectively. Indeed, (12)4 proves that T is a symmetric tensor and (9) allows T to be
written as

T = 2 ρ F∂CφFT − E ⊗ P . (13)

As a consequence,

skw T = −skw(E ⊗ P) = skw(P ⊗ E)

as it must be in view of (2)2.

2 Here, abusing the notation, φ = φ(C, Π(C,E, θ), θ) = ψ(C,E, θ) − E · Π(C,E, θ).
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As a special case, let us consider the following constitutive relation for Π,

Π(C,E, θ) = B(C − 1) + Γ E + P(θ) (14)

where B, Γ are third-order and second-order constant tensors, respectively, whereas P is a temperature-
dependent vector. Since C = 1 in the reference configuration, we regard C − 1 as the convenient measure
of mechanical deformations. Hence, as E and C − 1 approach zero, the polarization vector Π reduces to P
(often called spontaneous polarization). Assuming that Γ is symmetric, from (12)2 we infer

φ(C,E, θ) = φ0(C, θ) − [
B(C − 1) + 1

2Γ E
] · E − P(θ) · E.

Moreover,

ψ(C,E, θ) = φ + E · Π = φ0(C, θ) + 1
2Γ E · E.

For simplicity, we choose φ0 in the form

φ0(C, θ) = g(θ) + 1
4A(C − 1) · (C − 1)

where A is a fourth-order positive-definite constant tensor. From (12) and (13), we have

T = ρ F[A(C − 1) − 2BTE]FT − E ⊗ P,

η = −g′(θ) + P ′(θ) · E. (15)

3.1 Piezoelectricity

To model piezoelectricity, we find it natural to refer to the reference configuration. First, observe that in the
linear approximation (small deformations)

F ≈ 1, ρ ≈ ρR, C − 1 ≈ 2S := ∇u + (∇u)T , E ≈ E, Π ≈ P/ρR,

Then, from (14) and (15) we have

P ≈ ρR[2BS + Γ E + P(θ)], T ≈ 2 ρR[AS − BT E] − E ⊗ P .

So, letting

Λ = 2 ρRB, C = 2 ρRA, σ = ρRΓ , P(θ) = ρRP(θ)

we finally obtain the small strain constitutive equations of piezoelectricity3

P = ΛS + σ E + P, T = CS − ΛT E − E ⊗ P, (16)

which describe the direct and converse piezoelectric effects, respectively. When the applied electric field
vanishes, E = 0, these relations reduce to

P = ΛS + P, T = CS,

thus showing that some polarization is produced by deformation in piezoelectric materials. On the other hand,
the application of an electric field produces some stress even if S = 0,

P = σ E + P, T = −ΛT E − E ⊗ (σ E + P).

Small strain constitutive equations for dielectrics are recovered from (16) provided that the piezoelectric tensor
Λ vanishes and the spontaneous polarizationP is neglected,

P = σ E, T = CS − E ⊗ σ E,

where the dyadic term is referred to as electrostrictive stress. When C and σ are positive definite, by reversing
these relations we obtain

E = σ−1P, S = KT + QP ⊗ P,

where K = C−1 and Q = C−1σ−1 (in suffix notation Qi jkl = C−1
i jkmσ−1

ml ) is called the electrostriction
coefficient.

3 After further linearization with respect to E, the dyadic term E ⊗ P in (16) is usually ignored.
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3.2 Pyroelectric effect

We observe that the vector P provides the polarization P when the applied electric field E and the stress T
are zero. If this is the case, the variation in P on heating is reversed on cooling and this is consistent with

Ṗ = P′(θ) θ̇ .

Since the fields P and P are collinear, this relation can be rewritten in scalar form Ṗ = P′(θ) θ̇ , where
P′ can be viewed as the pyroelectric factor, that gives the change of polarization per unit of variation in
temperature. Typically,Pmay be identified with the spontaneous polarization, and therefore, it turns out to be
a decreasing function of θ which vanishes above the Curie temperature [4]. A negative value of the slope P′
is also in agreement with the observation that an increase in temperature increases the disorder of the dipoles
and therefore tends to reduce the spontaneous polarization of the medium.

3.3 Electrocaloric effect

It is a phenomenon in which a material shows a reversible temperature change under an applied electric field.
It is often considered to be the physical inverse of the pyroelectric effect. During isentropic processes,

η̇ := ∂Cη · Ċ + ∂θη θ̇ + ∂Eη · Ė = 0

and from (12) it follows

− 1

2ρ
F−1∂θT F−T · Ċ + ∂θη θ̇ + ∂θΠ · Ė = 0.

Assuming (14) and (15), then

∂θT = 0, ∂θΠ = P ′ = 1

ρR

P′

and the isentropic condition takes the form

∂θη θ̇ = − 1

ρR

P′ · Ė.

Letting C := ρRθ∂θη > 0 denote the heat capacity, we finally obtain

θ̇ = − θ

C
P′(θ) · Ė.

In the special case of isotropicmaterials, the fieldsP andE are collinear, and then, this relation can be rewritten
in scalar form

θ̇ = − θ

C
P′ Ė . (17)

where P and E are the components of P and E in the common direction and P′ is the pyroelectric factor.
The conventional electrocaloric effect is related to a negative value of P′. Hence, a decrease (increase) in
the strength of an externally applied electric field yields a decrease (increase) in temperature. Nevertheless, a
positive slope P′ is also possible if P and E are antiparallel, a situation that would correspond to an inverse
electrocaloric effect [23].
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4 Deformable ferroelectric materials

Unlike electroelasticity and piezoelectricity, in ferroelectricity both the polarization and the electric field are
simultaneously independent variables so that the constitutive functions depend on both of them. Hence, in
order to formulate consistent models for deformable ferroelectric materials, it is necessary to assume that the
free energy has a more general functional dependence than in Sect. 3: in the temperature range θ ∈ (0, θC ]
(hereinafter referred to as ferroelectric regime) ψ is also required to depend on Π,

ψ = ψ(C, θ, ∇Rθ,E, Π),

and the same dependence also applies toφ. On the other hand, it is well known that all the ferroelectricmaterials
exhibit piezoelectric effect due to lack of symmetry [2].

With the aim of recovering the results of the previous section as a special case, we also suppose that in the
ferroelectric regime Π is partially determined through a constitutive function, namely

Π = Ξ(C,E, θ) + P, (18)

where P is an independent variable that takes into account the residual polarization density. The adjective
“residual” is justified by assuming thatΞ vanishes when C = 1 (no deformation) and E = 0. Under stationary
conditions, Π reduces to the so-called spontaneous polarization, and therefore, it is expected to disappear in
the paraelectric regime in which θ > θC .

Hereafter, abusing the notation, we write

ψ(C, θ, ∇Rθ,E,P) = ψ(C, θ, ∇Rθ,E,Ξ(C,E, θ) + P)

Since ψ and Ξ are required to be differentiable functions of all their arguments in the ferroelectric regime, it
follows

ψ̇ = ∂Cψ · Ċ + ∂θψ θ̇ + ∂∇Rθψ · ∇R θ̇ + ∂Eψ · Ė + ∂Pψ · Ṗ
E · Π̇ = (E∂CΞ) · Ċ + (E∂EΞ) · Ė + E · ∂θΞ θ̇ + E · Ṗ

Substitution into the entropy inequality (10) results in

− ρR

θ
(∂θψ + η − E · ∂θΞ)θ̇ − ρR

θ
∂∇Rθψ · ∇R θ̇

− ρR

θ
(∂Cψ − E∂CΞ) · Ċ + 1

θ
(JT F−T ) · Ḟ

− ρR

θ
(∂Eψ − E∂EΞ) · Ė − ρR

θ
(∂Pψ − E) · Ṗ − 1

θ2
q R · ∇Rθ ≥ 0.

Multiplying by θ/ρR > 0 and using the identity

(∂Cψ − E∂CΞ) · Ċ = 2F(∂Cψ − E∂CΞ) · Ḟ
we eventually can write the entropy inequality in the form

(∂θψ + η − E · ∂θΞ)θ̇ + ∂∇Rθψ∇R θ̇ −
[

1
ρR

JT F−T − 2F(∂Cψ − E∂CΞ)
]

· Ḟ
(∂Eψ − E∂EΞ) · Ė + (∂Pψ − E) · Ṗ + 1

θρR
q R · ∇Rθ ≤ 0.

As in Sect. 2, the arbitrariness and the linearity of θ̇ , ∇R θ̇ , and Ḟ imply the relations

η = −∂θψ + E · ∂θΞ , ∂∇Rθψ = 0, T = 2ρF(∂Cψ − E∂CΞ)FT . (19)

The remaining inequality reads

(∂Eψ − E∂EΞ) · Ė + (∂Pψ − E) · Ṗ + 1

θρR

q R · ∇Rθ ≤ 0.

By virtue of (19)2, two separate inequalities follow, the customary heat conduction inequality

q R · ∇Rθ = Jq · ∇θ ≤ 0
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and the reduced inequality involving Ė and Ṗ ,

(∂Eψ − E∂EΞ) · Ė + (∂Pψ − E) · Ṗ ≤ 0, (20)

which is proper to the ferroelectric regime. Using the Gibbs free energy φ = ψ − E · Π, relations (19) and
(20) become4

η = −∂θφ, ∂∇Rθφ = 0, T = 2 ρ F∂CφFT .

(∂Eφ + Π) · Ė + ∂Pφ · Ṗ ≤ 0, (21)

Following the same reasoning as in Remark 3, even in this case the Cauchy stress tensor can be represented
by means of the formula (13).

Remark 4 Although the values E and P are taken as independent variables within the ferroelectric regime,
the same need not be true for their objective rates, as a consequence of (21). Indeed, under the assumption that
Ė and Ṗ are independent of each other and may be arbitrarily chosen, (21) holds if and only if

∂Eφ = −Π = −Ξ − P, ∂Pφ = 0.

When φ is a C2 function, these equalities are contradictory in that we may infer

∂2E,Pφ = −1, ∂2P,Eφ = 0.

This suggests that Ė and Ṗ have to be linearly related to each other when the free energy φ depends on both
E and P .

Remark 5 Since π = FΠ, in the spatial description (18) must be replaced by

π = FΞ(FT F, FT E, θ) +PPP,

wherePPP = FP . Then, exploiting the identities (8), the reduced inequality (21) may be rewritten by involving
the Cotter–Rivlin rate of E and the Oldroyd rate ofPPP , namely

(
∂E φ̂ + π

)
· 

E + ∂PPP φ̂, ·

	
PPP ≤ 0, (22)

where φ̂(F, θ, E,PPP) = φ(FT F, θ, FT E, F−1PPP).

Remark 6 The occurrence of the objective derivatives
�
P in (2.2) and



E,

	
PPP in (22) is not a subjective choice.

Rather,
�
P follows from the balance equation (see [16]). Instead,



E and

	
PPP are a consequence of the selection

of the vectors E = FT E andΠ = F−1P/ρ as appropriate variables to describe the properties of the material.

4.1 Rate-type models

Many different vectorial schemes are compatible with inequality (21), most of which can be gathered in the
class of rate-type models. Indeed, such inequality may be satisfied assuming that the l.h.s. is balanced by a
nonnegative-valued dissipation function d , namely

(∂Eφ + Ξ + P) · Ė + ∂Pφ · Ṗ = − d.

The dissipation function d may depend not only on all the independent variables, but also on their time
derivatives. A similar equation can be obtained by involving the free energy ψ instead of φ,

(∂Eψ − E∂EΞ) · Ė + (∂Pψ − E) · Ṗ = − d.

4 Here, abusing the notation, φ = φ(C, θ,E,P) = ψ(C, θ,E,P) − E · [Ξ(C,E, θ) + P].
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A particular case follows by choosing d = ξ‖Ė‖n , where n ∈ N, ξ is a nonnegative-valued function
(independent of the rates) and ‖ · ‖ denotes the vector norm5. Accordingly,

∂Pφ · Ṗ + (∂Eφ + Ξ + P) · Ė + ξ‖Ė‖n = 0 (23)

may be regarded as a rate-type constitutive relation for the residual polarization of a ferroelectric material. If
n = 1, this differential equation is invariant under the time transformation

t → c t, c > 0,

and hence, any associated model is rate independent. Relation (23) becomes unidimensional in character when
P and E have the same common direction, and leads to the well-known class of Duhem models (see, for
instance, [11,17]) provided that n = 1 and ∂Pφ does not vanish.

Quite similar models follow by choosing a different dissipation function, for instance, by letting

∂Pφ · Ṗ + (∂Eφ + Ξ + P) · Ė + ν‖Ṗ‖n = 0,

where n ∈ N and ν is a nonnegative-valued function. At any time when Ṗ does not vanish, this equality may
be rewritten involving the free energy ψ as

(∂Eψ − E∂EΞ) · Ė + [
∂Pψ + ν‖Ṗ‖n−2 Ṗ − E

] · Ṗ = 0.

In particular, it may be simply satisfied by letting

∂Eψ = E∂EΞ , ν‖Ṗ‖n−2 Ṗ = E − ∂Pψ.

Remark 7 In the case n = 1, similar relationships (where H and M take the place of E and P) provide the
basis for a vectorial energy-based model successfully applied to the incremental formulation of ferromagnetic
hysteresis [24]. When n = 2, it reads

Ṗ = 1
ν
(E − ∂Pψ) := − 1

ν
∂Pφ,

looking like the kinetic equation of some phase-field theory [8,9,25,26]. Indeed, after properly choosing φ,
this simplified approach is close to the Ginzburg–Landau–Devonshire theory in the special case where the free
energy is independent of the gradient of polarization [5].

We finally stress that similar relations can be obtained in the spatial description starting from (22) rather
than (21).

4.2 A general scheme for the hysteretic behaviour

More complex Ṗ - Ė dependencies (even those involving memory) are compatible with inequality (21) (see,
for instance, [13]). Nevertheless, in order to obtain a simple scheme for an exhaustive description of hysteretic
processes in the ferroelectric regime, here we restrict attention to the evolution equation (23) with n = 1,
namely

∂Pφ · Ṗ + (∂Eφ + Ξ + P) · Ė = − ξ‖Ė‖. (24)

Since the hysteretic behaviour cannot take place when ξ = 0 and the dissipation function vanishes, ξ is referred
to as hysteretic function. Although the major hysteresis cycle can even be described by a phase-field approach
(see, for instance, [27,28]), the scheme devised here has the advantage of being able to model even minor
loops, as will be highlighted by means of examples.

Some assumptions are now made in order to ease the comparison with electrolasticity. First, we assume
the following splitting

Ξ(C, θ,E) = Ξ1(C, θ) + Ξ2(θ,E). (25)

As a consequence, we can write

φ(C, θ,E,P) = ψ(θ,E,P) − E · [Ξ1(θ,C) + Ξ2(θ,E) + P] (26)

5 For any vector u, ‖u‖ = √
u · u.
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and then

∂Eφ = ∂Eψ − Ξ1 − Ξ2 − P − E · ∂EΞ2, ∂Pφ = ∂Pψ − E.

so that (24) takes the form

(∂Pψ − E) · Ṗ + (∂Eψ − E · ∂EΞ2) · Ė = − ξ‖Ė‖.
As a special case, consider the linear constitutive relation for Π in the form

Ξ1(C, θ) = B[C − 1], Ξ2(θ,E) = Γ E.

As already mentioned with regard to (18), this ensures that Π reduces to P when C = 1 and E = 0. On the
other hand, the dependence of ψ and Π on P is lost in the paraelectric regime, when θ > θC . In that regime,
all results of Sect. 3 continue to hold true, while specifying that Ξ1, Ξ2 are not necessarily continuous across
θC .

Under the assumption of small deformations, a linearization procedure such as that performed in Sect. 3.1
provides the stress charge equations

P = ΛS + σ E + P, T = CS − ΛT E − E ⊗ P . (27)

where S := 1
2 (∇u+(∇u)T ). Unlike (16), however, hereP = ρRP is not a function of θ , but is an independent

variable whose evolution equation is obtained from (24) by taking its small strain approximation. This can be
achieved by multiplying it by ρR and then replacing E , P and Π with E,P and P/ρR , respectively, that is,

∂PΦ · Ṗ + (∂EΦ + P) · Ė = −ρR ξ‖Ė‖, (28)

whereΦ = ρRφ(θ, S, E,P). We report that constitutive assumptions (27) are similar to eqns. (13) and (25) in
[9] whereP is referred to as ferroelectric polarization vector, a vector-valued order parameter whose evolution
is ruled a priori by a Ginzburg–Landau equation.

Finally, a spontaneous deformation may be introduced as a function of P (see, for instance [9]), so that
the linearized strain tensor splits into the sum

S = Sel + St (P)

In this case, both polarization P and stress T depend on the elastic part Sel, only. Then, after replacing S with
S − St in (27), we obtain

P = ΛS + σ E + P − ΛSt (P), T = C[S − St (P)] − ΛT E − E ⊗ P .

A full analysis of this model is, however, beyond the scope of this article.

5 Unidimensional models of ferroelectric hysteresis

The fields E andP (as well asΠ) are assumed here to be collinear with a given fixed unitary vector a. Let E and
P be the components along the common direction. Hence φ turns out to be a function of E,P , parameterized
by θ and C , on which the dependence is understood and not written. From (26) and (25) it follows

φ(E,P) = ψ(E,P) − EΠ, Π = Ξ1 + Ξ2(E) + P, (29)

Ξ1 and Ξ2 being given constitutive functions with Ξ2(0) = 0. As a result, Eq. (24) becomes unidimensional
in character and reads

(Π + ∂Eφ)Ė + ∂Pφ Ṗ = −ξ |Ė | ≤ 0, (30)

where

∂Eφ = ∂Eψ − Π − E Ξ ′
2, ∂Pφ = ∂Pψ − E .

By integrating (30) along any closed curve in the (E, Π)-plane, we have

0 ≥
∮

[(Π + ∂Eφ)Ė + ∂PφṖ]dt =
∮

[Π Ė + φ̇] dt =
∮

Π Ė dt. (31)
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This inequality implies that the curve is run in the counterclockwise sense.
Looking at time intervals where Ė �= 0, upon division by Ė eq. (30) becomes

Ṗ
Ė = −Π + ∂Eφ

∂Pφ
− ξ

∂Pφ
sgn Ė .

Except at stationary points where Ė = 0, Ṗ/Ė equals the derivative of P with respect to E , dP/dE . Let

χ1 = −Π + ∂Eφ

∂Pφ
= −∂Eψ − E Ξ ′

2

∂Pψ − E , χ2 = − ξ

∂Pφ
= − ξ

∂Pψ − E . (32)

The residual polarization P is then given by the differential equation

dP
dE = χ1 + χ2 sgn Ė . (33)

We are now looking for explicit representations of χ1 and χ2 separately. While χ1 is fully determined by
the potential ψ(E,P), χ2 depends also on ξ , and hence, many different models can be constructed by using
the same energy potential. Although more complex dependencies of ξ are compatible with inequality (30), in
order to obtain a simple but fairly general description here we let ξ = ξ(E,P) ≥ 0.

In relation to the wide literature on ferroelectrics, we observe that (30) involves merely a potential function
φ and a hysteretic function ξ . Here we have no recourse to switching surfaces analogous to yield surfaces in
plasticity (see e.g. [8] and refs therein) or regions of reversible behaviour (see e.g. [3,29] and refs therein).

5.1 The anhysteretic curve

Before looking for the expressions of χ1 and χ2 and then determining the model of ferroelectric materials, we
start from assuming the existence of a characteristic non-decreasing odd function A such that

Π = A (E) ⇒ ξ = 0, (34)

the dependence on the parameter (temperature) θ being understood and not written. Taking into account that
the hysteretic function ξ describes the dissipative and hysteretic properties of the material, we refer to A as
anhysteretic function [17] and to the corresponding graph A in the (E, Π)-plane as anhysteretic curve.

Indeed, by (30) the thermodynamic condition corresponding to (34) is

(Π + ∂Eφ)Ė + ∂PφṖ = 0

Hence, on the anhysteretic curve A

dP
dE = −Π + ∂Eφ

∂Pφ
= χ1

is likely to represent the non-hysteretic behaviour, where χ1 can be viewed as the anhysteretic residual sus-
ceptibility. This in turn suggests that we let χ1 be a function of E only (possibly parameterized by C and θ ),
namely

χ1 = λ(E). (35)
Finally, the characteristic property (34) and the required counterclockwise property (31) of ferroelectric

cycles suggest that
χ2(E,P)[Π − A (E)] ≤ 0. (36)

Remark 8 By virtue of (29) and (33), it follows

dΠ

dE = Ξ ′
2(E) + dP

dE = χ + χ2 sgn Ė, χ(E) = λ(E) + Ξ ′
2(E). (37)

If ξ = 0, and hence χ2 ≡ 0, (37) simplifies and describes a family of models with paraelectric behaviour
where χ represents the anhysteretic differential susceptibility. Accordingly, we require that it must be positive
as well as the slope of each branch of the hysteresis curve generated by (37), namely

χ > 0, |χ2| ≤ χ. (38)

In particular, the former condition implies

λ(E) + Ξ ′
2(E) > 0.
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Unlike the counterclockwise property (36), inequalities (38) are not a consequence of the second law; they
are assumed as physically sound restrictions so that the polarization on each branch of the hysteresis curve be
a monotone function of the electric field, as observed.

5.2 The free energy potential

The expression of χ1 is given by (35), but at the same time it is related to ψ by (32)1. Therefore, it is first
necessary to establish the form of ψ compatible with these requirements. To this end, we now select

ψ(E,P) = L(P − G(E)) + F(E),

L, G, and F being differentiable functions to be determined. Upon substitution of ∂Pψ and ∂Eψ into (32), we
obtain

χ1 = L′(P − G(E))G′(E) − F ′(E) + E Ξ ′
2(E)

L′(P − G(E)) − E , χ2 = − ξ

L′(P − G(E)) − E .

From (35), it follows

L′(P − G(E))G′(E) − F ′(E) + E Ξ ′
2(E) = λ(E)[L′(P − G(E)) − E],

which implies

G′(E) = λ(E), F ′(E) = E [λ(E) + Ξ ′
2(E)] = E χ(E).

In order to determine L, we observe that condition (36) reads
ξ [Π − A (E)]

L′(P − G(E)) − E ≥ 0.

Since ξ ≥ 0, it follows

Π − A (E)

L′(P − G(E)) − E = P + Ξ1 + Ξ2(E) − A (E)

L′(P − G(E)) − E ≥ 0

which is easily satisfied for any β > 0 by letting

L′(P − G(E)) = β[P − G(E)], A (E) = G(E) + Ξ1 + Ξ2(E) + 1

β
E .

Summarizing all these results, we conclude that

1. the free energy ψ takes the form

ψ(P, E) = 1

2
β(P − G(E))2 + F(E),

where β is a positive constant possibly dependent on θ and

G(E) =
∫ E

0
λ(y)dy − Ξ1, F(E) =

∫ E

0
y χ(y)dy, χ(E) = λ(E) + Ξ ′

2(E).

2. the anhysteretic function depends on χ as follows

A (E) =
∫ E

0

[
χ(y) + 1

β

]
dy.

According to (29), we get

φ(E,P) = 1

2
β(P − G(E))2 + F(E) − E(Ξ1 + Ξ2(E) + P). (39)
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Remark 9 In order that all hysteresis loops shrink to the anhysteretic curve as θ approaches θC from below,
we require that 1/β vanishes as θ → θ−

C , for instance, by letting

β = α

h(θC − θ)
, α > 0,

where h is the positive part of 1 − θ/θC , namely

h(θC − θ) = max

{
0, 1 − θ

θC

}
. (40)

Taking advantage of this remark, from results (1) and (2) we obtain

χ(E) = A ′(E) − h(θC − θ)

α
, χ2 = ξ(E,P) h(θC − θ)

α[A (E) − Π ] , (41)

so that both implicitly depend on θ . For any E , χ(E) tends to A ′(E) as θ → θC . Moreover, the hysteretic
effects expressed by χ2 become smaller and smaller as θ approaches θC from below and completely vanish in
the paraelectric regime.

As a final comment, the anhysteretic function A , the positive parameter α, and the hysteretic function ξ
completely characterize the differential model (37) of the material.

Remark 10 Taking into account (38), A and ξ must verify the following monotonicity conditions

A ′(E) >
h

α
, ξ(E,P) ≤ α

h
χ(E)|A (E) − Π |. (42)

5.3 The hysteretic function ξ

To determine an explicit representation of χ2, we first observe that the only thermodynamic requirement on ξ
is the non-negative valuedness. In addition, we require that it fulfils monotonicity conditions (42). With this
in mind, we now examine the hysteretic properties associated with a given φ and four different functions ξ .

5.3.1 Model I

ξ(E,P) = ξ0 sgn
(
γ − |Π |)∣∣Π − A (E)

∣∣, where ξ0, γ > 0.
This model is rather rough but nevertheless describes both bilinear cycles and the saturation of Π . It is able
to reveal that a suitable choice of ξ can introduce a saturation threshold analogous to the yielding threshold in
plasticity. We confine our attention to the strip |Π | ≤ γ where ξ takes nonnegative values and satisfies (42)
provided that ξ0 ≤ χα/h. From (37) and (41), it follows that

dΠ

dE = A ′(E) − h(θC − θ)

α

(
1 + ξ0 sgn

[
(Π − A (E))(γ − |Π |) Ė

])
.

Hence, the hysteretic behaviour is modelled viaA and the positive parameters α, ξ0, γ . The saturation property
of the model can be characterized by the vanishing of χ − |χ2| (see also [14]), namely

A ′ = h

α
(1 + ξ0).

If this is the case, the anhysteretic curve A is given by all pairs (E,P) such that E ∈ R and

P =
{
A (E) if |A (E)| < γ,

±γ if A (E) = ±γ.

The saturation property is fulfilled for any value of θ in (0, θC) provided that ξ0 depends on E and h as follows

ξ0 = α

h
A ′(E) − 1 = α

h
χ(E).
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Fig. 1 Model I: The anhysteretic curve (dashed) and hysteresis loops (solid) with E = 1, 3 and initial data E0 = 0, Π0 =
−1, −0.4, 0.5

Starting from different initial states (E0, Π0) in the (E, Π)-plane, hysteresis cycles with amplitude E are
generated by the system

⎧⎨
⎩
Ė = ωE cosωt

Π̇ = [
A ′(E) − h

α

]Ė − h

α
ξ0 sgn

[(P − A (E)
)(

γ − |P|)]∣∣Ė∣∣,

where h ∈ (0, 1) depends on the fixed value of θ ∈ (0, θC). In Fig. 1, cyclic processes with large amplitudes
(major loops reaching saturation) and small amplitudes (minor loops) are depicted assuming A (E) = k E ,
k = γ = 3 , α = 5/12, h = 5/6, ξ0 = 1/2.

5.3.2 Model II

ξ(E,P) = ξ0
[
Π − A (E)

]2, where ξ0 > 0.
From (37) and (41), it follows that

dΠ

dE = A ′(E) − h(θC − θ)

α

(
1 + ξ0

[
Π − A (E)

]
sgn Ė)

. (43)

This is a very simple model: it is characterized by the positive parameters ξ0, α, and the anhysteretic function
A , only. Condition (42) is fulfilled within the region

|Π − A (E)| ≤ α

h ξ0
χ(E).

Assuming a fixed temperature θ < θC , it is of interest that (43) has some analogies with a differential
equation widely investigated in the literature for the model of hysteresis in ferromagnetic materials [30],

dΠ

dE = g(E) − τ
(
Π − f (E)

)
sgn Ė, τ > 0. (44)

The correspondence is made formal via the identifications

g = χ = A ′ − h

α
, f = A , τ = ξ0h

α
.

The advantage of the present scheme, however, is to give evidence to the compatibility of the differential
equation (44) with thermodynamics; the compatibility is guaranteed if the functions f and the anhysteretic
differential susceptibility g are subject to the relation

g = f ′ − h

α
, (45)
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Fig. 2 Model II. On the left: hysteresis loops (solid), anhysteretic curve A (short dashed) and graph of χ (dashed) with E =
1, 2. The initial states E0, Π0 have E0 = 0 and Π0 = −0.2, 0.2. On the right: an enlarged detail around the origin. The initial
polarization curve (solid) and the major loop (dashed)

where h/α is an arbitrary positive parameter that depends only on θ .
As a particular case, compatibility holds if g is piecewise constant and f is correspondingly piecewise

linear and increasing, as devised in [10,31]. Unfortunately, even if g → 0 as |E | → ∞, this relation prevents
the model to exhibit the saturation property unless τ → 0 as |E | → ∞. This remark suggests a generalization
of (44) by letting τ be replaced by τg itself (see Model IV).

Hysteresis cycles in the (E, Π)-plane are obtained by solving the system{
Ė = ωE cosωt
Π̇ = [

A ′(E) − h
α

]Ė − ξ0h
α

[
Π − A (E)

]∣∣Ė∣∣.
In Fig. 2, cyclic processes with different amplitudes are depicted assuming

A (E) = tanh(1.3 E) + 0.3 E, (46)

and h/α = 0.2, ξ0 = 2.8. In this case, g = χ(E) = 1.3[1 − tanh2(1.3 E)] + 0.1.
The solution starting from E0 = Π0 = 0 with increasing values of E(t) is referred to as initial polarization

curve. Its first and second derivatives at zero are given by

dΠ

dE
∣∣∣
(0,0)

= A ′(0) − h

α
= g(0) > 0,

d2Π

dE2

∣∣∣
(0,0)

= A ′′(0) + ξ0
h2

α2 ,

The latter represents the curvature at zero of the initial polarization curve and is positive (as experience indicates)
provided thatA ′′(0)+ ξ0h2/α2 > 0, a condition that certainly occurred ifA ′′(0) = 0 as in example (46) (see
the details in Fig. 2).

5.3.3 Model III

ξ(E,P) = ξ0 χ(E)|Π − A (E)|, where ξ0, χ > 0.
We address this model to describe the asymptotic saturation ofΠ for large values of |E |. Monotonicity property
(42) is met provided that ξ0 ≤ α/h. From (37) and (41), it follows that

dΠ

dE = χ(E)

(
1 + ξ0h

α
sgn

[(
Π − A (E)

)Ė])
.

Hence, the hysteretic behaviour is modelled via A and the positive parameters α, ξ0, only. Hysteresis cycles
in the (E, Π)-plane are generated by the system

{Ė = ωE cosωt

Π̇ = χ(E)
[
Ė − ξ0h

α
sgn

[(
Π − A (E)

)]∣∣Ė∣∣],
where h ∈ (0, 1) depends on the fixed value of θ ∈ (0, θC). In Fig. 3, cyclic processes with large and small
amplitudes are depicted assuming

A (E) = tanh(0.8 E) + 0.4 E,

and h/α = 0.4, ξ0 = 0.2. In this case, g = χ(E) = 0.8[1 − tanh2(0.9 E)] and the saturation property is
fullfilled.
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Fig. 3 Model III: The anhysteretic curve (dashed) and hysteresis loops (solid) with E = 1, 2 and initial data E0 = 0, Π0 = −0.1

5.3.4 Model IV

ξ(E,P) = ξ0χ(E)[Π − A (E)]2, where ξ0, χ > 0.
Using (37), it follows that

dΠ

dE = χ(E)
[
1 − τh

(
Π − A (E)

)
sgn Ė

]
, τh = ξ0h

α
> 0.

As in Model II, also here the vanishing of χ as |E | approaches infinity is a way of modelling the saturation
property of hysteresis. Unlike that case, however, here no threshold is set for polarization, but saturation is
reached only asymptotically. Monotonicity property (42) is met provided that

∣∣Π − A (E)
∣∣ ≤ 1/τh .

Hysteresis cycles are obtained by solving the system

{
Ė = ωE cosωt
Π̇ = χ(E)

[Ė − τh
(
Π − A (E)

)∣∣Ė∣∣],

starting from different initial states (E0, Π0). For instance, in Fig. 4 cyclic processes with large and small
amplitudes are depicted assuming

A (E) = tanh(0.9 E) + 0.4 E,

and h/α = 0.4, ξ0 = 2.5 (τh = 1). In this case, g = χ(E) = 0.9[1− tanh2(0.9 E)] and the saturation property
is fullfilled. The first and second derivatives at zero of the initial polarization curve are given by

dΠ

dE
∣∣∣
(0,0)

= A ′(0) − h

α
= χ(0) > 0,

d2Π

dE2

∣∣∣
(0,0)

= A ′′(0) + ξ0
h2

α2χ(0).

In summary, all models describe rate-independent hysteresis in soft ferroelectric materials. Models I and
III involve hysteretic functions ξ which are proportional to |Π −A (E)|. In particular, Model I shows ‘perfectly
bilinear’ hysteresis loops in connection with a piecewise linear anhysteretic functionA and constant values of
χ andχ2.Whenχ = |χ2|, it accounts for the appearance of the saturation regime. InModel III, the anhysteretic
function involves a hyperbolic tangent.Monotonicity condition and saturation property are satisfied throughout
the (E, Π)-plane. In Models II and IV, the hysteretic function ξ is proportional to [Π − A (E)]2 and the
anhysteretic function involves a hyperbolic tangent. Both satisfy the condition of monotonicity only in a strip
around the anhysteretic curve, but, unlike Model II, Model IV also enjoys the saturation condition.
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Fig. 4 Model IV: hysteresis loops (solid), anhysteretic curveA (short dashed) and graph of χ (dashed) with E = 1, 2. The initial
states E0, Π0 have E0 = 0 and Π0 = −0.1, −0.2

6 Conclusions

The purpose of this paper was to establish a systematic constitutive scheme, for deformable ferroelectric
materials, compatible with thermodynamics. In the first part of the paper, the well-known model of linear
piezoelectricity is rewritten by using invariant form of the electric and polarization fields, E and Π. As
is customary, Π is determined by a constitutive equation that depends on deformation, electric field, and
temperature (see (14)). To describe deformable ferroelectrics, we assume a similar relation, (18), where the
residual (or spontaneous) polarization, P , is an independent variable. Indeed, by the natural view that an
hysteresis loop in the unidimensional case is a closed curve surrounding a region in the (E, Π)-plane, the
novel starting point of this paper is a set of constitutive equations where the electric field E , the residual
polarization P , and their time derivatives Ė, Ṗ are simultaneously independent variables. These constitutive
functions are consistent with the second law of thermodynamics in that satisfy the entropy inequality. Among
other results, the standard balance of torques is a consequence of thermodynamic restrictions. In addition, the
second law implies a general inequality involving Ṗ and Ė so that, along any hysteretic curve, a connection
between Ṗ and Ė follows.

In the unidimensional case, two features have to emerge from this paper. First, the thermodynamic restric-
tion, which is expressed by an inequality, makes the relation between Ṗ and Ė to consist of two parts. One is
fully characterized by the free energy. The other one is related to the dissipative character of the hysteresis.
Models compatible with thermodynamics can then be determined by appropriate selections of the free energy
and of the dissipative part. Second, once physical reasons indicate a dependence on E of the reversible dif-
ferential susceptibility as in (35), the present scheme provides the corresponding free energy φ as shown in
Sect. 5.2. In particular, see (39), φ turns out to be represented as a quadratic function of P . It is of interest
that while the anhysteretic function is fully determined by the free energy potential, the dissipative part of
the model, characterized by χ2, involves both the free energy influence, via the denominator ∂Pφ, and the
non-negative purely thermodynamic term ξ . For any free energy φ then, there are a family of dissipative parts
characterized by the chosen function ξ .

Relative to known models of hysteresis, Model II looks very similar to the Coleman–Hodgdon model that
describes rate-independent hysteresis in soft ferromagnetic materials [10,31]. Despite of this similarity, we
stress that the inequality f ′ −g ≥ 0 (that is, the requirement that the hysteresis loss associated with a primitive
hysteresis loop be not negative, see [10, eqn (2.18)]) is not enough to ensure thermodynamic compatibility.
Indeed, we proved here that a stronger condition is required in order to build up a compatible free energy
potential ψ , namely f ′ − g = ε for some ε = 1/α > 0 (see Eq. (45)). In particular, this thermodynamic
condition implies the inequality

∫ +∞

|E |
[ f ′(y) − g(y)]e−τ ydy > 0 for any E ∈ R

that is stronger than (1.5) in [10], where the vanishing of the integral is allowed.
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