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Abstract This paper is concerned with a mechanical explanation of a highly inhomogeneous distribution of
hydrogen within metal specimens, based on the micropolar continuum approach. The primary focus is on the
modeling of the nonuniform stress–strain state of a cylindrical metal specimen that rapidly fades away from
the border and changes the inner structure of the material near the lateral surface. The boundary condition
used in the considered boundary value problem reflects the influence of the structural defects located on the
boundary. Thus, this model considers inner stresses and strains due to the structural inhomogeneity. Large
values of the strain energy within the area comparable to the size of the structural inhomogeneity lead to a
significant increase in the diffusion coefficient in the vicinity of the border. As a result, fast accumulation
of hydrogen within a thin boundary layer produces a highly nonuniform distribution of hydrogen across the
specimen. The comparison between the concentrations of hydrogen measured experimentally and estimated
analytically was made.

Keywords Micropolar continuum · Cosserat elasticity · Size effect · Skin effect · Hydrogen accumulation ·
Stress-induced diffusion

1 Introduction

Although hydrogen embrittlement is a well-known phenomenon, it still remains a significant problem in solid
mechanics. Sometimes, even small concentrations of hydrogen in metal parts operating under extreme loads
and in corrosive environments can lead to a decrease in strength followed by fracture and premature failure
of structural elements [41,45,70]. In particular, this problem is very acute in oil and gas production, since
hydrogen and its compounds are included in the oil products pumped through the pipelines [44]. Thus, the
processes taking place inside metal parts during their use must be understood. In particular, the distribution of
hydrogen must be known, since high local concentrations can lead to fracture [40].

As a rule, the effect of hydrogen on the properties of structural materials is examined by the use of the
artificial saturation of these materials. In most cases, it is believed that several tens of hours is enough for
uniform charging, but the uniformity of the concentration distribution at standardized charging with hydrogen
is usually not checked [5]. However, according to direct measurements, there is a significant excess of hydrogen
within a thin boundary layer of metal parts [5,49,54,59,68]. The experiments described in [4,5,59] showed
that standard hydrogen saturation of cylindrical specimens in an electrolyte for 96 h results in an extremely
nonuniform distribution of hydrogen across the specimen. In fact, what is saturated is only a thin surface layer
with a thickness of the order of the characteristic grain size. Similar results were obtained on the basis of
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cathodic hydrogen charging [33,49,68], where a uniform distribution of hydrogen was obtained only after 500
h of saturation, that is, several times greater than the average duration of the cathodic hydrogen charging used in
experiments. Highly nonuniform distribution of hydrogen within specimens was also observed in fatigue tests
with non-hydrogen-charged specimens in air environment [11,12]. The distribution of hydrogen was found to
be nonuniform even in the absence of external loading, although the skin effect was not so obvious as in case
of the artificial saturation.

The nonuniform distribution of hydrogen after charging the specimens can be explained by two types of
hydrogen simultaneously present in the material, namely the diffusible hydrogen and the trapped hydrogen
attached to microstructural inhomogeneities [33,54,69]. In contrast to the diffusible hydrogen, evenly dis-
tributed in the charged specimen, the trapped hydrogen is mainly located within a subsurface region of the
specimen that contains vacancies [33]. Indeed, the lateral surfaces of specimens are known to be covered with
crystal lattice defects leading to microcracks formation [13,43,63]. A detailed examination of the surface layer
of a uniform monocrystal shows that its grains or particles rotate and create voids near the boundary [63].
According to [57], there is a wide range of atomic configurations and a large number of vacancies occurring
in a surface layer of the material followed by weakening of interatomic interactions. From this point of view,
the surface layer in a deformed solid can be considered as an independent subsystem [56,57].

Numerous investigations indicate a strong coupling between diffusion and stress–strain state of thematerial
[1,15,32,47,67]. According to [33], amount of the trapped hydrogen strongly increases with the applied strain.
In [15,32,47], itwas shown thatmechanical stresses lead to the redistribution of the internal dissolved hydrogen.
All these models assume the presence of mechanical stresses in the metal caused by the external tensile or
cycling loading.

The stress field can be changed directly by hydrogen [14,58]. A coupled problem involving a system of
equations of the gradient-tensor typewas solved in [62]. Here, correlations between the hydrogen concentration
and the relative volume expansion (dilatation) of the metal and hydrostatic pressure were established, resulting
in a nonuniform distribution of hydrogen. A bi-continual model considering the mutual influence of dissolved
hydrogen and mechanical stresses was concerned in [59]. The first continuum represented the elastic medium,
whereas the second continuum was the hydrogen of both types, namely the mobile hydrogen and the trapped
hydrogen. The analytical solution describing the localization of hydrogen in the form of exponential decrease
in hydrogen concentration from the border was obtained. Note that in both models only inner stresses due to
hydrogen pressure were considered.

To take into account the inner stresses occurring due to the structural heterogeneity of the material, one
can introduce an intrinsic length scale parameter characterizing the thickness of the boundary layer with a
structure differing from the bulk material. This makes us go beyond classical elasticity, which does not deal
with length scales. Various generalized continuum theories, such as the strain gradient theory [3,7,18–20],
micropolar theory [6,7,23,26], and surface theory [8,24], have been successfully applied to a number of
different problems with size effect. In particular, the general micropolar continuum theory takes into account
couple stress, as well as internal rotational degrees of freedom. Rotation of individual regions caused by grain
boundary migration is possible in materials with a large stress gradient and in the presence of substructures
with a large number of defects [42].

This paper makes use of the micropolar continuum theory to explain a highly nonuniform stress–strain
state of material. The lateral surface is supposed to be traction free and the distributed couple stress assumed
to reflect the influence of the structural defects on the boundary. The problem statement makes it possible
to explain the structural inhomogeneity by means of the continuum mechanics approach. The distribution of
hydrogen is obtained bymodeling a stress-induced diffusion following the Fick’s second law. As a result, a thin
surface layer containing almost all the additional hydrogen from the environment appears. Thus, we consider
internal stresses and strains as the reason of the nonuniform distribution of hydrogen.

In general, theoretical investigations of the stress-induced diffusion are based on the molecular dynamics
methods [66] or on the continuum mechanics approach [16]. In the latter case, the mutual influence is due
to the dependence of the diffusion coefficient on the local energy or due to the driving force in the diffusion
equation [34,52]. Within the frame of the present paper, the diffusion coefficient is dependent on the strain
energy. Such a dependence for a classical theory of continuum mechanics was considered in [31,51,52,64].

2 Basic equations of the linear micropolar continuum

Let us briefly recall the general relations for a micropolar continuum. A detailed description of the main ideas
can be found in [2,21,24–26,35,50,53,65].
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Table 1 Engineering constants in micropolar theory by [25,37,46]

Engineering constant Definition

Shear modulus, μ μ = 2μ̃+κ
2

Coupling number, N N =
√

κ
2μ+κ

, N ∈ [0, 1]
Characteristic length for torsion, lt lt =

√

β2+β3
2μ

Characteristic length for bending, lb lb =
√

β3
4μ

Polar ratio, ψ ψ = β2+β3
β1+β2+β3

, ψ ∈ [0, 1.5]

The micropolar theory employs the concept of local microrotation of a point particle, θ , as well as classical
translation of the particle, u. We deal with a geometrically linear micropolar continuum. In this case, the linear
stretch tensor, ε, and linear wryness tensor, κ , can be introduced as follows:

ε = ∇ ⊗ u + I × θ , (1)

κ = ∇ ⊗ θ , (2)

where ∇ is the gradient operator and I is the unit tensor.
In the case of a physically linear micropolar elastic solid, the strain energy density, W , is a quadratic

function of the strain measures:

W = 1

2
ε · ·4C · ·ε + ε · ·4B · ·κ + 1

2
κ · ·4D · ·κ, (3)

where 4C, 4B, and 4D are the fourth-order tensors of elastic moduli of the micropolar continuum.
For an isotropic material, the tensors of elastic moduli are expressed as

4C = λI ⊗ I + μ̃ek ⊗ I ⊗ ek + (μ̃ + κ) em ⊗ en ⊗ em ⊗ en,
4D = β1I ⊗ I + β2ek ⊗ I ⊗ ek + β3em ⊗ en ⊗ em ⊗ en,
4B = 0, (4)

where λ, μ̃, κ and βi (i = 1, 2, 3) are independent elastic moduli. Here the Einstein rule of summation over
repeated indices is used. Letting the four additional moduli κ and βi go to zero will simplify the micropolar
elasticity model to the classical elasticity model.

The extra moduli can be associated with engineering (technical) constants (Table 1). A comparison of nota-
tions used by various authors is given in [17]. The elastic modulus κ quantifies the degree of coupling between
macro- and microrotation fields and allows to introduce the coupling number, N , which is a dimensionless
measure of the degree of coupling between the translation and rotation fields. The limit value N = 0 (κ = 0)
corresponds to a decoupling of the rotational and translation degrees of freedom. In this case μ̃ is identical
to the classical shear modulus, μ. The limit value N = 1 (κ → ∞) corresponds to a micropolar media with
constrained rotations, also known as “pseudo-Cosserat continuum” or “couple stress theory.” According to the
couple stress theory, the microrotation vector coincides with the macrorotation vector, which is determined by
the curl of the displacement field. The elastic moduli β2 and β3 allow to introduce characteristic lengths, lt for
torsion and lb for bending, that reflect the effects of the couple stress. The polar ratio, ψ , represents the ratio
between elastic moduli β1, β2 and β3.

Substitution of Eqs. (4) into Eq. (3) yields

W = λ

2
tr2(ε) + μ̃

2
tr(ε · ε) + μ̃ + κ

2
tr(ε · ε�) +

+β1

2
tr2(κ) + β2

2
tr(κ · κ) + β3

2
tr(κ · κ�), (5)

where tr(A) stands for the trace of a second-order tensor A and the superscript � denotes the transpose.



700 K. P. Frolova et al.

The constitutive equations for the stress tensor, T, and couple stress tensor,M, can be found as the partial
derivatives of the scalar-valued function W with respect to the second-order tensors ε and κ , respectively:

T = ∂W

∂ε
, M = ∂W

∂κ
. (6)

It follows that T andM can be expressed as

T = λtr(ε)I + 2μεS + κεA, (7)

M = β1tr(κ)I + β2κ
� + β3κ, (8)

whereμ arises from μ̃ according to Table 1, the superscripts S and A indicate the symmetric and antisymmetric
part of a second-order tensor, respectively.

In order to obtain the stress–strain state of the micropolar continuum, we use two equilibrium equations,
balances of linear momentum and angular moment, which in the absence of body forces and body couples can
be written as

∇ · T = 0, (9)

∇ · M + T× = 0, (10)

where (a ⊗ b)× = a × b.
Finally, the following system of equations for the displacement field and the independent microrotation

vector can be obtained:

(λ + μ)∇ (∇ · u) + μ�u + κ

(

1

2
(�u − (∇ · u)∇) + I × · (θ ⊗ ∇)

)

= 0, (11)

β1∇ (∇ · θ) + β2∇ · (θ∇) + β3�θ + κ∇ × u − 2κθ = 0, (12)

where (a ⊗ b) × · (c ⊗ d) = (a · d) b × c and � = ∇ · ∇ is the Laplacian.

3 Boundary value problem

Consider a circular cylinder of radius r0 and length L in the cylindrical coordinate system (r, ϕ, z) (Fig. 1).
Assuming that the lateral surface of the cylinder is traction free, so

n · T|r=r0 = 0, (13)

where n is the outward normal to the lateral surface.
The introduction of the additional rotational degree of freedom and accounting for the couple stress inter-

action lead to the necessity to formulate a suitable boundary condition at the surface, which can be static,
kinematic or “mixed.” The static boundary condition suggests that the external couples M0 are preset on the
entire boundary S of the body or on its portion St ⊂ S. The kinematic condition can also be imposed on the
entire boundary or on some part of the boundary Su ⊂ S and can be formulated as θ = θ0.

Setting the appropriate boundary condition that is consistent with experimental measurements causes
technical problems. At the same time, it is known that the lateral surface of a metal detail is covered with
a large amount of defects created during the preparation and leading to the surface microcracks appearance.
The distributed couple stress may reflect the microcracks appearance and can be considered as the reason of
the grains microrotations. To obtain experimental data it is necessary to relate the value of the distributed
couple stress with the crack density and find an empirical dependence. The other way is to consider the grains
microrotations on the border with respect to the position of the inner grains on the base of the microstructure
data. Both of the boundary conditions, namely static and kinematic, are reasonable from mechanical point of
view and should not affect the solution qualitatively. Within the frame of the present paper we do not provide
any experimental data and use static boundary condition

n · M|r=r0 = M0. (14)

In general,M0 is a function of z and ϕ. However, for simplicity, we assume that the surface microcracks are
uniformly distributed across the surface of the cylinder. Hence, we treat the surface couple tension as constant.
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Fig. 1 Boundary value problem in cylindrical coordinates

We assume finite displacement and microrotation at the center of the cylinder,

u|r=0 
 ∞, θ |r=0 
 ∞. (15)

According to the Saint–Venant’s principle, the stress state in a long cylinder loaded at its end faces is
practically independent on the distribution of the surface forces acting on the end cross sections [48]. At a
certain distance from the end faces the stress state is determined only by the principal force and the principal
moment. Thus, the corresponding boundary conditions can be replaced by integral relationships. Since couple
stress interactions occurring within the micropolar theory play a role only in the vicinity of the perturbation
region [28,29], let us consider the systems of forces and moments remaining statistically equivalent to zero,
so

∫ ∫

S
ez · TdS

∣

∣

∣

∣

z=0,z=L
= 0, (16)

∫ ∫

S
ez · MdS

∣

∣

∣

∣

z=0,z=L
= 0. (17)

It is known [28,29] that the difference between solutions with and without couple stresses depends on the
characteristic lengths. The greater lb and lt , the greater the difference. Generally, the characteristic lengths
are small in comparison with the specimen dimensions, and the micropolar solution can be considered as
a correction term to the classical solution to make sure it satisfies the additional boundary condition (14).
Thus, the asymptotic behavior of the additional term can be assumed. The asymptotic expansion technique
by introducing a boundary layer is commonly used in static and dynamic theories of micropolar bars, plates
and shells [22,60]. This technique considers asymptotic expansions in terms of the thickness of the solid and
allows to suggest a rapid decay of function f , so the following conditions hold:

∂2 f

∂r2
� ∂ f

∂r
� f. (18)

On the basis of similarities between the micropolar theory and theories of plates and shells, we will use the
assumptions (18) and take into account the smallness of the characteristic length to deal with the asymptotic
solution for the boundary layer.

Since the zero displacement field satisfies the equilibrium conditions and guarantees a traction-free lateral
surface, we only deal with the solution that describes the stress–strain state near the boundary. As long as
solution for the boundary layer only changes along the radial direction due to additional external loading, we
seek a solution to the equations of equilibrium (11) and (12) that has the form

u = u (r) = ur (r) er + uz (r) ez, (19)
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θ = θ (r) = θr (r) er + θϕ (r) eϕ + θz (r) ez, (20)

where er , eϕ and ez are unit basis vectors.
According to the linear theory, an additional external loading can be added at the end faces of the cylinder.

Then, the total solution is the sum of the two individual solutions. One of them corresponds to the load at the
ends of the cylinder and describes the stress–strain state inside the body, while the other comes in action only
within a thin surface layer and provides correction to ensure that the boundary condition, that is, distributed
couple stress on the lateral surface is satisfied. The first term can be obtained by means of classical theory of
elasticity, whereas the second one is determined by couple stress interactions and can be obtained only using
a micropolar theory.

Thus, up to terms of the same order of smallness, Eqs. (11) and (12) become

(λ + 2μ)
∂2ur
∂r2

= 0,

(

μ + κ

2

) ∂2uz
∂r2

+ κ
∂θϕ

∂r
= 0,

κ
∂θz

∂r
= 0,

(β1 + β2 + β3)
∂2θr

∂r2
− 2κθr = 0,

β3
∂2θz

∂r2
− 2κθz = 0,

β3
∂2θϕ

∂r2
− 2κθϕ − κ

∂uz
∂r

= 0. (21)

Let us introduce non-dimensional parameters for the geometric characteristics and displacement field

x = 1 − r

r0
, ξ = r0

L
, ux = ur

r0
, uζ = uz

L
, (22)

as well as non-dimensional material parameters

˜λ = λ

μ
, κ̃ = κ

2μ
= N 2

1 − N 2 , δ =
√

β3

2κr20
=

√
1 − N 2

N

lb
r0

,

δ� =
√

β�

2κr20
=

√
1 − N 2

N

1√
2ψ

lt
r0

, (23)

where β� = β1 + β2 + β3.
Since microrotation is a non-dimensional quantity, we have θx = θr and θζ = θz .
Thus, we can rewrite Eqs. (21) as follows:

∂2ux
∂x2

= 0,

(1 + κ̃)

ξ2

∂2uζ

∂x2
− 2κ̃

ξ

∂θϕ

∂x
= 0,

∂θζ

∂x
= 0,

δ2�
∂2θx

∂x2
− θx = 0,

δ2
∂2θζ

∂x2
− θζ = 0,

δ2
∂2θϕ

∂x2
− θϕ + 1

2ξ

∂uζ

∂x
= 0. (24)
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The integration of Eq. (24)1 results in the linear function ux = Ax + B, which contradicts the assumptions
(18). To overcome this contradiction, we set the constants of integration A and B equal to zero.

From Eqs. (24)3 and (24)5 it follows that

θζ = 0. (25)

Solution of Eq. (24)4 accounting for the boundary condition (15) is as follows:

θx = Cxe
− x

δ� , (26)

where Cx is an integration constant.
Integrating Eq. (24)2 yields

θϕ = 1 + κ̃

2ξ κ̃

∂uζ

∂x
+ Cϕ, (27)

where Cϕ is the integration constant.
The last equation in (24) gives the following solution accounting for the boundary condition (15) and

satisfying assumptions (18):

uζ = Ce
− x

δ
√

κ̃+1 , Cϕ = 0, (28)

where C is the integration constant.
Finally, substituting Eq. (28) into Eq. (27) we obtain

θϕ = −C

√
κ̃ + 1

2ξδκ̃
e
− x

δ
√

κ̃+1 . (29)

As a result, the stress tensor becomes

˜T = 1

μ
T = 2C

δξ
√

κ̃ + 1
e
− x

δ
√

κ̃+1 ez ⊗ er +

+2Cx κ̃e
− x

δ�

(

ez ⊗ eϕ − eϕ ⊗ ez
)

, (30)

and the boundary conditions (13) and (16) are satisfied automatically.
The couple stress tensor is

˜M = 1

μL
M = −2Ce

− x
δ
√

κ̃+1

[

β2

β3
eϕ ⊗ er + er ⊗ eϕ

]

+

+
√
2κCx

μL
e
− x

δ�

[

√

β�er ⊗ er + β1√
β�

(

eϕ ⊗ eϕ + ez ⊗ ez
)

]

. (31)

Satisfying the remaining boundary condition at the lateral surface (14) and solving for the integration
constants, we get

er · 1

μL
M |x=0 = −M0ϕ

μL
eϕ, →

C = M0ϕ

2μL
, Cx = 0. (32)

Thus, boundary conditions at the cylinder end faces (17) are satisfied automatically.
Finally, we obtain

u = M0ϕ

2μ
e
− r0−r

lb
N ez, (33)

θ = − M0ϕ

4μlbN
e
− r0−r

lb
N eϕ, (34)
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ε = M0ϕ

4μlbN
e
− r0−r

lb
N [(

2N 2 − 1
)

er ⊗ ez + ez ⊗ er
]

, (35)

κ = − M0ϕ

4μlb
e
− r0−r

lb
N

[

1

lb
er ⊗ eϕ − 1

r N
eϕ ⊗ er

]

, (36)

T = M0ϕ

lb
Ne

− r0−r
lb

N ez ⊗ er , (37)

M = −M0ϕe
− r0−r

lb
N

[

β2

β3
eϕ ⊗ er + er ⊗ eϕ

]

. (38)

It is clear that the obtained solution changes the stress–strain state only in the vicinity of the lateral surface
due to the exponential decay of the functions. Additional deformations, in turn, may change the inner structure
of the material near the border and lead to void and defects appearance.

Note that in the limit case N = 1, Eqs. (33)–(38) reduce to

u = M0ϕ

2μ
e
− r0−r

lb ez, (39)

θ = − M0ϕ

4μlb
e
− r0−r

lb eϕ, (40)

ε = M0ϕ

4μlb
e
− r0−r

lb
[

er ⊗ ez + ez ⊗ er
]

, (41)

κ = − M0ϕ

4μlb
e
− r0−r

lb

[

1

lb
er ⊗ eϕ − 1

r
eϕ ⊗ er

]

,

T = M0ϕ

lb
e
− r0−r

lb ez ⊗ er , (42)

M = −M0ϕe
− r0−r

lb

[

β2

β3
eϕ ⊗ er + er ⊗ eϕ

]

. (43)

The same solution was obtained in [27] for a continuum with constrained rotations.

4 Diffusion problem

The pure diffusion of hydrogen follows the Fick’s second law

∂c

∂t
= ∇ · (D∇c) , (44)

where c is the hydrogen concentration, t is time, D is the diffusion coefficient.
According to the Arrhenius low, the diffusion coefficient depends on the activation energy for the reaction

[30,36,39]. This energy, in turn, can be correlated with inelastic strain energy density [30] or with elastic
potential energy [31,51,52,64]. Within the frame of the present paper, the diffusion coefficient is supposed to
depend on the strain energy in the following way [51,52]:

D = D0e
VW
RT , (45)

where D0 is the diffusion constant, V=m/ρ is the local volume change per 1 mole of substance (m is the
molar mass of hydrogen and ρ is the metal density), R = 8.31455 J/(mol·K) is the universal gas constant, T
is the absolute temperature.

The boundary conditions are as follows:

c|r=r0 = c0,
∂c

∂r

∣

∣

∣

∣

r=0
= 0. (46)

Substituting Eqs. (35), (36) into Eq. (5), we get

W = M2
0ϕ

4μl2b
e
−2 r0−r

lb
N

(47)
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Table 2 The amount of extracted hydrogen, ppm w.r.t. mass

Radius, mm Extraction temperature, ◦C Total amount, ppm Estimated additional amount, ppm

400 600 800

4.00 0.550 0.310 0.230 1.090 0.620
3.94 0.280 0.210 0.120 0.610 0.140
3.89 0.260 0.091 0.120 0.471 0.001
3.79 0.270 0.085 0.120 0.475 0.005

for a general micropolar theory, and

W = M2
0ϕ

4μl2b
e
−2 r0−r

lb (48)

for the media with constrained rotations (N = 1). Thus, the diffusion coefficient given by Eq. (45) depends
on the radial coordinate r . It takes quit big values in the vicinity of the border within the area comparable to
the characteristic length of the structural inhomogeneity and decreases away from the lateral surface to the
constant value D0.

The solution of the diffusion problem is obtained numerically by an implicit finite difference method; the
tridiagonal matrix algorithm was realized with MATLAB.

5 Experimental data and results

To verify the existence of a thin boundary layer, we carried out the following experiment, which was described
in detail in [59]. A cylindrical specimen of radius 4mm and length 40mm made of the weather resistant
steel 14HGNDCwas charged with hydrogen according to NACE Standard TM0284-2106-SG in an accredited
laboratory which is certified for industrial testing. Samples were incubated for 96 h in a deaerated solution
based on distilled water with 5 wt% NaCl and 0.5 wt% CH3COOH. The gaseous hydrogen sulfide was purged
through the solution by bubbling. A constant concentration of 2500 mg/l of hydrogen sulfide was maintained
in the working chamber. After the saturation the specimen was taken out of the electrolyte solution and held
in air for about 48 h. Then, it was cut manually with a hacksaw into four cylindrical parts of equal length.
The cylindrical layers of thickness 0.06, 0.11 and 0.21mm were removed from three out of the four parts,
respectively. Each part was further cut into two cylindrical specimens for subsequent analysis.

Measurements of hydrogen concentrationwere carried out using the industrialmass spectrometric hydrogen
analyzer AV-1, which utilizes the vacuum hot extraction method [38,61]. The method of the analysis and
the analyzer are detailed in [9,10]. The specimens inside the extractor were heated gradually up to release
temperatures of 400 ◦C, 600 ◦C and 800 ◦C during 1 h per temperature. It can be stated that the temperature
of 400 ◦C is the upper bound for the first group of hydrogen maxima (diffusible or mobile hydrogen) and the
temperature of 600 ◦C is the upper bound for the second group of the hydrogen maxima, sometimes referred to
as the trapped hydrogen, so that it is sufficient to completely extract the “overall” hydrogen from the reference
samples [55,59]. The temperature of 800 ◦C was selected for the extraction of total hydrogen amount during
the hot vacuum extraction. The amount of hydrogen released from all parts of the original specimen for each
temperature was measured. The mean values for two specimens of the same diameter are shown in Table 2.

It is apparent from the table that a nonuniform distribution of hydrogen concentrations over the sample
volume takes place. It is known that a non-charged specimen always contains evenly distributed hydrogen.
According to Table 2, the total amounts of hydrogen extracted from the cylindrical parts with the removed
layers of thicknesses 110µmand 210µmare almost equal. So that, the initial concentration of hydrogenwithin
the specimens may be posted as 0.47 ppm to focus only on the uneven distribution of the additional hydrogen.
In this case, we can conclude that almost all hydrogen due to saturation is concentrated in a thin boundary layer
with a thickness of about 60−110µm. The removed layer of thickness 110µm contains overall additional
hydrogen, whereas the layer of thickness 60µm contains about 77.5% (0.01·(0.62–0.14 ppm)/0.62 ppm) of
this amount.

To estimate the non-classical material parameters appearing in the present micropolar model and reflecting
the skin effect, we can relate the experimental thickness of the boundary layer containing a large excess of



706 K. P. Frolova et al.

Table 3 Material parameter Lb w.r.t. the geometrical parameters of the cylindrical specimen corresponding to the size of the
hydrogenated area, namely inner border of the boundary layer, r∗, dimensional thickness of the boundary layer, h∗, dimensionless
thickness of the boundary layer, x∗, fading number of the solution, k

r∗, mm h∗, µm x∗, – k, – Lb, µm

3.94 60 0.0150 100 13
30 18

3.89 110 0.0275 100 24
30 32

hydrogen to the width of the layer with a changed stress–strain state. According to Eqs. (33)–(38), this layer
is determined by the exponentiation function

e
− r0−r

lb
N
.

Since components of u, θ , ε, κ , T andM decay exponentially to zero, but never be exactly equal to it, we
suppose that they decrease by a factor of k times at the boundary of the experimentally obtained layer, r∗, as
compared to the corresponding components at the surface of the specimen, where they take their maximum
values. It means that

f |r=r∗ = 1

k
f |r=r0 ,

where f is corresponding to the rapidly decreasing components of vector and tensor fields. So that, k may
correlate with a sufficiently small value of the considering component in comparison with its value at the
border. It does not have any physical meaning and can be considered as a fading number of the solution. Then,
we obtain

Lb = lb
N

= r0 − r∗
ln k

. (49)

Values of Lb corresponding to r∗ = 3.94mm and r∗ = 3.89mm for two values of the fading number,
namely k = 100 and k = 30, are given in Table 3. The corresponding values of the dimensional thicknesses
of the boundary layer, h∗ = r0 − r∗, and the dimensionless one, x∗ = (r0 − r∗) /r0, are also indicated. The
estimated values of the material parameters are much smaller than the radius of the cylinder and comparable
to the grain size that can be considered as the characteristic size of the material.

For simplicity, we restrict ourselves to considering the displacement field to reflect the impact of the
distributed couple stress on the border on the material behavior. Substituting relation (49) into Eq. (33) gives

uz = M0ϕ

2μ
e
− r0−r

r0−r∗ ln(k). (50)

Figure 2 displays the longitudinal displacement against the dimensionless radius r/r0. The shear modulus
μ of the steel 14HGNDC was not measured, so we assume it equaling to 80GPa. We consider two thicknesses
of the boundary layer, namely h∗1 = 60µm and h∗2 = 110µm. The fading numbers k = 100 and k = 30 are
taken. The curve is plotted forM0 = 6.4MPa·m. This boundary condition provides displacement on the border
equal to 40 µm that is of order of a few grains. Nevertheless, any other value of the distributed couple stress
will also lead to the typical exponentiation decrease in the displacement field. The difference is quantitative
rather than qualitative. The comparison of solutions provided by M0 = 6.4MPa·m, M0 = 3.2MPa·m, and
M0 = 1.6MPa·m is presented in Fig. 3. The thickness of the boundary layer h∗2 = 110µm and fading
number k = 100 are considered. Note that according to Eq. (49), the distributed couple stress does not affect
the material parameters used in the present model. Therefore, the difference is observed for the values of the
displacements and does not affect the width of the area with a changed stress–strain state.

In order to obtain the distribution of hydrogen within the thickness of the cylinder with respect to the
diffusion problem explained in the previous section, let us consider the media with constrained rotations
(N = 1) to minimize the number of the unknown material parameters. Note that the difference between the
solution of general Cosserat problem and Pseudo-Cosserat problem is quantitative but not qualitative. So, the
elastic energy is determined by Eq. (48). We take the distributed couple stress on the border M0 = 6.4MPa·m
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Fig. 2 Dependence of the longitudinal displacement on the dimensionless radius for different values of the thickness of the
boundary layer, h∗, and fading numbers, k, namely h∗ = h∗1 = 60µm, k = 100 (red curve) and k = 30 (black curve),
h∗ = h∗2 = 110µm, k = 100 (green curve) and k = 30 (blue curve) (colour figure online)

Fig. 3 Dependence of the longitudinal displacement on the dimensionless radius for different values of the distributed couple
stress on the border, namely M0 = 6.4MPa·m (red curve), M0 = 3.2MPa·m (blue curve) and M0 = 1.6MPa·m (black curve)
(colour figure online)

and thematerial lengths for bending lb = 24µmand lb = 13µm. The diffusion coefficient is given by Eq. (45).
The saturation temperature, T , is set to be equal 300 K and the duration of the diffusion process is set to be
equal 96 h according to the experimental data. The molar mass of hydrogen m = 0.002 kg/mol is a known
value, ρ = 7800 kg/m3 is taken for the weather resistant steel 14HGNDC. There is a wide range of values of
the constant diffusion coefficient D0. We use the value of D0 providing the lack of the inner concentration
of hydrogen when considering the diffusion process with a constant diffusion coefficient to demonstrate the
difference. The concentration profiles are shown in Fig. 4.

The results show a highly inhomogeneous distribution of hydrogen and an appearance of a thin saturated
surface layer of a thickness about 20–30µm (corresponding to r/r0 = 0.9925–0.9950) that is a few times less
than the one estimated on the base of the experimental data (60–110µm). On the one hand, the value of the
thickness layer predicted by the present model depends on the material parameters, in particular, the material
length for bending. In case of a zero value of the parameter, the micropolar theory will provide a zero solution,
so the surface layer will not appear. On the other hand, we can see that variation of the value of this parameter
within the range of values comparable to the grain size does not affect the thickness.

To compare the obtained results with the experimental data quantitatively we estimate the mean inner
concentration of hydrogen in ppm w.r.t. mass. Within the experiment a constant concentration of 50 ppm of
hydrogen corresponding to 2500 mg/l of hydrogen sulfide was maintained on the border. The mean additional
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Fig. 4 The concentration profiles of hydrogen w.r.t. the dimensionless radius after 96 h saturation, where the material length for
bending lb = 13µm (left-hand side, blue points) and lb = 24µm (right-hand side, red points). The black points correspond to
the constant diffusion coefficient (colour figure online)

inner concentration of hydrogen predicted by the present model is as follows:

c̃ppm =
∫ L
0

∫ r0
0 cppm(r)2πrdzdr

πr20 L
. (51)

where cppm is the function of the inner concentration given in ppm.
Solving Eq. (51), we obtain the mean concentration of the additional hydrogen over the specimen to be

equal to 0.68 ppm for lb = 24µm and 0.62 ppm for lb = 13µm, while the amount estimated experimentally
is about 0.62 ppm. Thus, we can see that the amount of the additional hydrogen due to saturation estimated
theoretically and experimentally coincidence, while the theoretical thickness is smaller than the estimated
experimentally.

6 Discussion and outlook

The proposed model explains the appearance of a thin boundary layer containing a significant excess of
hydrogen based on of the micropolar continuum theory. Consideration of the distributed couple stress on
the border and subsequent accounting for additional rotational degrees of freedom and inner couple stresses
results in a highly inhomogeneous stress–strain state of the material. The distributed couple stress reflects the
presence of a large number of defects leading to the grain rotations and microcracks appearance and can be
posted as the boundary condition. The other way is to consider directly the grain microrotations on the border.
According to Eq. (29), the corresponding solution will still decay exponentially from the lateral surface; only
integration constants will differ. Further, additional deformations occurring in the vicinity of the border may
change the bulk material microstructure. It can lead to voids and defects appearance that are known to be
traps for hydrogen. Indeed, considering the dependence of the effective diffusion coefficient on the strain
energy, we show that hydrogen accumulates within the area comparable to the size of the surface layer with
additional stresses and strains. This area is determined by the additional material parameter appearing within
the micropolar model. This material parameter is of order of the grain size that, in turn, can be considered as
a characteristic size of the material inhomogeneity.

Thus, it follows that Cosserat-type continuum theories are capable of describing nonuniform distribution
of hydrogen observed in experiments. Further investigation is necessary to study the mutual influence of
stress–strain state and diffusion. So far, we have considered a stress-induced hydrogen diffusion, whereas the
influence of hydrogen on the inner pressure was not taken into account. Thus, a coupled problem should be
solved to explain the skin effect more accurately. In this case the initial nonuniform stress–strain state predicted
by the micropolar theory due to the distributed couple stress or microrotations on the border may provide the
fast diffusion within a thin surface layer with a high strain energy. The accumulated hydrogen, in turn, may
cause additional self strains and change the stress–strain state within a wider area than observed initially, and
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so on. The steady state will prevent further fast hydrogen diffusion. In such a case, the thickness of the surface
layer estimated theoretically may be wider than obtained within the frame of the present paper. Considering
a coupled problem also makes it possible to take into account a strong dependence of elastic moduli on the
hydrogen concentration.

Another issue is that so far we estimated the material parameters appearing in the micropolar model and
reflecting the “size effect" related to the structural inhomogeneity by means of the measured hydrogenated
surface layer. Indeed, comparison of the theoretical results with the experimental data on the hydrogenated
surface layer makes it possible to estimate some ratios of the non-classical elastic modulus. Thus, according
to Eq. (49) and data presented in Table 1, the ratio β3/N 2 can be expressed in terms of the relative boundary
layer thickness as

β3

N 2 = 4μ

(

h∗
ln k

)

. (52)

In the case of material with constrained rotations N = 1, the elastic modulus β3 can be estimated. However,
the material parameters appearing within the micropolar theory may depend only on the structural changes.
Since the present paper focuses on nonuniform distribution of hydrogen caused only due to the structural
inhomogeneity, one can assume that the thickness of the hydrogenated layer is comparable to the thickness of
structural inhomogeneity. Then, it is necessary to estimate the values of the material parameters only within the
model. To validate the estimated material parameters, additional experiments on specimens should be carried
out. Thus, it is more correct to estimate its values on the base of the microstructure evolution than by means
of the hydrogen concentration profile. In context of the model implemented in the present paper, the material
constants shall be obtained on the base of the microstructure observed for the hydrogenated metal. Then, it will
describe the field of the additional stresses and strains occurring due to the hydrogen accumulation. Size of
this field may differ from the size of the hydrogenated layer that should be predicted by the diffusion problem.
In case of the coupled problem mentioned earlier within the current section, the material parameters and,
therefore, the initial thickness of the area with a changed stress–strain state may be estimated on the base of the
microstructure data obtained for the non-hydrogen-charged metal. Then, it will explain only the “initial" skin
effect due to the structural defects on the border. The thickness of the layer with the initial nonzero stress–strain
state is supposed to be smaller than the final one. Additional self strains will appear away from the border due
to the hydrogen diffusion resulting in a wider area with a changed microstructure and, finally, lead to a wider
hydrogenated area.

7 Conclusions

The following tasks have been accomplished within the framework of the present paper:

– The experimentally observed strong nonuniform distribution of hydrogen in metal specimens, that is,
the appearance of a thin boundary layer containing a significant excess of hydrogen, has been explained
by means of the micropolar continuum approach. The diffusion coefficient is to depend on the radially
nonuniform strain energy.

– While the classical elasticity does not explain the material behavior near the lateral surface, the micropolar
theory describes it with the solution, which rapidly fades away from the boundary.
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