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Abstract We present an analytical study of the problem associated with an edge dislocation near a completely
coated finite anticrack (or rigid line inhomogeneity). The two foci of the elliptical coating-matrix interface
are located at the two tips of the anticrack. In addition, the coating and the matrix have identical shear
moduli but distinct Poisson’s ratios. By means of conformal mapping and analytic continuation, we obtain a
closed-form representation of a specifically constructed auxiliary function defined in the entire image plane.
This auxiliary function is then used to derive analytical expressions (in the image plane) of the two pairs of
analytic functions which characterize the corresponding stress and displacement distributions. A closed-form
expression representing the rigid-body rotation of the anticrack is presented by satisfying moment balance on a
circular disk with sufficiently large radius. The mode I and mode II stress intensity factors at the two anticrack
tips are determined explicitly.

Keywords Anticrack · Confocal elliptical coating · Edge dislocation · Rigid-body rotation · Stress intensity
factor · Analytic solution

1 Introduction

The study of elastic fields resulting from the presence of rigid line inhomogeneities continues to attract
increasing attention in the literature. These rigid line inhomogeneities are especially useful in the modeling
of composites; for example, they can be used to represent thin hard fibers as part of a reinforcing phase in
composite materials. Accordingly, researchers have considered material microsystems incorporating rigid line
inhomogeneities in various different scenarios ranging from those involving the influence of rigid inhomo-
geneities placed near material interfaces [1–4], the interaction of dislocations with rigid line inhomogeneities
[5] and the singular stress fields induced near the tips of rigid line inhomogeneities [6–9]. In all of the afore-
mentioned studies, the rigid line inhomogeneity is either embedded in a homogeneous material [3,5–9] or lies
at the interface of a bimaterial [1–4]. In the design of fibrous composites, a coating layer is usually inserted
between the internal inhomogeneity (representing the fiber) and the surrounding matrix with the objective of
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improving the bonding between the inhomogeneity and the matrix and also to reduce the material mismatch
induced stress concentration at the interface [10]. It is of interest to examine the influence of a rigid line
inhomogeneity when it is entirely embedded inside such an intermediate coating layer especially with respect
to its interaction with an edge dislocation located nearby inside the matrix region. We know, for example,
that dislocations are always present in a composite and the embedded rigid line inhomogeneity will tend to
repel the dislocation so that an analysis of the interaction between the two becomes crucial in the design of
the corresponding composite. We mention in closing this paragraph that a rigid line inhomogeneity is often
referred to as an ‘anticrack’ [2,7] originating from the point of view put forward by Dundurs and Markenscoff
in [7] that a rigid line inhomogeneity can be considered as the ‘opposite’ of a crack [7]:

“The opposite of a crack, in a certain sense, is a cut in the material that is filled with a rigid lamella: A
crack is a cut that transmits no tractions, but allows a displacement discontinuity. The rigid lamella transmits
tractions, but prevents a displacement discontinuity. There is no uniform terminology for the latter, and we
shall call them anticracks for brevity.”

In this paper, we present an analytical study of the interaction of an edge dislocation located inside the
matrix region and a finite anticrack entirely embedded in a confocal elliptical coating. The confocal geometry
permits an analytical treatment of the interaction problem. The coating and the matrix have identical shear
moduli but distinct Poisson’s ratios. Using conformal mapping, analytic continuation and an application of the
generalized Liouville’s theorem, we construct a closed-form representation of an auxiliary function defined
in the entire image plane. This auxiliary function is then used to derive the two pairs of complex potentials
(whose expressions contain convergent series) in the image plane which characterize the corresponding stress
and displacement distributions everywhere in the composite. By satisfying moment balance on a circular
disk with sufficiently large radius, the rigid-body rotation of the anticrack can be uniquely determined and
expressed in closed-form. We also obtain the stress intensity factors at the two anticrack tips induced by the
edge dislocation. Our solution is verified by careful comparison with its classical counterpart in Dundurs and
Markenscoff [7].

2 Complex variable formulation

We first establish a Cartesian coordinate system {xi } (i = 1, 2, 3). For plane deformations of an isotropic
elastic material, the three in-plane stresses (σ11, σ22, σ12), two in-plane displacements (u1, u2) and two
stress functions (φ1, φ2) are given in terms of two analytic functions ϕ(z) and ψ(z) of the complex variable
z = x1 + ix2 as [11]

σ11 + σ22 = 2
[
ϕ′(z) + ϕ′(z)

]
,

σ22 − σ11 + 2iσ12 = 2
[
z̄ϕ′′(z) + ψ ′(z)

]
, (1)

2μ(u1 + iu2) = κϕ(z) − zϕ′(z) − ψ(z),

φ1 + iφ2 = i
[
ϕ(z) + zϕ′(z) + ψ(z)

]
, (2)

where κ = 3 − 4ν for plane strain and κ = (3 − ν)/(1 + ν) for plane stress, μ and ν (0 � ν � 1/2) are
the shear modulus and Poisson’s ratio, respectively. In addition, the stresses are related to the stress functions
through [3]

σ11 = −φ1,2, σ12 = φ1,1,

σ21 = −φ2,2, σ22 = φ2,1. (3)

3 Analytic solution

As shown in Fig. 1, we consider an edge dislocation interacting with a confocally coated finite anticrack. The
two sides of the anticrack of half-length a lying on the interval −a < x1 < a, x2 = 0± remain perfectly
bonded to a confocal elliptical coating, which is in turn surrounded by an unbounded matrix. Let S1 and S2
denote the coating and the matrix, respectively, which are perfectly bonded through the elliptical interface L
whose two foci are located at z = ±a. The edge dislocation with Burgers vector (b1, b2) is located at z = z0
in the matrix. In what follows, the subscripts 1 and 2 are appended to quantities formerly free of subscripts to
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Fig. 1 An edge dislocation interacting with a confocally coated finite anticrack

Fig. 2 The image ξ -plane

identify the respective quantities in S1 and S2 (for example, ϕ1, ψ1, κ1 will denote the values of ϕ, ψ , κ in the
region S1, etc—this notation should not be confused with the use of existing subscripts corresponding to the
complex variable z = x1 + ix2). In order to arrive at an analytical solution, we further assume that the coating
and the matrix have equal shear moduli but distinct Poisson’s ratios.

As shown in Fig. 2, by introducing the following conformal mapping function

z = ω(ξ) = a

2

(
ξ + 1

ξ

)
, |ξ | � 1, (4)

the two sides of the anticrack are mapped onto the unit circle |ξ | = 1; the elliptical interface L is mapped
onto the outer concentric circle |ξ | = R > 1; the location of the edge dislocation at z = z0 is mapped onto
ξ = ξ0 (|ξ0| > R). Evidently, the semi-major and semi-minor axes of the ellipse L are given, respectively, by
a
2 (R + R−1) and a

2 (R − R−1). For convenience, we write ϕi (ξ) = ϕi (ω(ξ)), ψi (ξ) = ψi (ω(ξ)) (i = 1, 2).
As noted above, the two sides of the anticrack remain perfectly bonded to the coating.We disregard any rigid

body translation of the anticrack and assume that the anticrack undergoes only an unknown rigid-body rotation.
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Using Eq. (2)1, we thus impose the condition of rigid-body displacements on the two sides of the anticrack,
i.e., that u1 + iu2 = iεz, where ε is the unknown rigid-body rotation of the anticrack (to be determined),
leading to the introduction of the following analytic continuation

ψ1(ξ) = κ1ϕ̄1

(
1

ξ

)
− ξ(ξ2 + 1)

ξ2 − 1
ϕ′
1(ξ) + iaμε

(
ξ + 1

ξ

)
. (5)

Equation (5) implies that ϕ1(ξ) has been extended to the annulus 1/R � |ξ | � 1.
Using Eq. (5), the continuity of tractions and displacements across the perfectly bonded elliptical coating-

matrix interface L can be written as

ϕ1(ξ) = κ2 + 1

κ1 + 1
ϕ2(ξ),

1

R
� |ξ | < +∞; (6)

and

ψ̄2

(
R2

ξ

)
− R4(κ1 − κ2)(ξ

2 + 1) + R2(κ2 + 1)(ξ2 + R4)

ξ(ξ2 − R4)(κ1 + 1)
ϕ̄′
2

(
R2

ξ

)
+ iaμε

R2 ξ

= κ2 − κ1

κ1 + 1
ϕ2(ξ) + κ1(κ2 + 1)

κ1 + 1
ϕ2

(
ξ

R2

)
− iaμεR2

ξ
, |ξ | = R. (7)

A detailed derivation of Eqs. (6) and (7) can be found in Appendix A. Equation (6) is an analytic continuation
of the two analytic functions ϕ1(ξ) and ϕ2(ξ) in view of the fact that ϕ1(ξ) is now extended to R � |ξ | < +∞
while ϕ2(ξ) is extended to 1

R � |ξ | � R by using Eq. (6). In view of Eq. (7), an auxiliary function H(ξ) can
be constructed as follows

H(ξ) =
⎧⎨
⎩

ψ̄2

(
R2

ξ

)
− R4(κ1−κ2)(ξ

2+1)+R2(κ2+1)(ξ2+R4)

ξ(ξ2−R4)(κ1+1)
ϕ̄′
2

(
R2

ξ

)
+ iaμε

R2 ξ, |ξ | � R;
κ2−κ1
κ1+1 ϕ2(ξ) + κ1(κ2+1)

κ1+1 ϕ2

(
ξ

R2

)
− iaμεR2

ξ
, |ξ | � R.

(8)

We can see from Eqs. (7) and (8) that H(ξ) is continuous across the circle |ξ | = R and is then analytic in
the whole ξ -plane except at the four points ξ = 0, ξ0, R2ξ0, R2/ξ̄0. By applying the generalized Liouville’s
theorem, a closed-form expression for the auxiliary function H(ξ) can be obtained as follows

H(ξ) = iμ(κ1 − κ2)(b1 + ib2)

π(κ1 + 1)(κ2 + 1)
ln(ξ − ξ0) − iμκ1(κ2 + 1)(b1 + ib2)

π(κ1 + 1)(κ2 + 1)
ln(ξ − R2ξ0)

− iμ(b1 + ib2)

π(κ2 + 1)
ln

(
R2

ξ
− ξ̄0

)

− iμ(b1 − ib2)
[
ξ0(κ1 − κ2)(R2 − 1)(R2 − ξ̄20 ) + R2(κ1 + 1)(ξ0 − ξ̄0)(1 − |ξ0|2)

]

π(κ1 + 1)(κ2 + 1) |ξ0|2 (ξ̄20 − 1)

1

ξ − R2ξ̄−1
0

.

(9)

Remark The auxiliary function H(ξ) defined in Eq. (8) is quite different from that for a crack in a con-
focal elliptical inhomogeneity in Wu and Chen [12]. In deriving Eq. (9), we have utilized the fact that
the singular parts of ϕ2(ξ) and ψ2(ξ) at ξ = ξ0, denoted, respectively, by ϕs(ξ) and ψs(ξ), are given by

ϕs(ξ) = − iμ(b1+ib2)
π(κ2+1) ln(ξ − ξ0), ψs(ξ) = iμ(b1−ib2)

π(κ2+1) ln(ξ − ξ0) + iμ(b1+ib2)
π(κ2+1)

ξ20 (ξ̄20+1)

ξ̄0(ξ
2
0−1)

1
ξ−ξ0

(see Suo [13] for

more details).

Consequently, the pair of analytic functions ϕ2(ξ) andψ2(ξ) can be derived fromEqs. (8) and (9) as follows

ϕ2(ξ) = − iμ(b1 + ib2)

π(κ2 + 1)
ln(ξ − ξ0) + iaμεR2(κ1 + 1)

κ2 − κ1 + R2κ1(κ2 + 1)

1

ξ

− iμ(κ1 + 1)(b1 + ib2)

πκ1(κ2 + 1)2

+∞∑
n=0

Mn ln

(
1

R2nξ
− ξ̄0

)
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− iμ(b1 − ib2)
[
ξ0(κ1 − κ2)(R2 − 1)(R2 − ξ̄20 ) + R2(κ1 + 1)(ξ0 − ξ̄0)(1 − |ξ0|2)

]

πκ1(κ2 + 1)2R2 |ξ0|2 (ξ̄20 − 1)

+∞∑
n=0

Mn

R2nξ − ξ̄−1
0

,

(10)

ψ2(ξ) = iμ(b1 − ib2)

π(κ2 + 1)
ln(ξ − ξ0) + iμ(b1 + ib2)

π(κ2 + 1)

ξ20 (ξ̄20 + 1)

ξ̄0(ξ
2
0 − 1)

1

ξ − ξ0

+
iμ(b1 + ib2)

(
(κ1 − κ2)

[
ξ2(ξ20 − 1) − ξξ0(R4 + 1) − (ξ20 + R4)

]
+R2(κ2 + 1)

[
ξ2(ξ20 − 1) − 2ξ0ξ − (ξ20 + 1)

]
)

πR2(κ1 + 1)(κ2 + 1)(ξ20 − 1)(ξ2 − 1)

+ iaμε
{
(κ1 − κ2)(R4 + 1) + R2(κ2 + 1)

[
ξ2(κ1 + 1) + κ1 − 1

]}

ξ(ξ2 − 1)
[
κ2 − κ1 + R2κ1(κ2 + 1)

]

+ iμ(κ2 − κ1)(b1 − ib2)

π(κ1 + 1)(κ2 + 1)
ln(R2ξ−1 − ξ̄0) + iμκ1(κ2 + 1)(b1 − ib2)

π(κ1 + 1)(κ2 + 1)
ln(ξ−1 − ξ̄0)

+ ξ(κ2 − κ1)(ξ
2 + R4) − ξ R2(κ2 + 1)(ξ2 + 1)

R2(ξ2 − 1)(κ1 + 1)

×

⎧⎪⎪⎨
⎪⎪⎩

− iμ(κ1+1)(b1+ib2)
πκ1(κ2+1)2

+∞∑
n=0

Mn

ξ(R2n ξ̄0ξ−1)

+ iμ(b1−ib2)
[
ξ0(κ1−κ2)(R2−1)(R2−ξ̄20 )+R2(κ1+1)(ξ0−ξ̄0)(1−|ξ0|2)

]
πκ1(κ2+1)2R2|ξ0|2(ξ̄20 −1)

+∞∑
n=0

R2nMn

(R2nξ−ξ̄−1
0 )2

⎫⎪⎪⎬
⎪⎪⎭

, (11)

where

M = κ1 − κ2

κ1(κ2 + 1)
, |M| < 1. (12)

The appearance of the series in Eqs. (10) and (11) is due to the fact that the singularities in H(ξ) can be located
at points other than ξ = 0, ∞. By using D’Alembert’s ratio test, the series appearing in Eqs. (10) and (11) are
found to be always convergent. By satisfying moment balance on the circular disk: |z| = ρ, ρ → +∞, the
rigid-body rotation of the anticrack can be uniquely determined as

ε = κ1(R2 − M)

πa(κ1 + 1)(κ2 + 1)

[
(R2 − 1)2(κ1 − κ2)

R4(κ1 + 1)
− (ξ0 − ξ̄0)

2

R2 |ξ0|2
]
Re

{
ξ0(b1 + ib2)

ξ20 − 1

}

+ κ1(R2 − M)
[
κ1(κ2 + 1) + R2(κ2 − κ1)

]

πaR2(κ1 + 1)2(κ2 + 1)
Re

{
ξ−1
0 (b1 + ib2)

}

− κ1 − κ2 + R2(κ2 + 1)

πaR2(κ1 + 1)(κ2 + 1)2
Re

{
ξ̄−1
0 (b1 + ib2)

}

+ κ1 − κ2 + R2(κ2 + 1)

πaR4 |ξ0|2 (κ1 + 1)2(κ2 + 1)2

×Re

{
(b1 + ib2)

[
ξ̄0(κ1 − κ2)(R2 − 1)(R2 − ξ20 ) + R2(κ1 + 1)(ξ0 − ξ̄0)(|ξ0|2 − 1)

]

ξ20 − 1

}
. (13)

Although both ϕ2(ξ) and ψ2(ξ) contain series, the rigid-body rotation of the anticrack in Eq. (13) is in closed-
form. When the edge dislocation is located on thex1-axis with ξ0 = ξ̄0, the rigid-body rotation in Eq. (13)
becomes

ε = (κ1 − κ2)(R2 − 1)2

πaR2(κ1 + 1)(κ2 + 1)

b1
ξ0(ξ

2
0 − 1)

+ κ2 − 1

πa(κ2 + 1)

b1
ξ0

. (14)

It is deduced from Eq. (14) that ε = 0 when the edge dislocation is located at

ξ0 = ±
√
1 + (κ2 − κ1)(R − R−1)2

(κ1 + 1)(κ2 − 1)
, κ2 > κ1 � 1. (15)
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When κ1 = κ2 = κ , Eq. (13) becomes

ε = 1

aπ
Re

{[
2ξ̄0 − ξ0(ξ

2
0 + ξ̄20 )

(κ + 1) |ξ0|2 (ξ20 − 1)
+ 1

ξ0

]
(b1 + ib2)

}
. (16)

Furthermore, when the edge dislocation is located on the x1-axis, Eq. (16) reduces to

ε = b1(κ − 1)

πaξ0(κ + 1)
, (17)

which is simply the classical result by Dundurs and Markenscoff [7].
Using the relationships in Eqs. (5) and (6), the pair of analytic functions ϕ1(ξ) and ψ1(ξ) can be further

developed to the form

ϕ1(ξ) = − iμ(b1 + ib2)

π(κ1 + 1)
ln(ξ − ξ0) + iaμεR2(κ2 + 1)

κ2 − κ1 + R2κ1(κ2 + 1)

1

ξ
− iμ(b1 + ib2)

πκ1(κ2 + 1)

+∞∑
n=0

Mn ln

(
1

R2nξ
− ξ̄0

)

−
iμ(b1 − ib2)

[
ξ0(κ1 − κ2)(R

2 − 1)(R2 − ξ̄20 ) + R2(κ1 + 1)(ξ0 − ξ̄0)(1 − |ξ0|2)
]

πκ1(κ1 + 1)(κ2 + 1)R2 |ξ0|2 (ξ̄20 − 1)

+∞∑
n=0

Mn

R2nξ − ξ̄−1
0

,

(18)

ψ1(ξ) = iκ1μ(b1 − ib2)

π(κ1 + 1)
ln(ξ−1 − ξ̄0) + iaμε(κ2 − κ1)ξ

κ2 − κ1 + R2κ1(κ2 + 1)
+ iaμε

ξ
+ iμ(b1 − ib2)

π(κ2 + 1)

+∞∑
n=0

Mn ln(ξ − R2nξ0)

+
iμ(b1 + ib2)

[
ξ̄0(κ1 − κ2)(R

2 − 1)(R2 − ξ20 ) + R2(κ1 + 1)(ξ̄0 − ξ0)(1 − |ξ0|2)
]

π(κ1 + 1)(κ2 + 1)R2 |ξ0|2 (ξ20 − 1)

+∞∑
n=0

Mn

R2nξ−1 − ξ−1
0

+ ξ(ξ2 + 1)

ξ2 − 1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

iμ(b1+ib2)
π(κ1+1)

1
ξ−ξ0

+ iaμεR2(κ2+1)
κ2−κ1+R2κ1(κ2+1)

1
ξ2

+ iμ(b1+ib2)
πκ1(κ2+1)

+∞∑
n=0

Mn

ξ(R2n ξ̄0ξ−1)

+ iμ(b1−ib2)
[
ξ0(κ2−κ1)(R2−1)(R2−ξ̄20 )+R2(κ1+1)(ξ0−ξ̄0)(|ξ0|2−1)

]
πκ1(κ1+1)(κ2+1)R2|ξ0|2(ξ̄20−1)

+∞∑
n=0

R2nMn

(R2nξ−ξ̄−1
0 )2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(19)

The singular stress field near the right tip of the anticrack can be extracted from the full-field solution derived
in Eqs. (18) and (19) as follows

σ11 = SI√
2πr(1 − κ1)

[
(3 + κ1) cos

θ

2
− sin θ sin

3θ

2

]

− SII√
2πr(1 − κ1)

[
(3 − κ1) sin

θ

2
+ sin θ cos

3θ

2

]
,

σ22 = SI√
2πr(1 − κ1)

[
(1 − κ1) cos

θ

2
+ sin θ sin

3θ

2

]

+ SII√
2πr(1 − κ1)

[
−(1 + κ1) sin

θ

2
+ sin θ cos

3θ

2

]
,

σ12 = SI√
2πr(1 − κ1)

[
(1 + κ1) sin

θ

2
+ sin θ cos

3θ

2

]

+ SII√
2πr(1 − κ1)

[
(1 − κ1) cos

θ

2
− sin θ sin

3θ

2

]
, (20)

where z − a = reiθ with r and θ being the usual local polar coordinates, and SI and SII are, respectively, the
mode I and mode II stress intensity factors determined explicitly as

SI − iSII = (1 − κ1)

√
π

a
ϕ′
1(1)
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= iμ(κ1 − 1)(b1 + ib2)√
πa(κ1 + 1)

1

1 − ξ0
+ i

√
πaμεR2(κ1 − 1)(κ2 + 1)

κ2 − κ1 + R2κ1(κ2 + 1)
+ iμ(κ1 − 1)(b1 + ib2)√

πaκ1(κ2 + 1)

+∞∑
n=0

Mn

R2n ξ̄0 − 1

+
iμ(κ1 − 1)(b1 − ib2)

[
ξ0(κ2 − κ1)(R

2 − 1)(R2 − ξ̄20 ) + R2(κ1 + 1)(ξ0 − ξ̄0)(|ξ0|2 − 1)
]

√
πaκ1(κ1 + 1)(κ2 + 1)R2 |ξ0|2 (ξ̄20 − 1)

+∞∑
n=0

R2nMn

(R2n − ξ̄−1
0 )2

.

(21)

The derivation of Eqs. (20) and (21) can be found in Appendix B.When the edge dislocation lies on the x1-axis
with ξ0 = ξ̄0, we have from Eq. (22) that

SI = b2μ(κ1 − 1)√
πa(κ1 + 1)

1

ξ0 − 1
− b2μ(κ1 − 1)√

πaκ1(κ2 + 1)

+∞∑
n=0

Mn

R2nξ0 − 1

+ b2μ(κ1 − 1)(κ2 − κ1)(R2 − 1)(R2 − ξ20 )√
πaκ1(κ1 + 1)(κ2 + 1)R2ξ0(ξ

2
0 − 1)

+∞∑
n=0

R2nMn

(R2n − ξ−1
0 )2

,

SII = b1μ(κ1 − 1)√
πa(κ1 + 1)

1

ξ0 − 1
− b1μ(κ1 − 1)√

πa
[
κ2 − κ1 + R2κ1(κ2 + 1)

]
ξ0

[
(κ1 − κ2)(R2 − 1)2

(κ1 + 1)(ξ20 − 1)
+ R2(κ2 − 1)

]

− b1μ(κ1 − 1)√
πaκ1(κ2 + 1)

+∞∑
n=0

Mn

R2nξ0 − 1
− b1μ(κ1 − 1)(κ2 − κ1)(R2 − 1)(R2 − ξ20 )√

πaκ1(κ1 + 1)(κ2 + 1)R2ξ0(ξ
2
0 − 1)

+∞∑
n=0

R2nMn

(R2n − ξ−1
0 )2

.

(22)

Furthermore, when κ1 = κ2 = κ , Eq. (22) reduces to

SI = b2μ(κ − 1)2√
πaκ(κ + 1)

1

ξ0 − 1
, SII = b1μ(κ − 1)2√

πaκ(κ + 1)

1

ξ0(ξ0 − 1)
. (23)

In a similar manner, the mode I and mode II stress intensity factors at the left anticrack tip can be determined
as

SI − iSII = (1 − κ1)

√
π

a
ϕ′
1(−1)

= − iμ(κ1 − 1)(b1 + ib2)√
πa(κ1 + 1)

1

ξ0 + 1
+ i

√
πaμεR2(κ1 − 1)(κ2 + 1)

κ2 − κ1 + R2κ1(κ2 + 1)
+ iμ(κ1 − 1)(b1 + ib2)√

πaκ1(κ2 + 1)

×
+∞∑
n=0

Mn

R2n ξ̄0 + 1

+ iμ(κ1 − 1)(b1 − ib2)
[
ξ0(κ2 − κ1)(R2 − 1)(R2 − ξ̄20 ) + R2(κ1 + 1)(ξ0 − ξ̄0)(|ξ0|2 − 1)

]
√

πaκ1(κ1 + 1)(κ2 + 1)R2 |ξ0|2 (ξ̄20 − 1)

×
+∞∑
n=0

R2nMn

(R2n + ξ̄−1
0 )2

. (24)

When the edge dislocation lies on the x1-axis, Eq. (24) becomes

SI = b2μ(κ1 − 1)√
πa(κ1 + 1)

1

ξ0 + 1
− b2μ(κ1 − 1)√

πaκ1(κ2 + 1)

+∞∑
n=0

Mn

R2nξ0 + 1

+ b2μ(κ1 − 1)(κ2 − κ1)(R2 − 1)(R2 − ξ20 )√
πaκ1(κ1 + 1)(κ2 + 1)R2ξ0(ξ

2
0 − 1)

+∞∑
n=0

R2nMn

(R2n + ξ−1
0 )2

,
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SII = b1μ(κ1 − 1)√
πa(κ1 + 1)

1

ξ0 + 1
− b1μ(κ1 − 1)√

πa
[
κ2 − κ1 + R2κ1(κ2 + 1)

]
ξ0

[
(κ1 − κ2)(R2 − 1)2

(κ1 + 1)(ξ20 − 1)
+ R2(κ2 − 1)

]

− b1μ(κ1 − 1)√
πaκ1(κ2 + 1)

+∞∑
n=0

Mn

R2nξ0 + 1
− b1μ(κ1 − 1)(κ2 − κ1)(R2 − 1)(R2 − ξ20 )√

πaκ1(κ1 + 1)(κ2 + 1)R2ξ0(ξ
2
0 − 1)

+∞∑
n=0

R2nMn

(R2n + ξ−1
0 )2

.

(25)

Furthermore, when κ1 = κ2 = κ , Eq. (25) reduces to

SI = b2μ(κ − 1)2√
πaκ(κ + 1)

1

ξ0 + 1
, SII = − b1μ(κ − 1)2√

πaκ(κ + 1)

1

ξ0(ξ0 + 1)
. (26)

It is verified that Eqs. (23) and (26) can also be extracted from the full-field expression of the stresses along
the entire x1-axis given in Dundurs and Markenscoff [7].

We see from the asymptotic singular stress field in Eq. (20) that the definition of SI is in complete agreement
with that introduced byWang et al. [9] for a rigid line inhomogeneity as opposed to the definition of SII which is
quite different. In the discussion byWang et al. [9], mode I and mode II deformations are in fact identical after
excluding the pre-factors. The present mode II deformation has not been identified by Wang et al. [9] mainly
because they considered only uniform stresses at infinity, and, as a result, the actual mode II deformation
observed here is not excited by the uniform remote loading.

The driving force on either the right or the left anticrack tip, denoted by J , can be determined as [4]

J = − κ1(1 + κ1)

2μ(1 − κ1)2
(S2I + S2II). (27)

As a result of the geometry, the right anticrack tip tends to contract toward the left while the left anticrack
tip tends to contract toward the right. Using the Peach–Koehler formula [14] or evaluating of the J integrals
around the center of the edge dislocation [15], the image force acting on the edge dislocation can also be
obtained (we omit its rather lengthy expression). Here, we point out that the image force gives a quantitative
description of changes in the interaction energy [14,16].

It follows from Eqs. (23), (26) and (27) that when κ1 = κ2 = κ and the dislocation lies on the x1-axis, the
x1 component of the image force acting on the edge dislocation, denoted as F1, which is equal to the driving
force on the left anticrack tip minus that on the right anticrack tip, is given by

F1 = 2μ(κ − 1)2(b21 + ξ20 b
2
2)

πaκ(κ + 1)ξ0(ξ20 − 1)2
, (28)

which is found to be consistent with the result in Dundurs and Markenscoff [7].

4 Conclusions

We have presented an analytical solution of the interaction problem associated with an edge dislocation in
the vicinity of a confocally coated anticrack. An auxiliary function defined in the whole image plane is
constructed in Eq. (8) with its closed-form representation given by Eq. (9) following an application of the
generalized Liouville’s theorem. Subsequently, the two pairs of analytic functions ϕi (ξ), ψi (ξ) (i = 1, 2) are
given by Eqs. (10), (11), (18) and (19). A closed-form expression of the rigid-body rotation of the anticrack
is given by Eq. (13). The singular stress field near the two anticrack tips is completely governed by two stress
intensity factors SI and SII which are explicitly determined by Eq. (21) at the right tip and Eq. (24) at the left
tip. The rationales for the introduced stress intensity factors and the driving force on the two anticrack tips are
demonstrated through the indirect determination of the image force on the edge dislocation in Eq. (28).

When the coating and matrix have distinct shear moduli, the two pairs of complex potentials
ϕi (ξ), ψi (ξ) (i = 1, 2) must be expanded in standard Laurent series. The coefficients in the Laurent series
together with the rigid-body rotation of the anticrack would then be determined through the solution of a
coupled set of an infinite number of linear algebraic equations.
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Appendix A

It follows fromEq. (2) that the continuity conditions of tractions and displacements across the perfectly bonded
coating-matrix interface L can be expressed in terms of ϕi (ξ), ψi (ξ), i = 1, 2 in the image ξ -plane as follows

ϕ1(ξ) − R4(ξ2+1)
ξ(ξ2−R4)

ϕ̄′
1

(
R2

ξ

)
+ ψ̄1

(
R2

ξ

)
= ϕ2(ξ) − R4(ξ2+1)

ξ(ξ2−R4)
ϕ̄′
2

(
R2

ξ

)
+ ψ̄2

(
R2

ξ

)
,

κ1ϕ1(ξ) + R4(ξ2+1)
ξ(ξ2−R4)

ϕ̄′
1

(
R2

ξ

)
− ψ̄1

(
R2

ξ

)
= κ2ϕ2(ξ) + R4(ξ2+1)

ξ(ξ2−R4)
ϕ̄′
2

(
R2

ξ

)
− ψ̄2

(
R2

ξ

)
,

|ξ | = R. (A.1)

By adding the two conditions in Eq. (A.1), one can obtain

ϕ1(ξ) = κ2 + 1

κ1 + 1
ϕ2(ξ), |ξ | = R. (A.2)

By considering Eq. (A.2) and the analytic continuation in Eq. (5), we can arrive at the expression in Eq. (6).
In addition, substitution of Eqs. (5) and (A.2) into Eq. (A.1)1 will finally result in Eq. (7).

Appendix B

When z → a, the pair of analytic functions ϕ1(z) and ψ1(z) are

ϕ1(z) ∼= 2S̄√
2π(1 − κ1)

√
z − a, ψ1(z) ∼= − 2κ1S + S̄√

2π(1 − κ1)

√
z − a, as z → a, (B.1)

where S = SI + iSII. By substituting Eq. (B.1) into Eq. (1), we arrive at the singular stress field at the right tip
of the anticrack in Eq. (20). In fact, the formula of the stress intensity factors in Eq. (21) is derived with the
aid of Eq. (B.1).
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