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Abstract Void growth and morphology evolution are studied using a 3D representative volume element with
a spherical void embedded in an FCC single crystal. The plastic flow contours are studied to determine the
scenarios leading to fully plastic flow and plastic flow with elastic region. Further, the effect of anisotropy on
void growth is studied through three initial crystallographic orientations (ICOs) [100], [110], & [111] with
respect to loading direction. Void growth and macroscopic stress variations with applied strain are obtained
from our simulations. It is observed that the peak stress corresponds to rapid void growth initiation. The peak
stress is found to be dependent on void volume fraction and ICO. Furthermore, an additional geometrical
parameter, diagonal distortions (Ddi ) is introduced to classify the non-spheroidal void shapes observed in
deformed anisotropic crystal.

Keywords Void growth · Void morphology · Ductile failure · Crystal plasticity

1 Introduction

Micromechanical analysis of the ductile failure process is on an increasing trend due to its ability to model the
behavior of modern material with complex microstructures effectively. The ductile failure process typically
starts with nucleation of voids by fracture and de-cohesion of the second phase particles. The nucleated voids
then grow and coalesce to form micro-cracks, which eventually lead to failure of the material. The ductile
failure process depends primarily on the geometry of the void (i.e., void shape, void size, distribution of
voids), material anisotropy, work hardening, and the stress state around it. Several studies have already been
performed to understand this process, both theoretically and experimentally [1–6]. Through the experimental
and theoretical studies, the process of void growth is relatively well understood using phenomenological
methods. However, the evolution of the morphology of the voids, which is an essential factor in determining
the initiation of coalescence and, in turn, the ductile failure, is sparingly studied. A brief of the work in this
field is presented here.

The initial theoretical model for void growth was proposed by Rice and Tracey [7], who studied the
void growth in the infinite rigid-plastic medium. They observed that under tensile loading with mean stress
superposed over it, the volume-changing part of void growth dominates the shape-changing part at higher
values of remote stress. However, at lower and moderate values of remote stress, these contributions are
equally important. Following that Gurson [1] developed yield function using unit cell model with an isolated
cylindrical and spherical void in a rigid-plastic cell for two types of flow field, one with fully plastic flow
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(henceforth referred to as Gurson’s model-1) and other with plastic flow with rigid region (henceforth referred
to as Gurson’s model-2). In Gurson’s model-2, the extent of rigid region was assumed based on 2D finite
element studies [8–10] that were performed using isotropic material. These studies suggested that a part of
matrix does not attain plastic yield. Gurson observed that the model-2 had no functional form for the yield
locus. Hence, much of the developments of Gurson’s work were focused on model-1 [11–15]. Except for
few studies on yield criterion near void coalescence from Benzerga and Leblond [16], Keralavarma and
Chockalingam [17], and Torki et al. [18]. In these studies, plastic flow was considered limited to the ligament
region. Benzerga and Leblond [16] proposed an analytical yield function for porous ductile solid using a
cylindrical unit cell containing a coaxial cylindrical void with plastic flow. Keralavarma and Chockalingam
[17] extended this work for orthotropic Hill-type matrix using similar unit cell definition. Torki et al. [18]
developed an upper bound model and proposed a heuristic modification to capture the behavior of extremely
flat or elongated voids. The unit cell definition in these studies was adopted from Thomason [19]. Gurson’s
work was for isotropic material; however, metals are known to exhibit anisotropic behavior. Therefore, in this
study, we are investigating the extent of rigid region in the anisotropic material using crystal plasticity.

Gurson’s model and its initial modifications by Tvergaard [20], and later byMochiet et al. [15] assume that
voids are initially spherical, and that shape is preserved during the deformation. However, in reality, initial void
shapes are not spherical, and with deformation, the shape tends to change significantly [21–23]. Gologanu et
al. [12,13] improved Gurson’s model-1 for ellipsoidal voids for prolate and oblate voids. Recently, Madou and
Leblond [24] extended Gurson’s model-1 for the general ellipsoidal void in an isotropic rigid-plastic matrix.

In linewith these theoretical studies, experimental studieswere also performed. Crepin et al. [23] performed
experiments to demonstrate slip as the underlying mechanisms behind the hexagonal cross section of voids.
Babout et al. [25] performed in situ tensile tests and analyzed both local and global void growth using X-ray
tomography. While local void growth rates showed a reasonable correlation with analytical models from Rice
and Tracey [7], the global void growth rates from Rice and Tracey model were shown to be over predicting. In
their experimental study of ductile fracture in steel, Benzerga et al. [26] and Khan and Liang [27] found that
all the stages of the process of ductile failure were anisotropic. These are essential inputs for developing an
accurate damage mechanics model for predicting ductile failure. In experimental work on the ductile fracture
by Morgeneyer et al. [28], on the Al–Cu–Mg sheet, the evolution of void morphology is observed under
longitudinal and transverse loading. They found that in the case of longitudinal loading, the voids are strongly
prolate and merge in the loading direction, whereas with transverse loading voids close into a penny shaped
void. This observation again points towards the strong influence of material anisotropy on the evolution of void
morphology. It is important to note that voidmorphology changes occurring during the progressive deformation
tend to determine the mechanism of void coalescence at a later stage in the ductile failure process [29]. Gan et
al. [30] analyzed the effect of crystal lattice rotation in an aluminum single crystal under compression loading
for a spherical void. Weck et al. [31] conducted the experimental studies by using model microstructures
fabricated exclusively for the experiments; they studied the shape evolution of voids using X-ray tomography.
And Xu et al. [21] reconstructed the 3Dmorphology of the void using EBSDwith the help of the ion beam and
examined the relation with the crystallographic orientation. Lecarme et al. [32] observed large heterogeneity
in the void growth rates of individual voids and also found that the local crystal orientation had a significant
impact. And more recently, the void growth in titanium was studied by Pushkareva et al. [33] with emphasis
on the evolution of its shape and effect of strain localization on it. These experimental investigations provide
valuable inputs and validation data for theoretical models (phenomenological and micromechanics-based unit
cell models). However, the experimental studies though useful, have the challenges of varying the control
parameters effectively to study their influence on the evolution of void morphology and growth rate.

Koplik and Needleman [34] compared the results from Gurson’s [1] model-1 with results from their study
accounting for void interaction effects and void shape changes and found to be in good agreement. Xia and Shih
[35,36], Xia et al. [37], Ruggieri et al. [38], Kuna and Sun [39], Faleskog and Shih. [40], and Faleskog et al.
[41] applied unit cell models to calibrate Gurson’s [1] model-1 and its modification by Tvergaard [20]. Further
developments in the unit cell calculations were considering the influence of the microstructural aspects such as
initial crystallographic orientation, crystallographic slip, and strain hardening on void growth and coalescence
models performed on single crystal (Gan and Kysar [30], Schacht et al. [42], Potirniche et al. [43], Yerra et al.
[6], Yang et al. [44], Ha and Kim et al. [45]).

Potirniche et al. [43] in their study found a strong relationship between void growth rate and void shape
distortion with crystal lattice orientation w.r.t the loading direction for single crystals under uniaxial loading.
However, under biaxial loading, this effect was observed to be negligible. Ha and Kim [45] and Schacht et al.
[42] independently studied the evolution of voids for a single and pair of microvoids at different orientations
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in 3D unit cell for FCC single crystal. Ha and Kim [45] studied the effect of initial crystallographic orientation
and stress triaxiality on void growth and coalescence. Schacht et al. [42] found that initial crystal orientation
affects the formation of deformation bands across the micro-voids. Recently, Ling et al. [46] presented a void
growth study for FCC single crystal, which attempted to formulate an elasto-viscoplastic model for porous
single-crystals based on unit cell simulations. These studies on single crystals are important as they are ideal for
exploring the deformation mechanisms at the grain level. Additionally, in polycrystalline material sometimes
voids originate from very small particles (e.g., in high strength steels [47,48]) or voids are embedded in coarse
grain (e.g., in coarse-grained Al alloys [49]). In such cases, where the void size is very small compared to the
grain size, the plastic activity around the void develops as if it was embedded in a large single crystal. All the
above studies focused on the void growth and coalescence were aimed at understanding the impact of either
initial crystallographic orientations or the stress triaxiality.

However, no comprehensive study so far has been performed to authors notice on understanding the
evolution of void morphology, which plays an important role in the void growth and coalescence as observed
in the studies from Weck et al. [31], Xu et al. [21], and Morgeneyer et al. [28]. Hence, in this paper, a generic
classification of the void shapes is proposed using additional shape parameter “diagonal distortion” to study
the evolving voids with the deformation. And the factors leading to these void shapes are investigated. The
study is based on the initially spheroidal void, which grows into different shapes as it deforms. The significant
factors affecting the void shape evolution considered are material anisotropy, triaxial boundary strain, and
initial size of the voids representing the void volume fraction. Additionally, the void growth evaluated from
this study is compared with void growth rate obtained from Rice and Tracey model [7,19].

The regions around the void are investigated, which are either elastic or rigid with respect to the rest of
the matrix. A plastic strain (εp) value of less than 0.2% is considered elastic. The plastic and rigid regions
around void are compared with the phenomenological unit cell model fromGurson. This provides fundamental
insights to develop phenomenological models for an anisotropic media. The rest of this paper is organized in
the following order. Sect. 2 explains the evolution of void morphology. Sect. 3 discusses the methodology used
in this study, and results and key conclusions are presented in Sects. 4 and 5, respectively.

2 Evolution of void morphology

Void growth is a non-homogeneous deformation process. Voids tend to evolve into different morphologies as
they grow under applied stress or strain field. The void growth and onset of void coalescence are functions
of the initial shape of the void and its evolution with load, void size, strain hardening, and stress triaxiality
[7,12,13,19,50–52]. Rice and Tracey’s void growth model included the effect of dilatation and void shape
using amplification factors, D and (1 + E), respectively. The contribution from the void shape change part was
found to be significant for low and moderate stress triaxialities (see Huang 1991b [53] for void growth at low-
stress triaxiality). Gurson-Needleman-Tvergaard model is an extension of Gurson’s model-1 by Needleman
and Tvergaard in 1984 [11]. They introduced heuristic parameters to predict the void growth rates accurately.
Gologanu-Leblond-Devaux [12,13] proposed a rate based void evolution model which was later extended by
Pardoen and Hutchinson [50] to include the strain hardening effects and criterion for onset of coalescence.
Ragab [51] reviewed and consolidated the studies on the void shape evolution and developed a set of semi-
empirical laws using a total strain formulation. These laws were a function of nucleation strain, equivalent
plastic strain, initial void aspect ratio, hardening exponent, and stress triaxiality. Gologanu et al. [12] proposed
an equation for the aspect of the void termed as a shape parameter. The shape parameter is particularly of
interest for coalescence studies. The coalescence of voids depends on the void spacing and the void shape.
The shape parameter ξi , is defined as

ξi = ln

(
R2

Ri

)
; i = 1, 3 (1)

Where, Ri are the void radii in the transverse principal directions (refer to Fig. 1) and R2 is void radius in
principal loading direction. Gologanu et al. [12] proposed a relation for ξ̇ using following Eq. (2) given as:

ξ̇ = h(D33 − D11) + 3

(
1 − 3α1

f
+ 3α2 − 1

)
Dm,

α1 ≡ α (e1) , α2 ≡ α (e2) (2)
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Where D11 and D33 are the components ofmacroscopic strain rate, Dm ≡ 1
3 trD, e1 and e2 are the eccentricities

of void and unit cell, and h is an empirical factor which depends on the void eccentricity, e and stress triaxiality,
T . And it is defined as:

h (e1, T ) = 2 − T 2 + (
T 2 − 1

)
e21 (3)

For a spherical void in confocal matrix, the rate of the shape parameter, ξ̇ = 0 as α1 = α2 = 1
3 . In their

study, the initial void shape and void shape change with deformation is spheroidal. However, non-spheroidal
void shapes post deformation are observed in the experimental and numerical studies such as [23,28,31,45,
54,55]. The details of the non-spheroidal void shapes post-deformation and classification of its morphology
are discussed in Sect. 4.3 using newly introduced parameter. Additionally, studies were based on the isotropic
elasto-plastic material, which fails to account for the microscopic effects such as slip interaction, lattice
spin, orientation effects, and strain hardening (except for [50] which included strain hardening). Accurate
representation of material anisotropy is inherently accounted for by using crystal plasticity based constitutive
model as it considers the slip systems in single crystals. Crystal plasticity framework used in the study is
described in Sect. 3.1. The present study focuses on hardening in the regime where plastic strains dominate
over elastic strain. The slip on a slip system is initiated when the resolved shear stress (the Schmid stress) on
the slip system is more than the critical resolved shear stress. Non-Schmid phenomena such as diffusion and
twinning are not considered as these are not common in FCC copper single crystal. Section 3.1 describes the
material hardening law.

3 Methodology

3.1 Constitutive relation for single crystal

The finite element based study of the void growth in single-crystal (FCC) requires a constitutive theory based
on crystal plasticity that accurately describes the kinematics and kinetics of the crystal behavior in deformation.
The theory for kinematics of crystal plasticity used in this paper follows the approach fromHill, Rice, andAsaro
[56–58]. The implementation is similar to that of Huang 1991 [59] and Kysar and Hall 1997 [60]. Deformation
gradient is defined by F = ∂x/∂X where, X is the initial configuration and x the current configuration. The
deformation gradient is split into elastic and plastic parts through multiplicative decomposition into the form
F = FeF p . Further, the velocity gradient with respect to the current configuration x is given by L = ∂v/∂x

and the elastic and plastic parts of the velocity gradient are written as, L = Le + L p where Le = Ḟ
e
Fe−1

and
L p = Fe Ḟ

p
F p−1

Fe−1
.

The constitutive behavior of the single crystal determined by the flow rule, hardening law, and the stress–
strain response describes the kinetics:

∇
τ = Ce:De and De = 1

2
(Le + LeT ) (4)

Where, τ is the second Piola-Kirchhoff stress, related to the Cauchy stress σ by τ = ∣∣F∣∣ σ and Ce is the

I V th order elastic stiffness tensor in the global system of coordinates. The resolved shear stresses on the slip
systems α are given by

τα = σ :Pα (5)

Where Pα = sym(sαmα) is the Schmid tensor for every slip system α, and sα and mα are the slip direction
and slip plane of the slip system, respectively. For FCC crystals, crystallographic slip is assumed to occur
on the 〈110〉 {111} slip systems. The components of the slip plane normal and slip direction are presented in
Table 1. The plastic part of the velocity gradient, for a slip rate γ̇ α , on the slip systems is

L p =
∑

α
γ̇ αPα (6)

The plastic slip rate γ̇ α is defined in terms of resolved shear stress as

γ̇ α = k̇α

(
τα

gα

) ∣∣∣∣∣
τα

gα

∣∣∣∣∣
n−1

(7)
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Table 1 Designation of slip systems in FCC single crystal [63]

Slip plane (111) (11̄1̄) (1̄11) (11̄1)

Slip direction [01̄1] [101̄] [1̄10] [011] [1̄1̄] [11̄0] [01̄1] [1̄1̄] [110] [011] [101̄] [1̄1̄0]

Where n is the rate sensitivity exponent. Constant k̇
α
is the reference strain rate on slip system α, gα is the

current strength of the slip system α. The strain hardening is characterized by the evolution of the current
strength gα of the slip system α through the incremental relation:

gα =
∑

β
hαβ γ̇ β (8)

Where hαβ(α �= β) is the latent hardening modulus and β is number of activated slip systems and hαα (no
sum) is the self hardening modulus. The latent hardening modulus is given by hαβ = qh(γ ) (α �= β) where
q is constant. The hardening modulus hαα is proposed by Pierce, Asaro, and Needleman [61],

hαα = h (γ ) = h0sech
2
∣∣∣∣ h0γ

(τs−τ0)

∣∣∣∣ (no sum on α) (9)

Where, h0 is hardening modulus at initial yield, τ0 is the initial yield stress, τs is the stage I stress, and γ is
Taylor’s cumulative shear strain on all the slip systems defined as

γ =
∑

α

∫ t
0 |γ̇ (α)|dt (10)

This definition of γ generalizes the hardening law in Eq. (8) suitable for single slip to multiple slip situation.
Pierce et al. 1982 [61] showed a good fit for this hardening behavior with experiments from Chang and Asaro
1980 [62]. This hardening law is henceforth represented as Power law Crystal Hardening Behavior (PCHB).

Plastic flow on a slip system α commences when τα � τα
cr , where τα

cr is the critical shear stress value. The
slip systems on which the conditions are met are the critical slip systems where

τ̇ (α) = τ̇ (α)
cr = 
N

β=1 hαβ γ̇ (β) if γ̇ (α)> 0 (11)

and,

τ̇ (α) < τ̇ (α)
cr = 
N

β=1hαβ γ̇ (β) with γ̇ (α) = 0 (12)

The inequality for non-critical systems is, τα < τα
cr with γ̇ (α) = 0. Where N is the number of slip systems.

3.2 Problem formulation

The mechanics of void growth and shape evolution is studied using a representative volume element (RVE)
shown in Fig. 1. The RVE consists of a single spherical void embedded in the matrix material assumed to be
FCC single crystal that is modeled using constitutive relation described in Sect. 3.1. Slip systems for FCC
single crystal considered in this study are 〈110〉 {111} see Table 1 for details. The RVE is subjected to a triaxial
strain by applying a displacement along X1, X2, and X3 directions. A displacement value of δ is applied along
X2 direction and corresponding displacement of �δ is applied along X1 and X3 directions. Where, � is the
displacement ratio (see Fig. 1), it is defined as ratio of displacement in X3 (X1) direction to X2 direction. Several
previous studies on void growth and coalescence used boundary conditions to keep the stress triaxiality constant
[6,34,39,45]. However, in this study, the strain-controlled boundary conditions are used which resulted in high
stress triaxiality that varied with the applied strain. Further, these boundary conditions provide reliable results
in the post-cavitation (rapid void growth) regime. [40]. Similar boundary conditions were used by . [40,42–
44,64]. For the present study following values of displacement ratio, � = −0.75 and − 0.25 were employed.
These values correspond to a cell volume change of ± 5%, respectively. The selection of displacement ratio
in this manner allows for studying the void growth as well as void shrinkage.

Two coordinate systems are used in the study one represents the global or specimen coordinate system and
other the local or crystal coordinate system. Prior to loading, the orientation of the crystal axes with respect to
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Fig. 1 a Schematic of RVE describing the boundary conditions and initial crystallographic orientation. There are two coordinate
systems shown in the figure corresponding to the RVE orientation (solid line) and initial crystallographic orientation (dotted
line). The orientation of the crystal axes with respect to the global loading direction (X2), represents the initial crystallographic
orientation. b Radius of the initial spherical void and radii of deformed void on X1 − X2 mid plane

Fig. 2 Cut section of the FE model of the representative volume element for three void volume fractions

the global loading direction (X2) represents the initial crystallographic orientation (ICO). Nomenclature used
for the initial crystallographic orientation [lmn] is similar to the Muller index notation for the crystallographic
direction. Three different crystal orientations: [100], [110], and [111] are considered in this study. More specif-
ically, when the initial crystallographic orientation is [100], the crystal axis [100] aligns with the loading axis
X2. As we assumed a spherical void, one of the principal axes of the undeformed void coincides with the load-
ing direction. Three different sizes of the void with respect to the RVE length (r0/a0 = 0.149, 0.067, 0.031)

are used in the study. These void sizes represent the void volume fraction through the relation f0 = 4
3π

(
r0
2a0

)3
where f0 is the initial void volume fraction, r0 is the radius of the undeformed void, and a0 is the half-length
of the side of the enclosing cube. Therefore, representative void volume fraction values for the void sizes
considered are f0 = 0.001, 0.01 and 0.001. The initial void volume fraction values of f0 = 0.01 and 0.001
are apt for studying crystalline metals, whereas the initial void volume fraction of 0.1 is relatively large for
crystalline metals; however, such large values of the void volume fraction are possible in porous material [51],
for which this study may only apply qualitatively.

Three FE models representing three void sizes are shown in Fig. 2. The mesh is generated out of C3D8
elements in ABAQUS, the constitutive model for the crystal plasticity is applied through a user subroutine
UMAT in ABAQUS standard [59,60]. As simulations are computationally expensive, commercial FE software
ABAQUS with parallel processing is used instead of serial inhouse FE code. Each FE model is checked for
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Table 2 Material parameters for power law crystal hardening behavior (PCHB) [61,65]

C11 C12 C44 n γ̇ h0 τ0

170 GPa 123 GPa 75.2GPa 10 0.001 541.48 MPa 60.84 MPa

τs q q1

109.51 1 0

Fig. 3 Rigid (shaded) and plastic regions in the phenomenological model from Gurson [1]

the mesh convergence, which is achieved with 31104 elements for f0 = 0.001, 62552 elements for f0 = 0.01,
50376 elements for f0 = 0.1.

The material parameters for FCC copper single crystal used in this study are listed in Table 2 the values of
the parameters are adopted from Pierce et al. 1982 [61] and Jacobsen 1954 [65].

Where q and q1 are constants representing ratio of latent to self-hardeningmoduli within same and different
set of slip systems, respectively. The values of q = 1 (Taylor’s hardening) and q1 = 0 (as there is only one set of
slip system for FCC) are used in this study. The macroscopic stress components 
i (i = 1, 2, 3) are taken as
total normal force on the RVE face divided by the current total area of the face. Note that 
1 = 
3 �= 
2. The
macroscopic mean stress, 
m = 
1+
2+
3

3 and macroscopic equivalent stress is taken as 
eq = |
2 − 
1|.
This study is performed for factors namely initial void volume fractionvalues ( f0 = 0.001, f0 = 0.01, f0 =

0.1), ICO ( [100], [110], [111]), and displacement ratios (� = −0.25, � = −0.75) for PCHB represented by
Eq. (9).

4 Results and discussions

4.1 Plastic flow contours during void growth

The phenomenological unit cell models, such as the one proposed by Gurson [1], Benzerga and Leblond [16],
and Keralverma and Chockalingam [17] for upper bound yield function were derived assuming rigid-plastic
matrix material. The unit cell definition in these models was either based on fully plastic flow (Gurson’s
model-1) or plastic flow with rigid region (Gurson’s model-2), see Section 1. Schematic of the model from
Gurson [1] is shown in Fig. 3. The figure is a reconstruction from Gurson’s [1] work for an equivalent unit
cell. The unit cell is a void matrix aggregate with shaded conical region (top and bottom of void) representing
regions that did not attain plastic yield idealized here as rigid. Where, θ/2 is the half-angle of the rigid-plastic
transition boundary w.r.t vertical axis. As discussed in Sect. 1, the rigid plastic region in Gurson’s model-2 is
based on observations from numerical studies, which show that some portion of the unit cell remains elastic
during deformation.

Figures 4 and 5 show cumulative shear strain plots on the cross section of the 3D RVE taken on mid-plane
X1 − X2 at 5% applied strain. The gray color contour represents elastic region (γ < 0.002). The cumulative
shear strain over all slip systems (γ ) is defined in Eq. (10) and the 5% applied strain corresponds to rapid void
growth stage, the details about rapid void growth will be discussed later in Sect. 4.2. The parameters used



504 M. K. Karanam, V. R. Chinthapenta

(a) ICO = [100], 

=0.001

(b) ICO = [110], 

=0.001

(c) ICO = [111], 

=0.001

(d) ICO = [100], 

=0.01

(e) ICO = [110], 

=0.01

(f) ICO = [111], 

=0.01

(g) ICO = [100], 

=0.1

(h) ICO = [110], 

=0.1

(i) ICO = [111], 

=0.1

Fig. 4 The cumulative shear strain plots at 5% applied strain for displacement ratio, � = −0.25

in these figures, initial void volume fraction ( f0), displacement ratio (Γ ), and ICO are described in detail in
Sect. 3.2.

For � = −0.25, intense shear strain localization is observed near the void, with steep gradient towards the
boundary of RVE for smaller void volume fraction of f0 = 0.001. Results indicate that the cumulative shear
strain field near void changes significantly with ICO, see Fig. 4a–c. Peak plastic strain of 8.0 is observed for
applied remote strain of 0.05 and is distributed around the void positioned at ±45◦ from the loading direction
for ICO [100] orientation. The maximum shear strain regions are located along the ligament region for ICO
[110]. And for ICO [111], the maximum shear strain region is inclined at an angle to the horizontal. These
patterns aremore evident when the results are seen together with that for the void volume fraction of f0 = 0.01,
see Fig. 4d–f.

In the case of f0 = 0.01, the peak cumulative shear strain value of 3.0 for an applied remote strain of 0.05
is observed and the spread is limited to a small region around the void. This kind of shear strain localization
is however not seen for the larger void volume fraction of f0 = 0.1, see Fig. 4g–i. For f0 = 0.001&0.01,
the material shows a fully plastic flow for all the ICOs and the behavior is similar to the Gurson’s model-1.
However, for f0 = 0.1 a portion of unit cell remains elastic at applied remote strain of 0.05 with the spread
of elastic region approximately inside a truncated cone with included angle, θ ≈ 60◦. This behavior is closer
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Fig. 5 Spread of elastic region described by angle θ : a Fully plastic flow in line with Gurson’s model-1. b Plastic flow with
elastic region, contained within a cone angle of θ ≈600, similar to Gurson’s model-2. c The elastic region of irregular shape (gray
contour), which follows neither Gurson’s model-1 nor model-2

to Gurson’s model-2. The results for � = −0.75 shows a fully plastic flow for all the parameters considered
(the plots are not shown in this paper for brevity).

The extent of the elastic region up to 5% applied strain from this study is summarized in Fig. 5(a–c). In
the current study, the type of flow field in matrix material varies from fully plastic flow (Gurson’s model-1) to
plastic flow with elastic region (Gurson’s model-2). For ICO [100] and [110], the shape of the elastic region is
conical, but for ICO [111], the shape of the elastic region is irregular, see Fig. 5c. The elastic region positioned
at the top and bottom of void is in a conical zone of θ ≈ 60◦. It shows that Gurson’s model-2 is valid for ICO
[100] and [110] in developing a phenomenological model in an anisotropic material. Further, the spread of
elastic region is observed to be sensitive to the selected ICO and f0.

4.2 Void growth

In this section, the results from the simulations were analyzed to understand the effect of material anisotropy,
initial void volume fraction ( f0), and displacement ratio (Γ ) on the void growth. Figures 6, 7, and 8 compare
the mean void growth from the CPFEM simulation (R̄sim) to analytical mean void growth (R̄) obtained using
integrated form of the Rice and Tracey mean void growth rate for initially spherical void by Thomason [19].
Where R̄sim = mean (Rω) where ω is set of all nodes on the void surface and R̄ is given by Eq. (13)

R̄ = exp (Dε2) R0 (13)

Where, R0 is the initial radius of the spherical void, ε2 is the total applied strain on the RVE in tensile direction
and D is defined as

D = 0.558 sinh

(
3

2

σm

σY

)
+ 0.008 cosh

(
3

2

σm

σY

)
(14)

Where, σm
σY

= T and T is the stress triaxiality. The parameter D is used by Rice and Tracey to account for the
volume changing part of the void growth. The evolution of the mean radius of void is related to stress triaxiality
through parameter D defined inEq. (14). To calculate the analyticalmean void growth, stress triaxiality from the
simulations is required. However, the stress triaxiality vs. applied strain for a given initial void volume fraction
( f0) is different for each ICO. Hence, only two values of stress triaxiality (T = 0.33&3.0) are considered to
evaluate analyticalmean void growth fromEq. (13). The lower level of stress triaxiality (T = 0.33) corresponds
to uniaxial tension [66] and higher level of stress triaxiality (T = 3.0) is typical of a blunting crack tip [67].

The mean void growth and the normalized macroscopic stress (
2/σY ) variation with applied strain for
displacement ratio of Γ = −0.25, ICO [100], and f0 = 0.1, 0.01, &0.001 for PCHB are presented in Fig. 6a
and b.

Initial void volume fraction is observed to have a significant effect on the mean void growth, i.e., smaller
void leads to higher void growth and vice versa. [40,45], see Fig. 6a. It is also observed that the growth of
the initially smaller void exhibits three different regimes of void growth. The first stage is characterized by
slow void growth, followed by a stage of rapid void growth and then the third stage, where a reduced void
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Fig. 6 Comparison of a mean void growth vs. applied strain, and b normalized macroscopic stress vs. applied strain for three
values of initial void volume fractions ( f0 = 0.1, 0.01, &0.001), � = −0.25 and ICO [100]

Fig. 7 Comparison of a mean void growth versus applied strain, and b normalized macroscopic stress versus applied strain for
ICOs [100], [110], and [111], � = −0.25 and f0 = 0.001

growth is observed. [40]. Looking at Fig. 6b, it is observed that the initiation of the rapid void growth occurs
at peak macroscopic tensile stress around 2% applied strain for f0 = 0.001. This stage continues until void
growth starts reducing again and fall in the stress–strain curve starts to become less steep. It is more evident
for the smaller void, but as the void size increases, the mean void growth curves tend to become monotonic
(see Fig. 6a).

Themean void growth from our study is found to bewithin the two extrema of the void growth rate obtained
from the Rice and Tracey analytical model for low-stress triaxiality (T = 0.33) and high-stress triaxiality
(T = 3.0). Our predictions of the void growth rate are essentially lower than the analytical predictions with
high triaxiality (T = 3.0). Rice and Tracey void growth model assumes a void embedded in a material with
an infinite extent, and the load applied was remote stress or strain fields. This assumption points towards
infinitesimally small void. From our results, it is observed that the void growth depends on the void volume
fraction inversely and that the Rice and Tracey void growth analytical model would form a limiting case for
estimation of void growth with void volume fraction tending towards zero. This shows that Rice and Tracey’s
model provides a conservative estimate of void growth.

Figure 7a compares the mean void growth for different ICO for void volume fraction of f0 = 0.001,
� = −0.25, and PCHB. It is observed that the mean void growth obtained for ICOs [100] & [110] are
comparable, with the maximum difference between the two mean void growth values around 2.2%, whereas
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Fig. 8 Comparison of a mean void growth vs. applied strain, and b normalized macroscopic stress versus applied strain for
� = −0.25 and − 0.75, f0 = 0.001 and ICO [100]

for the ICO [111], the difference with the other two ICOs is approximately 13.5%. Figure 7b shows the
normalized stress vs. applied strain for the same simulations as in Fig. 7a. The normalized stress–strain curve
increases with increasing strain and peaks at a critical applied strain. The peak stress represents initiation
of the rapid void growth, see Fig. 7a. Beyond the peak stress, the softening due to void growth dominates
the hardening provided by the material. The normalized peak stress of 6.81, 4.57 and 3.34 for ICO [100],
[110] and [111] is observed, respectively. It shows that the normalized peak stress is dependent on ICO, with
maximum peak stress observed for ICO [100] and minimum for ICO [111]. Yang et al. [30] studied the effect
of crystallographic orientations on the void growth using a 3D unit cell at Γ = −0.235. Also observed that
for ICO of [100] and [110] the void growth was similar; however for ICO [111] the void growth was shown to
be lower than that for the ICO [100] and [110], whereas Potriniche et al. [43] observed less influence of ICO
on void growth for bi-axial loading for a single void embedded in FCC single crystal.

Figure 8a compares the mean void growth and shrinkage for f0 = 0.001, PCHB and ICO [110] for two
displacement ratios of Γ = −0.25& − 0.75. The void grows for � = −0.25 while it collapses to a penny
shaped crack for � = −0.75. The void shrinkage is observed consistently for � = −0.75 with all three-
initial void volume fraction and ICOs. Void shrinkage can also be attributed to cell volume reduction seen for
� = −0.75. In Fig. 8b, a comparison of the normalized macroscopic stress (
2/σY ) vs. applied strain (E2)
is shown for same set of simulations as discussed in Fig. 8a. The normalized macroscopic stress (
2/σY ) for
� = −0.75 is significantly negative as this loading represents cell volume shrinkage. In fact, in our study void
shrinkage is only observed for � = −0.75. A similar observation was also seen in Budiansky et al. 1982 [68];
they noted that the void growth or shrinkage exclusively depends on the remote stress independent of the initial
void size and aspect.

Figure 9a, b shows a comparison of void growth and shrinkage for f0 = 0.01&0.1 captured at 10% applied
strain for � = −0.25&− 0.75, ICO [100], and PCHB. For � = −0.75, both the figures show void shrinkage
(black contour), while � = −0.25, represents void growth (red contour).

Figure 10 shows the hydrostatic pressure distribution for the same set of simulations presented in Fig. 9a.
In Fig. 10a, the stress field near the void shows negative hydrostatic pressure around the void that leads to void
growth. While in Fig. 10b, the stress field near the void shows positive hydrostatic pressure around the void
that leads to void growth.

4.3 Classification of void morphology

Void shape evolution is at first studied from the experimental and unit-cell based works from literature, and five
most commonly occurring void shapes are identified and recreated using CPFEM simulations. The void shapes
obtained are listed in Figs. 11 and 12. In this section, our interest is to study the void shapes and not the stress
state near the voids; the stress contours shown in Figs. 11 and 12 do not have any significance. However, stress
contours are retained for better visualization. Initial void shapes are spheroidal and non-spheroidal in nature;
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(a) (b)

Fig. 9 Void growth and shrinkage for two void volume fractions, f0 = 0.01, and f0 = 0.1 at 10% applied strain. The deformation
of cross section of void taken on X1 − X2 mid-plane is shown here

Fig. 10 Hydrostatic pressure distribution in the vicinity of void for displacement ratio of a Γ = −0.25, f0 = 0.01, and b
Γ = −0.75, f0 = 0.01 at 10% applied strain

however non-spheroidal shapes are often idealized as ellipsoid. Hence, spherical and ellipsoidal (prolate and
oblate) voids are most widely used in the unit cell studies [6,13,48,51]. However, non-spheroidal shapes are
observed in numerical and experimental studies during deformation. The commonly observed non-spheroidal
void shapes are diamond [24,52], hexagonal [12], and penny shaped [42]. And super-spheroidal void shapes
seen in the earlier studies [45,55] were not highlighted as a separate shape. However, in this study, we see
that the factors which result in super-spheroidal void shape are different from the ellipsoidal void shape, and
hence it is treated as a separate shape category. The hexagonal void shape seen in the experimental study from
Crepin et al. [12], is considered as equivalent to oblate shape as it was seen that the factors resulting in oblate
shape were not distinguishable from those resulting in the hexagonal shape. An interesting observation from
our results was void spin; void shape evolution with void spin is categorized into an oblate void spin and
super-spheroidal void spin.

The spherical void shape is observed for both the displacement ratios of Γ = −0.25& − 0.75; all three
void volume fractions and ICOs [100] and [110] except for the ICO [111]. The oblate shape was observed
only for displacement ratio of Γ = −0.25, and two void volume fractions of f0 = 0.01&0.001. The void
volume fraction f0 = 0.1 and ICO [111] condition did not result in an oblate void shape. The prolate void
shape was observed only with higher void volume fraction of f0 = 0.1, and for both displacement ratios.
The ICO [111] did not result in a prolate void shape. The diamond shape was observed for the displacement
ratio of Γ = −0.25 and ICO[100]. Super spheroidal shape was primarily observed with a displacement ratio
Γ = −0.75 and for void volume fraction of f0 = 0.1&0.01, whereas the lower void volume fraction of
f0 = 0.001 never resulted in the super spheroidal void shape.
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(e)(d)(c)(b)(a) Super-

spheroidal

Fig. 11 Void shape categorization

Table 3 List of void shapes resulting from the combination of the parameters

Simulation Displacement Ratio, Γ Initial void volume fraction, f0 Initial Crystallographic Orientation, ICO Void shape

1 -0.25 0.01 [100] S
2 -0.25 0.01 [110] O
3 -0.25 0.1 [100] D
4 -0.25 0.1 [110] P
5 -0.75 0.01 [100] PC
6 -0.75 0.01 [110] PC
7 -0.75 0.1 [100] SS
8 -0.75 0.1 [110] P
9 -0.25 0.01 [111] O-Sp
10 -0.25 0.1 [111] SS-Sp
11 -0.25 0.001 [100] S
12 -0.25 0.001 [110] O
13 -0.25 0.001 [111] O-Sp

Where,
S Nearly spherical
O Oblate
P Prolate
D Diamond
SS Super-spheroidal
O-Sp Oblate with void spin
SS-Sp Super-spheroidal with void spin
PC Penny shaped crack

Table 3 summarizes the void shapes obtained for various combinations of parameters. Fig. 12a and b show
the void spin observed in our study, two shape evolution which resulted in the void spin were due to ICO [111]
and � = −0.25.

Void shrinkage to penny shaped crack was observed for a displacement ratio of Γ = −0.75. As described
in Sect. 4.2, the necessary condition for the void to shrinkage is the presence of positive hydrostatic pressure
around the void, and this was observed for all the simulation with the applied displacement ratio ofΓ = −0.75.

4.4 Parameters for tracking void morphology

In this section, an additional parameter is proposed for studying the evolution of void morphology. The existing
shape parameter ξi , was introduced by Gologanu et al. [12] for studying void shape. The shape parameter ξi is
found to be useful in describing the spherical and ellipsoidal void shapes but fails to identify other void shapes
namely diamond, hexagonal, and super-spheroidal. Hence, we introduce an additional parameter, diagonal
distortion. The diagonal distortion, Ddi is defined as

Ddi = ln

(
Rφ

Ri

)
(15)

Where, Rφ is the radius at an angle φ from the horizontal plane. For the current study, φ = 45◦ is considered
(see Fig. 13).
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(a) Oblate Spin (b) Super-spheroidal 
spin

(c) Penny shape crack

Fig. 12 Void spin and penny shaped crack

Fig. 13 Schematic of the RVE showing the radii used for defining the shape parameter, ξ , and diagonal distortion, Dd

Figure 14a and b presents the evolution of the shape parameter and diagonal distortion for the spheroidal and
non-spheroidal void shapes. For spheroidal void shapes such as spherical, prolate, and oblate shapes, two shape
parameters ξi and Ddi follow a similar trend. E.g., for a prolate void shape evolution, both shape parameters
ξi and Ddi increases. Table 4 lists the bounds for the shape parameter (ξi ) and diagonal distortion (Ddi ) values
for all the void shape evolutions observed in this study. However, for the non-spheroidal void shapes, two
parameters are different. Consider a super-spheroidal void shape evolution (see Fig. 14b, the shape parameter
initially increases and then falls back to a zero value, indicating that initially void grows into a prolate shape
and then at higher plastic deformation void attains a nearly spherical shape. However, the diagonal distortion
continuously increases showing a bulging of void at the 45◦angle. Similarly, for diamond void shape evolution
the shape parameter follows an oblate void shape; however the parameter diagonal distortion shows reduced
aspect at 45◦angle.

These insights are important for understanding the void coalescences by necking which usually occurs
due to shear localization in the ligaments between voids located at 45◦. The shape parameter (ξi ) and along
with the proposed parameter diagonal distortion (Ddi ) for tracking void shape evolution during ductile failure
process contributes towards a better prediction of void coalescence. The detailed study of void coalescence is
not in the scope of this study and will be pursued in future.

5 Conclusions

Using crystal plasticity-based finite element analysis, a comprehensive study has been performed to understand
the void growth and evolution of voidmorphology in FCC single crystal. Similar to isotropicmaterial [34]. [40],
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Fig. 14 Shape parameter and diagonal distortion plots for; a spheroidal voids and b non-spheroidal voids post-deformation

Table 4 Shape parameter and diagonal distortion values for different void shape evolution

Morphology of deformed void Shape parameter, ξi (i = 1, 3) Diagonal distortion, Dd1

Spherical/ Hexagonal ξ1 = ξ3 = 0.0 Dd1 ≈ 0.0
Prolate ξ1 �= ξ3 > 0.0 Dd1 > 0.0
Oblate ξ1 �= ξ3 < 0.0 Dd1 < 0.0
Diamond/Rhombic ξ1 �= ξ3 > 0.0 Dd1 < 0.0
Super spheroidal ξ1 ≈ ξ3 ≈ 0.0 Dd1 > 0.0

even in case of anisotropic material, the void volume fraction is observed to be a significant factor influencing
the intensity & spread of the plastic strain near void and the mean void growth. With the decrease in the void
volume fraction, the plastic strain intensity & spread increases resulting in the advancement of rapid void
growth phase to lower applied strains values. The type of plastic flow observed from our simulations varies
from fully plastic flow to plastic flow with elastic region. Fully plastic flow (similar to Gurson’s model-1)
is observed for smaller to moderate voids, but for larger voids, plastic flow with elastic region (similar to
Gurson’s model-2) is observed. In general, Gurson’s model-1 is found to be a better choice for developing a
phenomenological model for anisotropic materials. However, Gurson’s model-2 is more appropriate for larger
void with boundary conditions leading to cell volume expansion.

In an anisotropic material, ICO with respect to loading direction changes the void growth behavior. ICO
introduces an additional elastic and plastic anisotropy over the plastic anisotropy exhibited by the slip system.
We choose three ICOs [100], [110], & [111] to study its effect on mean void growth behavior. It is found
that the mean void growth obtained for ICO [111] is lower compared to ICOs [100] & [110]. Though this
study is representative of void growth in anisotropic material, for a generic ICO [hkl], a more detailed study
encompassing entire orientation space is required.

Fromour study it is observed that void growth results in non-spheroidal void shapes duematerial anisotropy.
However, the existing shape parameter in literature were insufficient to capture non-spheroidal void shapes.
To address this scenario, we have introduced an additional shape parameter, “diagonal distortion.” Void shape
evolution during deformation plays an important role in ductile fracture especially through void coalescence.
In here, void growth in anisotropic matrix is discussed in depth and void coalescence will be part of future
study.
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