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Abstract Motivated by the paradoxical results obtained from the differential nonlocal elasticity theory in
some cases (e.g., bending and vibration problems of cantilevers), several attempts have been recently made
to develop nonlocal beam models based on the integral (original) formulation of Eringen’s nonlocal theory.
These models can be classified into two main groups including strain- and stress-driven ones which have
the capability of capturing the softening and hardening behaviors of material caused by nanoscale (nonlocal)
effects, respectively. In the present paper, a novel stress-driven nonlocal formulation is developed for the
nonlinear analysis of Timoshenko beams made of functionally graded materials. To this end, the governing
equations are first derived in the context of integral form of stress-driven nonlocal model. The proposed
model can be used for arbitrary kernel functions, and the paradox related to cantilever is resolved by it.
The governing equations of stress-driven model in differential form together with corresponding constitutive
boundary conditions are also derived. The Timoshenko beam under various end conditions is considered as
the problem under study whose nonlinear static bending is analyzed. Furthermore, the generalized differential
quadrature method is employed in the solution procedure. The effects of nonlocal parameter, FG index, length-
to-thickness ratio and nonlinearity on the deflection of fully clamped, fully simply supported, clamped–simply
supported and clamped–free beams are investigated. The presented formulation and results may be helpful in
understanding nonlocal phenomena in nano-electro-mechanical systems.

Keywords Stress-driven nonlocal model · Timoshenko beam · Nonlinear bending · Paradox · Generalized
differential quadrature

1 Introduction

The classical continuum theory is not appropriate for the mechanical analysis of micro- and nano-structures
since it is scale-free and lacks length scale parameters.On the other hand, size-dependent elasticity theories such
as the surface stress theory [1,2], strain gradient theories [3–6] and the nonlocal theory [7,8] are extensively
employed to study the mechanical behaviors of materials at micro- and nano-scale owing to their capability to
consider size influences. Among them, the nonlocal theory developed by Eringen and his co-workers [7–16]
is a well-known non-classical elasticity theory in which behavior at a material point is affected by the state of
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all points in the body. Using attenuation functions including the length scale parameter, the integral nonlocal
constitutive equation, which considers multi-atom interactions, states that the stress at a reference point is a
functional of the macroscopic Cauchy stress field at all point of the body. The general constitutive equations
of nonlocal elasticity are expressed as [16]

ti j (x) = λδi jεkk (x) + 2μεi j (x) (1)

σi j
(
x ′) =

∫

�

k
(∣∣x − x ′∣∣ , lc

)
ti j (x) dx (2)

where ti j and εi j are the classical/local stress tensor and strain tensor, respectively; x ′, x indicate points of the
continuum domain � ; k is the attenuation or kernel function (nonlocal modulus); lc is the nonlocal parameter;
and

∣
∣x − x ′∣∣ denotes neighborhood distance. Also, λ and μ denote Lamé’s constants.
The integral nonlocal constitutive equation is formulated as a first kind Fredholm equation. In 1983, Eringen

[17] showed that this integral equation can be transformed into the following differential equation for a specific
class of attenuation functions (Green’s function of linear differential operator)

(
1 − l2c ∇2) σi j = λδi jεkk + 2μεi j (3)

in which l2c = (e0a)2, and ∇2 is the Laplace operator.
Since working with this differential nonlocal constitutive equation is much easier than its integral counter-

part, many researchers have applied it to study various mechanical behaviors of beam-, plate- and shell-type
nano-structures up to now [18–25]. It was revealed that the nonlocal model in differential form can predict the
results of molecular dynamics (MD) simulation on condition that its nonlocal parameter is correctly adjusted
[26–29]. However, using the differential form of Eringen’s theory may lead to some paradoxes. The first para-
dox was reported by Peddieson et al. [18]. They used the differential nonlocal constitutive equation in the
context of Euler–Bernoulli (EB) beam theory to examine the behavior of cantilever microactuators. It was
revealed that the nonlocal effect cannot be captured when the cantilever is under a concentrated load applied to
its free end. Another important paradox happens in the case of the vibration problem of the nonlocal cantilever.
Surprisingly, the first natural frequencies of clamped–free beam obtained by the differential nonlocal model
are larger than those calculated based on the classical elasticity theory, whereas the nonlocality has a softening
effect on the vibration of beams with other types of end conditions [20,30,31]. A similar paradox exists in
the bending problem of nonlocal cantilever (hardening behavior instead of softening behavior with increasing
the nonlocal parameter) [32,33]. For experimental results on this problem, the reader is referred to the paper
of Abazari et al. [34] in which size effects on the mechanical properties of micro- and nano-structures were
studied. In that paper, they summarized experimental data for the size effect on the effective Young’s modulus
(Eeff ) of beams under clamped–free and clamped–clamped boundary conditions made of various materials
with different morphologies. It was reported that in most cases, Eeff increases when size reduces. Challamel
et al. [35] explained that these paradoxical behaviors are due to nonself-adjointness property of the energy
functional of nonlocal differential model which can be related to a non-conservative inertia moment acting
on the beam free end. This indicates that the differential model results in non-conservative problems. They
constructed a functional by an inverse procedure in which the end conditions were amended to make the
problem self-adjoint. Also, several researchers resolved the mentioned paradoxes using the integral nonlocal
constitutive equation. The reader is referred to the papers of Khodabakhshi and Reddy [36], Fernández-Sáez
et al. [37], Zhu and Li [38], Norouzzadeh et al. [39,40], Tuna and Kirca [41] and Koutsoumaris et al. [42] as
some examples.

Recently, Romano et al. [43–47] formulated and applied the integral nonlocal theory in an unconventional
way. In their integral nonlocal model, which is called “stressdriven,” the roles of stress and strain fields are
swapped. The constitutive relations of this model are given by

σi j
(
x ′) = λδi jεkk

(
x ′) + 2μεi j

(
x ′) (4)

σi j
(
x ′) =

∫

�

k
(∣∣x − x ′∣∣ , lc

)
ti j (x) dx (5)

where σi j is the local stress tensor and ti j is the nonlocal stress tensor.
Themotivation for developing the “stressdriven”model versus its counterpart, i.e., the “straindriven”model,

canbe explained as follows.According to the strain-drivenmodel, the elastic strain is introducedvia aFredholm-
type integral equation in which the stress is the production of a convolution between the local response to an
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elastic strain and the attenuation function. The strain-driven nonlocal integral model has been employed by
numerous research workers based on a differential formulation equivalent to the integral formulation (e.g.,
[37]). Romano et al. [46] commented that this equivalence must be supplemented by satisfying constitutive
boundary conditions. Furthermore, because of incompatibility between nonlocal stress–strain equations and
equilibrium condition, the problem derived based on the strain-driven model can be ill-posed [46]. It has
been revealed that the stress-driven model has not the stated conflict of strain-driven model and results in a
well-posed problem in general case.

After Romano et al., some attempts have been made at developing nonlocal formulations based on the
stress-driven model (e.g., [48–51]). For example, Faraji Oskouie et al. [49–51] published some papers on
the mechanical behaviors of small-scale structures based upon the strain- and stress-driven nonlocal models.
In [49], in the context of integral formulation of nonlocal elasticity, a numerical strategy was proposed to
investigate the linear bending of EB beams based upon strain- and stress-driven models. It was shown that
paradoxical results associated with the static bending of nanocantilever can be resolved using the integral
stress-driven model. Also, in [50], the strain- and stress-driven nonlocal models were used to study the free
vibration and buckling of EB beams under arbitrary end supports. In another work [51], three size-dependent
formulations were proposed for the linear analysis of beams based on the integral nonlocal and strain gradient
theories. According to the stress-driven nonlocal and strain gradient models, the bending and free vibration of
Timoshenko nanobeams were numerically studied. In addition, Faraji Oskouie et al. [52] addressed the linear
bending problem of Timoshenko beams by combining the nonlocal and micropolar theories.

In the current work, on the basis of integral formulation of nonlocal theory, a novel nonlinear stress-driven
nonlocal formulation is proposed for the Timoshenko beams made of FGMs. The developed formulation is
applicable for arbitrary kernel functions. Moreover, it is capable of resolving the paradox related to clamped–
free boundary conditions. The focus of the paper is on the geometrically nonlinear static bending. The GDQ
method is also utilized in the solution approach. The influences of nonlocal parameter, end conditions and
FG index on the large deformation response of the beams are studied. Moreover, comparisons are provided
between the results of linear and nonlinear models.

2 FG Timoshenko beam model

The displacement field in a Timoshenko beam can be written as

ux = u + zψ, uy = 0, uz = w (6)

where ux , uy and uz are displacement components along the length (x), width (y) and thickness (z) directions,
respectively. Figure 1 indicates the coordinate system and geometrical properties. Furthermore, u and w
show the axial and transverse displacements on the physical middle surface, respectively. Considering the
von-Kármán geometric nonlinearity, the strain components are given by

εxx = ∂u

∂x
+ 1

2

(
∂w

∂x

)2

+ z
∂ψ

∂x
≡ ε0xx + zε1xx , γxz =

(
∂w

∂x
+ ψ

)
≡ γ 0

xz . (7)

Note that the nonlinearity owing to the stretching influence of mid-plane of the FG beam is considered in
the strain component εxx . Constitutive relations are given as

σxx = E(z)εxx , σxz = ksG (z) γxz (8)

in which E(z) and G (z) denote elastic and shear moduli, respectively. Moreover, ks indicates the shear
correction factor. Combining Eqs. (7) and (8) leads to

σxx = E(z)

(
∂u

∂x
+ 1

2

(
∂w

∂x

)2

+ z
∂ψ

∂x

)

, σxz = ksG(z)

(
∂w

∂x
+ ψ

)
. (9)

Also, the FGM properties are calculated as follows

P (z) = (Pm − Pc)

(
z

h
+ 1

2

)n

+ Pc (10)

where P (z) denotes the material property along the z direction. Moreover, m and c subscripts stand for metal
and ceramic phases, respectively.
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Fig. 1 Coordinate system and geometrical parameters

3 Governing equations

In the context of the stress-driven nonlocal model, the stress–strain equations are expressed as follows

σi j = λδi jεkk + 2μεi j (11)

σi j =
∫

�

k
(∣∣x − x ′∣∣ , lc

)
ti jdx (12)

where k and lc are the kernel function and nonlocal parameter, respectively. The kernel in one-dimensional
case can be expressed as

α
{∣∣x − x ′∣∣ , lc

} = 1

2lc
e−|x−x ′|

lc , lc = e0a. (13)

Using Eqs. (6) and (7), the stress-driven nonlocal constitutive equations are derived as

E(z)εxx = E(z)

(
∂u

∂x
+ 1

2

(
∂w

∂x

)2

+ z
∂ψ

∂x

)

=
∫

x

1

2lc
e−|x−x ′|

lc txxdx (14)

ksG(z)εxz = ksG(z)

(
∂w

∂x
+ ψ

)
=

∫

x

1

2lc
e−|x−x ′|

lc txzdx . (15)

Accordingly, the resultant bending moment and shear force are obtained as

B11

(
∂u

∂x
+ 1

2

(
∂w

∂x

)2
)

+ D11

(
∂ψ

∂x

)
=

∫ L

0

1

2lc
e−|x−x ′|

lc Mxxdx (16)

A11

(
∂u

∂x
+ 1

2

(
∂w

∂x

)2
)

+ B11

(
∂ψ

∂x

)
=

∫ L

0

1

2lc
e−|x−x ′|

lc Nxxdx (17)

A55

(
∂w

∂x
+ ψ

)
=

∫ L

0

1

2lc
e−|x−x ′|

lc Qxdx . (18)

The terms related to stiffness components in Eqs. (16)–(18) can be defined as

{A11, B11, D11} =
∫ h

2

− h
2

∫ b
2

− b
2

E(z)
{
1, (z − z0), (z − z0)

2} dydz (19)

A55 = ks
2 (1 + ν)

∫ h
2

− h
2

∫ b
2

− b
2

E(z)dydz (20)

where z0 denotes the position of the neutral axis of the beam given by [53]

z0 =
(∫ h

2

− h
2

zE(z) dz

) / (∫ h
2

− h
2

E(z) dz

)

. (21)
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The integral form of Eqs. (16)–(18) is converted to the differential form here. For this aim, one can write

Mxx = B11

(
1 − l2c

∂2

∂x2

) (
∂u

∂x
+ 1

2

(
∂w

∂x

)2
)

+ D11

(
1 − l2c

∂2

∂x2

)
∂ψ

∂x
(22)

Nxx = A11

(
1 − l2c

∂2

∂x2

)(
∂u

∂x
+ 1

2

(
∂w

∂x

)2
)

+ B11

(
1 − l2c

∂2

∂x2

)
∂ψ

∂x
(23)

Qx = A55

(
1 − l2c

∂2

∂x2

)(
∂w

∂x
+ ψ

)
. (24)

This procedure leads to a series of constitutive boundary conditions which should also be satisfied. Consti-
tutive boundary conditions associated with the stress-driven integral model for Timoshenko beams, governed
by Helmholtz averaging kernel, were established in [54]. Constitutive boundary conditions for the present
problem are expressed as

(
∂2ψ

∂x2
− 1

lc

∂ψ

∂x

)∣∣
∣∣
x=0

= 0 (25)

(
∂2ψ

∂x2
+ 1

lc

∂ψ

∂x

)∣
∣∣
∣
x=L

= 0 (26)

(
∂2w

∂x2
+ ∂ψ

∂x
− 1

lc

(
∂w

∂x
+ ψ

))∣
∣∣∣
x=0

= 0 (27)

(
∂2w

∂x2
+ ∂ψ

∂x
+ 1

lc

(
∂w

∂x
+ ψ

))∣∣
∣∣
x=L

= 0. (28)

Furthermore, the principle of virtual displacement for the Timoshenko beam is [55]

∫ L

0
(Nxxδε

0
xx + Mxxδε

1
xx + Qxδγ

0
xz − qδw)dx = 0. (29)

From above equation, one can arrive at the following Euler–Lagrange equations

δw: ∂Qx

∂x
+ ∂

∂x

(
Nxx

∂w

∂x

)
+ q = 0 (30)

δψ : ∂Mxx

∂x
− Qx = 0 (31)

δu: ∂Nxx

∂x
= 0. (32)

The corresponding boundary conditions are also given by

Nxx )x=0,L = 0, or δu)x=0,L = 0 (33)

Mxx )x=0,L = 0, or δψ)x=0,L = 0 (34)
[
Qxz + Nxx

∂w

∂x

]
)
x=0,L

= 0, or δw)x=0,L = 0. (35)

By inserting the resultants of Eqs. (22)–(24) intoEqs. (30)–(32), the differential formof governing equations
is derived as

∂

∂x

[
A55

(
1 − l2c

∂2

∂x2

) (
∂w

∂x
+ ψ

)]

+ ∂

∂x

[

A11
∂w

∂x

(
1 − l2c

∂2

∂x2

)(
∂u

∂x
+ 1

2

(
∂w

∂x

)2
)

+ B11
∂w

∂x

(
1 − l2c

∂2

∂x2

)
∂ψ

∂x

]

+ q = 0 (36)
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∂

∂x

[

B11

(
1 − l2c

∂2

∂x2

)(
∂u

∂x
+ 1

2

(
∂w

∂x

)2
)

+ D11

(
1 − l2c

∂2

∂x2

)
∂ψ

∂x

]

− A55

(
1 − l2c

∂2

∂x2

) (
∂w

∂x
+ ψ

)
= 0 (37)

∂

∂x

[

A11

(
1 − l2c

∂2

∂x2

)(
∂u

∂x
+ 1

2

(
∂w

∂x

)2
)

+ B11

(
1 − l2c

∂2

∂x2

)
∂ψ

∂x

]

= 0 (38)

Finally, a system of coupled equations together with corresponding boundary conditions is obtained. Using
the following non-dimensional parameters

Ā11 = A11

A0
11

, B̄11 = B11

A0
11h

, D̄11 = D11

A0
11h

2
, Ā55 = A55

A0
11

x̄ = x

L
, w̄ = w

h
, ū = u

h
, ψ̄ = ψ, q̄ = qL2

hA0
11

λ = lc
L

, η = h

L
, (39)

the governing equations (36)–(38) can be re-written as

∂

∂ x̄

[
Ā55

(
1 − λ2

∂2

∂ x̄2

)(
∂w̄

∂ x̄
+ ψ̄

η

)]

+ ∂

∂ x̄

[

Ā11η
∂w̄

∂ x̄

(
1 − λ2

∂2

∂ x̄2

)(
∂ ū

∂ x̄
+ 1

2
η

(
∂w̄

∂ x̄

)2
)

+ B̄11η
∂w̄

∂ x̄

(
1 − λ2

∂2

∂ x̄2

)
∂ψ̄

∂ x̄

]

+ q̄ = 0 (40)

∂

∂ x̄

[

B̄11η

(
1 − λ2

∂2

∂ x̄2

)(
∂ ū

∂ x̄
+ 1

2
η

(
∂w̄

∂ x̄

)2
)

+ D̄11η

(
1 − λ2

∂2

∂ x̄2

)
∂ψ̄

∂ x̄

]

− Ā55

(
1 − λ2

∂2

∂ x̄2

) (
∂w̄

∂ x̄
+ ψ̄

η

)
= 0 (41)

∂

∂ x̄

[

Ā11

(
1 − λ2

∂2

∂ x̄2

)(
∂ ū

∂ x̄
+ 1

2
η

(
∂w̄

∂ x̄

)2
)

+ B̄11

(
1 − λ2

∂2

∂ x̄2

)
∂ψ̄

∂ x̄

]

= 0. (42)

4 Solution by GDQ

Based on the idea of the GDQ method, the r th-order derivative of function f (x) at a given point xi on the
domain [x1, . . . , xN ] is approximated as

dr f (x)

dxr
=

N∑

j=1

D(r)
i j f

(
x j

)
(43)

where D(r)
i j shows the weighting coefficients of r th-order derivative which can be calculated by

[
D(r)
x

]
= W (r)

i j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ii j , where Ii j is a N × N identitymatrix r = 0
P(xi )

(xi−x j)P(x j)
, where P (xi ) = ∏N

k=1;i �=k (xi − xk)

i, j = 1, . . . , N and i �= j and r = 1⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r

[
W (1)

i j W (r−1)
i i − W (r−1)

i j
xi−x j

]
, and i �= j

− ∑
k = 1
k �= i

W (r t)
ik and i = j

i, j = 1, . . . , N and r � 2

. (44)
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Fig. 2 Variation of maximum non-dimensional deflection with λ for various boundary conditions (n = 0, L/h = 25 and q̄ = 1)

With the shifted Chebyshev–Gauss–Lobatto grid distribution, the grid points in the x- and y-directions can
be selected as

xi = 1

2

(
1 − cos

(
i − 1

N − 1

)
π

)
, i = 1, 2, 3, . . . , N . (45)

Finally, inserting the discretized forms of displacement field variables and their derivatives in the governing
equations presented in Eqs. (40), (42) along with boundary conditions leads to the following equation

KX + N (X) = F (46)

where X, K and N (X) represent the displacement vector, the stiffness matrix and the nonlinear part vector,
which are given by

X =
[
w̄T ψ̄T ūT

]T
(47)

N (X) =
[
NT

w (X) , NT
ψ (X) , NT

u (X)
]T

(48)

K =
⎡

⎣
Kww Kwψ Kwu
Kψw Kψψ Kψu
Kuw Kuψ Kuu

⎤

⎦ . (49)
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Fig. 3 Variation of maximum non-dimensional deflection with load (q) for C-SS boundary conditions and various FGM non-
homogeneity indexes

The components of K and N (X) take the following form

Kww = Ā55

(
D(0)
x̄ − λ2D(2)

x̄

)
D(2)
x̄ (50)

Kwψ = Ā55

(
D(0)
x̄ − λ2D(2)

x̄

)
D(1)
x̄

/
η (51)

Kwu = 0 (52)

Kψw = − Ā55

(
D(0)
x̄ − λ2D(2)

x̄

)
D(1)
x̄ (53)

Kψψ = − Ā55

(
D(0)
x̄ − λ2D(2)

x̄

)
D(0)
x̄

/
η + D̄11η

(
D(0)
x̄ − λ2D(2)

x̄

)
D(2)
x̄ (54)

Kψu = B̄11η
(
D(0)
x̄ − λ2D(2)

x̄

)
D(2)
x̄ (55)

Kuw = 0 (56)

Kuψ = B̄11

(
D(0)
x̄ − λ2D(2)

x̄

)
D(2)
x̄ (57)

Kuu = Ā11

(
D(0)
x̄ − λ2D(2)

x̄

)
D(2)
x̄ (58)

NT
w (X) = D(1)

x̄

[
Ā11η

(
D(1)
x̄ w̄

)
◦

(
D(0)
x̄ − λ2D(2)

x̄

)(
D(1)
x̄ ū + 1

2
η

(
D(1)
x̄ w̄

)2)
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Fig. 4 Variation of maximum non-dimensional deflection with dimensionless load (q̄) for various boundary conditions and FGM
non-homogeneity indexes based on linear and nonlinear models (λ = 0.01)

+ B̄11η
(
D(1)
x̄ w̄

)
◦

(
D(0)
x̄ − λ2D(2)

x̄

) (
D(1)
x̄ ψ̄

)]
(59)

NT
ψ (X) = D(1)

x̄

[
B̄11η

(
D(0)
x̄ − λ2D(2)

x̄

)(
1

2
η

(
D(1)
x̄ w̄

)2)]
(60)

NT
u (X) = D(1)

x̄

[
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In above equations, ◦ shows the Hadamard product. The system of nonlinear equations presented as Eq.
(46) is solved by the well-known Newton–Raphson method in order to obtain the displacement field.

5 Results

First, two comparison studies are presented to validate the developed formulation and numerical approach. In
the first case, a comparison is provided between the present results and those reported in [51] for the linear
bending of Timoshenko nanobeam based on the stress-driven integral nonlocal model. Figure 2 shows the
variation of dimensionless maximum deflection of beams (w̄max) versus λ for various boundary conditions. It
is observed that there is an excellent agreement between the current results and the ones given in [51].
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Fig. 5 Variation of maximum non-dimensional deflection with dimensionless load (q̄) for various boundary conditions and values
of λ based on linear and nonlinear models (n = 0.5)

Another validation study is presented for the nonlinear bending of classical Timoshenko beamwith compar-
ison to the results of [55] in Fig. 3. This figure indicates the variation of maximum non-dimensional deflection
against load (q) for FG beam under C–SS (clamped–simply supported) end conditions considering three values
of FG index. Again, the validity of present work is assured.

For the rest of results, the material properties are taken as [51,53]

Ec = 393GPa, Em = 68.5GPa, ν = 0.35

Moreover, the length-to-thickness ratio is assumed as 25 considering b /h = 1, otherwise stated. In Figs. 4, 5
and 6, the dimensionlessmaximum deflection of nanobeams is plotted versus dimensionless load (q̄) for SS–SS
(fully simply supported), C–C (fully clamped), C–F (cantilever) and C–SS end conditions. The results of these
figures are generated based on both linear and nonlinear models. Figure 4 shows the effect of FG index on the
nonlinear bending of Timoshenko nanobeams based on the stress-driven nonlocal model. One can find that
at a given applied load, the deflection of beam decreases as the FG index gets larger. In Fig. 5, the effect of
nonlocality can be investigated. The results of this figure are calculated considering three values of λ including
0.01, 0.03 and 0.05. It is observed that for all boundary conditions, increasing λ has a decreasing effect on the
deflection of nanobeam. As Fig. 5 indicates, consistent results are obtained by the present approach in the case
of nanocantilever. Finally, Fig. 6 highlights the influence of length-to-thickness ratio. As expected, decrease
in the mentioned ratio leads to decreasing the maximum deflection.
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Fig. 6 Variation of maximum non-dimensional deflection with dimensionless load (q̄) for various boundary conditions and values
of L/h based on linear and nonlinear models (λ = 0.01, n = 0.5)

6 Conclusion

In the present article, within the framework of integral (original) form of Eringen’s nonlocal elasticity and
based on the stress-driven model, a numerical approach was presented for the nonlinear analysis of beam-
type small-scale structures. The beams were modeled according to the Timoshenko beam theory, and it was
considered that they are made of FGMs. First, the governing equations were obtained based upon the integral
form of stress-driven nonlocal model. The governing equations in differential form together with associated
constitutive boundary conditions were then derived. The proposed formulation can be used for arbitrary kernel
functions. The GDQ technique was also employed to solve the nonlinear bending problem. Selected numerical
results were given for geometrically nonlinear bending of FG Timoshenko nanobeams under various end
supports. It was shown that the paradox related to clamped–free boundary conditions is resolved by the present
approach. Moreover, the effects of nonlocal parameter, FG index, length-to-thickness ratio and nonlinearity
were illustrated.
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