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Abstract A third-gradient continuum model is developed for the deformation analysis of an elastic solid,
reinforced with fibers resistant to flexure. This is framed in the second strain gradient elasticity theory within
which the kinematics of fibers are formulated, and subsequently integrated into the models of deformations.
Bymeans of variational principles and iterated integrations by parts, the Euler equilibrium equation is obtained
which, together with the constraints of bulk incompressibility, compose the system of the coupled nonlinear
partial differential equations. In particular, a rigorous derivation of the admissible boundary conditions arising
in the third gradient of virtual displacement is presented from which the expressions of the triple forces are
derived. The resulting triple forces are, in turn, coupled with the Piola-type triple stress and are necessary
to determine a unique deformation map. The proposed model predicts smooth and dilatational shear angle
distributions, as opposed to those obtained from the first- and second-gradient theory where the resulting shear
zones are either non-dilatational or non-smooth.

Keywords Finite plane deformations · Fiber-reinforced materials · Flexure · Second strain gradient theory ·
Triple force

1 Introduction

Problems involving the mechanics of an elastic solid, reinforced with embedded fibers, have received a consid-
erable amount of attentionmainly because of their fundamental importance inmaterials science and engineering
in general. Fiber-reinforced elastic solids, also known as fiber composites, are a special class of materials where
the microstructure (fibers) dominates the general responses of the composites [1–4]. Traditional approaches to
examining these microstructured materials include the direct estimations of an individual fiber–matrix system
(see, for example, [5,6]). Such local analyses are an effective means of characterizing the intrinsic properties of
compositematerials. However, they often rely heavily upon computationally expensive identification processes
when predicting the mechanical responses of the materials subjected to certain types of boundary conditions
(e.g., external loadings, edge conditions, etc.). Instead, a continuum description can be considered a promising
alternative in a sense that, in most cases, fibers are densely distributed, so as to render the idealization of
‘continuous’ distribution. Within this prescription, the kinematics of fibers are mapped into the model of the
continuum deformation. Since the continuum-based models offer the advantages of a compact mathematical
frame work and the associated analyses, they have been adopted in a number of pertinent problems (see, for
example, [7–9] and the references therein). However, as the energy function employed in the aforementioned
studies is based on the classical deformation gradient accommodated by the first-gradient continua, when it
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is used in junction with the conditions of bulk incompressibility and fiber inextensibility, the corresponding
deformation fields are often kinematically determinate without imposing boundary conditions [8,9].

In recent years, anisotropic strain gradient elasticity theory [10–12] has received renewed attention for its
application in the modeling and analysis of microstructured continua. Contemporary applications vis-a-vis
the general theory and mathematical aspects of the subject matter can be found in [13–19]. The second-
gradient continuum model, which describes the mechanics of an elastic solid reinforced with continuously
distributed fibers, is explored by Spencer and Soldatos [20]. There the authors assign the bending resistance
to the changes in curvature of fibers. The computation of the letter is facilitated by the second gradient of the
continuum deformation through which the bending deformation of fibers is mapped in the form of a convected
curve. The concept is further generalized to accommodate fibers resistant to flexure, stretch and twist within
the confined scope of the Cosserat theory of nonlinear elasticity [21]. The second-gradient-based continuum
models have been widely and successfully adopted for problems such as the mechanics of meshed structures
[22–24], bending of bidirectional fiber composites [25] and composites reinforced with extensible fibers [26].
Further, the second-gradient continuum models predict smooth transitions in the shear angle distributions,
whereas the classical (first-order) continuum theory results in discontinued distributions [23,24,27]. Although
the second-gradient model produces reasonably accurate descriptions of microstructured continua, there exist
physical phenomena for which themodels are intrinsically limited in predictions, such as deformations induced
by line forces, couples and, in particular, mechanical contact interactions on edges and points of Cauchy cuts
[28–30]. In the case of fiber-reinforced composites, the latter would mean the mechanical interactions between
the fiber and matrix through the interfacial region. Such contact interaction forces pose formidable challenges
in the modeling and analysis of the composites, and therefore, to the best of the authors’ knowledge, little has
been devoted in the literature.

In the present work, we develop a third-gradient continuum model for the deformation analysis of an
elastic solid which is reinforced with fibers resistant to flexure and subjected to finite plane deformations.
Hence, it is assumed that the fiber’s directors and the associated deformation map remain in a plane field,
with no out-of-plane components and all material properties are independent of the out-of-plane coordinates.
The kinematics of fibers are determined by their positions and director fields under the postulation of the
continuously distributed spatial rods (fibers) of Kirchhoff type [31–33]. Within this prescription, we propose
an energy density function that accommodates the third gradient of the continuum deformation in the sense
of [20]. This is materialized by the third-gradient continua through which line forces, couples, double forces
and triple forces are exerted in order to assimilate the mechanical interactions between the fibers and the
matrix, in addition to the bending resistance of the fibers. The associated Euler equilibrium equation is then
obtained by employing iterated integrations by parts and variational formulations of the second and third
gradient of deformations [11,29,30,34,35]. In particular, the rate of change in curvature, defined at points
on the convected curves of fibers, is computed in terms of the third gradient of deformation map explicitly,
from which the contact interactions between the fibers and the surrounding matrix may be characterized. A
rigorous derivation of the admissible and necessary boundary conditions arising in the third gradient of virtual
displacement is also presented. There we show that the introduction of the third gradient of deformations gives
rise to an additional set of mechanical interaction forces on the desired boundaries, unlike those obtained
from the second-gradient model. In fact, these interaction forces are the energy couple to the Piola-type triple
stresses that can be suitably sustained by the third-gradient continua (see, also, [28–30]).

Implementation of the proposed model is demonstrated by considering a fiber-reinforced solid of neo-
Hookean type, subjected to finite plane deformations. A set of numerical solutions of the resulting system of
coupled partial differential equations (PDEs) is obtained via finite element analysis (FEA), which demonstrate
close agreement with the results in the literature [22,36,37]. In particular, the proposed model predicts smooth
and dilatational shear angle distributions, in contrast to those obtained from the first- and second-gradient
theorywhere the resulting shear zones are either non-dilatational or non-smooth.More precisely, the patterns of
dilatational shear zones are configured by the applied triple forces, which are ultimately computed via the third
gradient of the deformationmap and its energy couple pertaining to the Piola-type triple stress. Case studies are
also performed through the inhouse experimental settings of crystalline nanocellulose (CNC) fiber composites
andNylon-6 fiber Neoprene rubber composites, which illustrate that the obtained solutions successfully predict
the deformation profiles of both composites. More importantly, we identify the unique characteristic constants
for the composites that minimize the prediction errors. These coefficients are not responsive to either the
applied loadings or the boundary conditions and may therefore be inferred as intrinsic properties of the
examined composites pertaining to the Piola-type triple stress. Further investigations of the results extending
to other materials may be of particular mechanical interest. Lastly, the proposed model bears close similarity
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to the theory of micropolar elasticity in the sense that the rotation of a local point (microstructure) is integrated
into the model of deformations via the third gradient of the continuum deformation. Therefore, the proposed
model can be regarded as an alternative 2D Cosserat theory of nonlinear elasticity [10,38–40].

Throughout the manuscript, we use standard notation such as AT, A−1, A∗ and tr(A). These are the
transpose, the inverse, the cofactor and the trace of a tensor A, respectively. The tensor product of vectors
is indicated by interposing the symbol ⊗, and the Euclidian inner product of tensors A, B is defined by
A · B = tr(ABT); the associated norm is |A| = √

A · A. The symbol |∗| is also used to denote the usual
Euclidian norm of three-vectors. Latin and Greek indices take values in {1, 2} and, when repeated, are summed
over their ranges. Lastly, the notation FA stands for the tensor-valued derivatives of a scalar-valued function
F(A).

2 Kinematics

We introduce the vector field D representing the unit tangent to the fiber’s trajectory in the reference configu-
ration. The orientation of particular fibers is then given by

λ = |d| = ds

dS
and τ = λ−1d, (1)

where
d = FD. (2)

In the above, d is the unit tangent to the fiber trajectory in the current configuration andF is the first gradient
of the deformation function (χ(X)), i.e.,

F = ∇χ(X). (3)

Equation (2) can be derived by taking the derivative of r(S) = χ(X(S)), upon making the identifications
D = X′(S) and d = r′(S). We denote that, unless otherwise specified, primes refer to derivatives with respect
to arclength along a fiber (i.e., (∗)′ = d(∗)/dS). Accordingly, from Eq. (2), the geodesic curvature of an arc
(r (S)) is expressed in terms of F and d as

g = r′′ = d(r′ (S))

dS
= ∂(FD)

∂X
dX
dS

= ∇[FD]D. (4)

In a typical environment, most of the fibers are straight prior to deformations. Even slightly curved fibers can
be regarded as ‘fairly straight’ fibers considering their length scales against the matrix materials. This further
leads to the assumption of vanishing gradient fields of the unit tangent in the reference configuration (i.e.,
∇D = 0). Hence, Eq. (4) reduce to

g = ∇F(D ⊗ D). (5)

We now introduce the commonly used conventions of the second gradient of deformations:

∇F ≡ G, (6)

where the compatibility condition of G can be seen as

Gi AB = Fi A,B = FiB,A = GiBA. (7)

Accordingly, Eq. (5) becomes
g = G(D ⊗ D) = g(G,D). (8)

Based on the above kinematical setting, authors in [20] propose the following energy density function in the
continuum description of an elastic solid reinforced with fibers resistant to flexure:

W (F,G) = ̂W (F) + W (G), W (G) ≡ 1

2
C (F) |g|2 , (9)

where C(F) refers to the material properties of the fibers and is, in general, independent of the deformation
gradient, i.e.,

C(F) = C. (10)
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In this model (Eq. (9)), the fibers’ bending energy is presumed to be dependent entirely on the second gradient
of deformations,G,which facilitates the development of the associated mathematical framework. The concept
has been widely and successfully adopted in the relevant studies (see, for example, [19,21,26,37,41]).

In the present study, we propose a more comprehensive model by introducing the third gradient of defor-
mations into the model of deformations. For this purpose, we compute the rate of changes in curvature (the
third gradient of deformations) at points on the fibers as

α = r
′′′ = d(∇[FD]D)

dS
= ∂(∇[FD]D)

∂X
dX
dS

= [∇{∇[FD]D}]D = [∇{∇[FD]}D + ∇[FD](∇D)]D, (11)

through which the interactions between the fibers and the surrounding matrix may be characterized. Further,
we formulate the follow in the same sprit as Eqs. (5)–(8) that

α = ∇(∇F)(D ⊗ D ⊗ D),

∇(∇F) = ∇(G) ≡ H, and

α = H(D ⊗ D ⊗ D) = α(H,D). (12)

Thus, the energy potential associated with the third gradient of deformations is incorporated and yields

W (F,G, H) = ̂W (F) + W (G) + W (H), W (G) ≡ 1

2
C (F) |g|2 , W (H) ≡ 1

2
A (F) |α|2 . (13)

Here, the third gradient of deformations H is defined by

∇[∇G] = ∇G ≡ H, (14)

which accounts for the rate of change in the fibers’ curvature. The phenomenological implications vis-a-vis the
third gradient of deformations (e.g., interactions between fibers and a matrix material) and the identification
of the associated coefficient (here, denoted as A) are addressed in the literature [11,29,30,34,35,42,43]. Our
emphasis here is on the development of a mathematical frame work, and the associated analyses, in order to
provide the more general and comprehensive description of fiber composites with fibers resistant to flexure. It
is also noted that, in the forgoing analysis, the parameter A is assumed to be independent of the deformation
gradient, similar to Eq. (10). That is

A(F) = A. (15)

We adopt the variational principles in the derivations of the Euler equations and the associated boundary
conditions. To obtain the desired expressions, we evaluated the induced energy variation of the response
function with respect to F, G, and H as

Ẇ (F,G,H) = WF · Ḟ + WG · Ġ + WH · Ḣ, (16)

where the superposed dot refers to the derivatives with respect to a parameter ε at a fixed value (e.g., ε = 0 at
equilibrium) that labels a one-parameter family of deformations. Similarly, Eq. (13) 2,3 yields

Ẇ (G) = Cg · ġ and Ẇ (H) = Aα · α̇. (17)

Now, taking derivatives of Eqs. (5) and (12)3 with respect to ε (e.g., ġ = Ġ(D ⊗ D)), and substituting them
into Eq. (17), we obtain

Ẇ (G) = Cg · ·
g = Cg jej · Ġi AB DADBei = Cgi Ġi AB DADB, and

Ẇ (H) = Aα · ·
α = Aα jej · Ḣi ABC DADBDCei = Aαi Ḣi ABC DADBDC . (18)

But, the above are also equivalent to

Ẇ (G) = WG · ·
G = WGiAB (ei ⊗ EA ⊗ EB⊗)Ġ jCD(e j ⊗ EC ⊗ ED) = WGiAB Ġi AB and

Ẇ (H) = WH · Ḣ = WHiABC (ei ⊗ EA ⊗ EB ⊗ EC )Ḣ j DEF (e j ⊗ ED ⊗ EE ⊗ EF ) = WHiABC Ḣi ABC .

(19)
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Hence, we compare Eqs. (18)–(19) and obtain

∂W

∂Gi AB
= Cgi DADB and

∂W

∂Hi ABC
= Aαi DADBDC , (20)

or
WG = Cg ⊗ D ⊗ D and WG = Aα ⊗ D ⊗ D ⊗ D. (21)

In general, volumetric changes in the materials’ deformations are energetically expensive processes (see, for
example, [44,45]). Thus, for the desired application, the energy density function, Eq. (13), is augmented by
the condition of bulk incompressibility such that

U (F,G,H, p) = W (F,G, H) − p(J − 1), (22)

where J is determinant of F and p is a Lagrange-multiplied filed. We continue by using the identity J̇ =
JF · Ḟ = F∗ · Ḟ and obtain the variational derivative of the above as

U̇ = (WF − pF∗) · Ḟ + WG · Ġ + WH · Ḣ, (23)

or, equivalently,
U̇ = (WFi A − pF∗

i A)Ḟi A + WGiAB Ġi AB + WHiABC Ḣi ABC . (24)

Clearly, the obtained variational form (23) is dependent on both the second and the third gradients of
deformations as intended, i.e., the rate of change in curvature is now incorporated into themodel of deformations
via the third gradient of deformations.

3 Equilibrium

The derivation of the Euler equation and boundary conditions arising in second-gradient elasticity is well
documented in [10–12,34]. There authors formulate the weak form of the equilibrium equations by employing
the principles of the virtual work statement:

·
E = P, (25)

where P is the virtual work of the applied load and the superposed dot refers to the variational and/or Gateâux
derivative. In this section, we present a variational formulation which accounts for the third gradient of the
continuum deformation by means of iterated integrations by parts (see, for example, [11,29,30,34,35]). To
proceed, we express the strain energy of the system as

E =
∫

�

U (F,G,H, p)dA, (26)

where � is the domain occupied by a fiber–matrix material. Since the conservative loads are characterized
by the existence of a potential L , such that P = L̇ , the problem of determining equilibrium deformations is
reduced to the problem of minimizing the potential energy E − L . Hence, we find

·
E =

∫

�

U̇ (F,G,H, p)dA. (27)

Also, from Eq. (19), the energy variations with respect to the second and third gradients of deformations (i.e.,
G and H) can be expressed as

∂W

∂Gi AB

·
Gi AB = ∂W

∂Gi AB
ui,AB and

∂W

∂Hi ABC

·
Hi ABC = ∂W

∂Hi ABC
ui,ABC , (28)

where
ui = χ̇i (29)
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is the variation of the position field χ(X). Applying integration by parts, Eq. (28) yields

∂W

∂Gi AB
ui,AB =

(

∂W

∂Gi AB
ui,A

)

,B
−
(

∂W

∂Gi AB

)

,B
ui,A and

∂W

∂Hi ABC
ui,ABC =

(

∂W

∂Hi ABC
ui,AB

)

,C
−
(

∂W

∂Hi ABC

)

,C
ui,AB . (30)

We now substitute Eqs. (24) and (30) into Eq. (27) and thereby obtain

·
E =

∫

�

[

(

∂W

∂Fi A
− pF∗

i A

)

· ·
Fi A +

(

∂W

∂Gi AB
ui,A

)

,B
−
(

∂W

∂Gi AB

)

,B
ui,A

+
(

∂W

∂Hi ABC
ui,AB

)

,C
−
(

∂W

∂Hi ABC

)

,C
ui,AB

]

dA. (31)

Invoking Green–Stoke’s theorem, the above further reduces to

·
E =

∫

�

[

∂W

∂Fi A
− pF∗

i A −
(

∂W

∂Gi AB

)

,B

]

ui,AdA −
∫

�

(

∂W

∂Hi ABC

)

,C
ui,ABdA

+
∫

∂�

[(

∂W

∂Gi AB
ui,A

)

NB +
(

∂W

∂Hi ABC
ui,AB

)

NC

]

dS, (32)

where N is the rightward unit normal to the boundary ∂�. To obtain the expression of the Piola stresses, we

again apply the integration by parts on
(

∂W
∂Hi ABC

)

,C
ui,AB , i.e.,

(

∂W

∂Hi ABC

)

,C
ui,AB =

(

(

∂W

∂Hi ABC

)

,C
ui,A

)

,B

−
(

∂W

∂Hi ABC

)

,CB
ui,A, (33)

and thus obtain from the second integral of Eq. (32) that

∫

�

(

∂W

∂Hi ABC

)

,C
ui,ABdA =

∫

�

(

(

∂W

∂Hi ABC

)

,C
ui,A

)

,B

−
(

∂W

∂Hi ABC

)

,CB
ui,AdA. (34)

But, Eq. (34) is equivalent to

∫

�

(

∂W

∂Hi ABC

)

,C
ui,ABdA =

∫

∂�

(

(

∂W

∂Hi ABC

)

,C
ui,A

)

NBdS −
∫

�

(

∂W

∂Hi ABC

)

,CB
ui,AdA, (35)

in which we again applied the Green–Stoke’s theorem. We then substitute Eq. (35) into Eq. (32) and subse-
quently obtain

·
E =

∫

�

[

∂W

∂Fi A
− pF∗

i A −
(

∂W

∂Gi AB

)

,B

]

ui,AdA

−
[

−
∫

�

(

∂W

∂Hi ABC

)

,CB
ui,AdA +

∫

∂�

(

(

∂W

∂Hi ABC

)

,C
ui,A

)

NBdS

]

+
∫

∂�

[(

∂W

∂Gi AB
ui,A

)

NB +
(

∂W

∂Hi ABC
ui,AB

)

NC

]

dS. (36)

Now, Eq. (36) may be recast as

·
E =

∫

�

Pi A
·

Fi AdA +
∫

∂�

[{

∂W

∂Gi AB
−
(

∂W

∂Hi ABC

)

,C

}

ui,ANB + ∂W

∂Hi ABC
ui,ABNC

]

dS, (37)
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where

Pi A = ∂W

∂Fi A
− pF∗

i A −
(

∂W

∂Gi AB

)

,B
+
(

∂W

∂Hi ABC

)

,CB
(38)

is the expression of the Piola stress. It is evident from Eq. (38) that the resulting stress fields are dependent on
both the second and third gradients of deformations. Also, it may be necessary to write the above equations in
the tensorial form for the sake of clarity and completeness, especially for the terms which are obtained from
the results of a multilinear transformations of higher-order tensors with mixed bases:

·
E =

∫

�

P · ·
FdA +

∫

∂�

[WT
GF

T · N + WT
H(∇F)T · N − (Div(WH))TFT · N]dS; (39)

and
P = WF − pF∗ − Div(WG) + Div(Div(WH)). (40)

In the case of initially straight fibers (i.e., ∇D = 0), we evaluate from Eq. (20) that
(

∂W

∂Gi AB

)

,B
= Cgi,BDADB and

(

∂W

∂Hi ABC

)

,CB
= Aαi,BC DADBDC , (41)

and thus reduce Eq. (38) to

Pi A = ∂W

∂Fi A
− pF∗

i A − Cgi,BDADB + Aαi,BC DADBDC . (42)

Finally, Eq. (42) satisfies
Pi A,A = 0 or Div(P) = 0, (43)

which can be served as the Euler equilibrium equation for the reinforced solids occupying the domain of �.

3.1 Example: neo-Hookean materials

In the case of neo-Hookean materials, the energy density function is given by

W (I1, I3) = μ

2
(I1 − 3) − μ log I3 + λ

2
(log I3)

2, (44)

where μ and λ are the material constants and I1 and I3 are, respectively, the first and third invariants of the
deformation gradient tensor. By setting I3 = 1, the incompressible model can be obtained as

W (I1) = μ

2
(I1 − 3) = μ

2
(F · F − 3). (45)

Now taking the derivative of the above with respect to F and subsequently substituting it into Eq. (42), we find

Pi A = μFi A − pF∗
i A − Cgi,BDADB + Aαi,BC DADBDC , (46)

which is the expression of the Piola stress for the reinforced solid of neo-Hookean type. Hence, the corre-
sponding Euler equilibrium equation satisfies

Pi A,A = μFi A,A − p,AF
∗
i A − Cgi,ABDADB + Aαi,ABC DADBDC = 0, (47)

where we use the Piola’s identity (i.e., F∗
i A,A = 0).

For example, we consider the reinforced solid which consists of initially straight fibers such that

D = E1 (i.e., D1 = 1 and D2 = 0), (48)

and is subjected to finite plain deformations. Then, the equilibrium equation (47) reduces to

Pi A,A = μFi A,A − p,AF
∗
i A − Cgi,11 + Aαi,111 = 0.

Further, we evaluate from Eqs. (5) and (12) that

gi = Fi1,1, αi = Fi1,11, Fi A = χi,A, F∗
i A = εi jεAB Fj B, (49)

where εi j is the 2-D permutation, ε12 = −ε21 = 1, ε11 = ε22 = 0. Consequently, invoking Eqs. (48)–(49),
together with the constraint of the bulk incompressibility (i.e., det F = 1), we deliver the following system of
PDEs,
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Pi A,Ae1 = (μχi,AA − p,Aεi jεABχ j,B − Cχi,1111 + Aχi,111111)e1 = 0 and (50)

χ1,1χ2,2 − χ1,2χ2,1 = 1, (51)

which solves for χ1, χ2 and p.

4 Boundary conditions

In this section, we present rigorous derivations vis-a-vis the admissible boundary conditions which arise in the
third gradient of virtual displacement. Due to the presence of the high-order terms, the corresponding formula-
tion turns out to be mathematically quite involved. However, the resulting expressions of boundary conditions
are in relatively simple formats and thus mathematically tractable. To proceed, we apply the decomposition
Pi Aui,A = (Pi Aui ),A − Pi A,Aui as in Eq. (30) and obtain from Eq. (37) that

·
E=

∫

∂�

Pi Aui NAdS−
∫

�

Pi A,AuidA+
∫

∂�

[{

∂W

∂Gi AB
−
(

∂W

∂Hi ABC

)

,C

}

ui,ANB + ∂W

∂Hi ABC
ui,ABNC

]

dS.

(52)

Here, the Green–Stoke’s theorem is applied in the first term of Eq. (52). Since the Euler equation, Pi A,A = 0,
holds in �, the above reduces to

·
E =

∫

∂�

Pi Aui NAdS +
∫

∂�

[{

∂W

∂Gi AB
−
(

∂W

∂Hi ABC

)

,C

}

ui,ANB + ∂W

∂Hi ABC
ui,ABNC

]

dS. (53)

Now, we project ∇u onto the normal and tangential direction and thereby obtain

∇u = ∇u(T ⊗ T) + ∇u(N ⊗ N) = u′ ⊗ T + u,N ⊗N, (54)

such that u′and u,N are, respectively, the tangential and normal derivatives of u on ∂�, i.e.,

u′
i = ui,ATA, ui,N = ui,ANA, (55)

where T = X′(S) = k×N defines the unit tangent to ∂�, andN is the associated unit normal to the boundary.
Thus, invoking Eqs. (54)–(55), ui,A can be decomposed into

ui,A = dui
ds

ds

dXA
+ dui

dN

dN

dXA
= u′

i TA + ui,N NA, (56)

and similarly for ui,AB,

ui,AB = u′′
i TATB + u

′
i (T

′
ATB + TA,N NB)+ ui,N (N

′
ATB + NA,N NB)+ u

′
i,N (NATB + TANB)+ ui,NN NANB .

(57)
Substituting the above results into Eq. (53) then yields

·
E =

∫

∂�

Pi Aui NAdS +
∫

∂w

{

(

∂W

∂Gi AB

)

−
(

∂W

∂Hi ABC

)

,C

}

(

u′
i TANB + ui,N NANB

)

dS

+
∫

∂�

∂W

∂Hi ABC
[u′′

i TATB + u′
i (T

′
ATB + TA,N NB) + ui,N (N ′

ATB + NA,N NB)

+u′
i,N (NATB + TANB) + ui,NN NANB]NCdS. (58)

In order to extract the admissible boundary conditions from Eq. (58), we make use of iterated integrations by
parts. For example,

∂W

∂Gi AB
TANBu

′
i =

(

∂W

∂Gi AB
TANBui

)′
−
(

∂W

∂Gi AB
TANB

)′
ui , (59)

∂W

∂Hi ABC
(NATBNC + TANBNC )u′

i,N
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=
[

∂W

∂Hi ABC
(NATBNC + TANBNC )ui,N

]′
−
[

∂W

∂Hi ABC
(NATBNC + TANBNC )

]′
ui,N , (60)

∂W

∂Hi ABC
TATBNCu

′′
i

=
(

∂W

∂Hi ABC
TATBNCui

)′′
+
(

∂W

∂Hi ABC
TATBNC

)′′
ui − 2

[(

∂W

∂Hi ABC
TATBNC

)′
ui

]′
, (61)

and similarly for other terms in Eq. (58). Consequently, Eq. (58) becomes

·
E =

∫

∂�

[

Pi ANA −
{

∂W

∂Gi AB
TANB −

(

∂W

∂Hi ABC

)

,C
TANB

}′]
uidS

−
∫

∂�

[{

∂W

∂Hi ABC
(T ′

ATBNC + TA,N NBNC )

}′
+
(

∂W

∂Hi ABC
TATBNC

)′′]
uidS

+
∫

∂�

[{

∂W

∂Gi AB
TANB −

(

∂W

∂Hi ABC

)

,C
TANB − 2

(

∂W

∂Hi ABC
TATBNC

)′}
ui

]′
dS

+
∫

∂�

[

∂W

∂Hi ABC
(T ′

ATBNC + TA,N NBNC )ui

]′
dS

+
∫

∂�

[

∂W

∂Hi ABC
(NATBNC + TANBNC )ui,N

]′
dS

+
∫

∂�

[{

(

∂W

∂Gi AB

)

−
(

∂W

∂Hi ABC

)

,C

}

NANB + ∂W

∂Hi ABC
(N ′

ATB + NA,N NB)NC

]

ui,NdS

−
∫

∂�

[{

∂W

∂Hi ABC
(NATBNC + TANBNC )

}′]
ui,NdS

+
∫

∂�

(

∂W

∂Hi ABC
TATBNCui

)′′
dS +

∫

∂�

∂W

∂Hi ABC
ui,NN NANBNCdS. (62)

But, in view of Eqs. (20) and (41) (e.g., ∂W
∂Gi AB

= Cgi DADB ,
(

∂W
∂Gi AB

)

,B
= Cgi,BDADB , etc.), the above may

be recast as

·
E =

∫

∂�

[Pi ANA−{(Cgi−Aαi,C DC )DATADBNB}′−{Aαi DC NC (DAT
′
ADBTB+DATA,N DBNB)}′]uidS

+
∫

∂�

[(Aαi DATADBTBDCNC )′′]uidS +
∑

∥

∥Aαi (DAT
′
ADBTBDCNC + DATA,N DBNBDCNC )ui

∥

∥

+
∑

∥

∥[(Cgi − Aαi,C DC )DATADBNB − 2 (Aαi DATADBTBDCNC )′]ui
∥

∥

+
∑

∥

∥Aαi (DANADBTBDCNC + DATADBNBDCNC )ui,N
∥

∥+
∑

∥

∥

∥

∥

d

ds
(Aαi DATADBTBNC DCui )

∥

∥

∥

∥

+
∫

∂�

[

(Cgi − Aαi,C DC )DANADBNB + Aαi DC NC (DAN
′
ADBTB + DANA,N DBNB)

]

ui,NdS

−
∫

∂�

[{Aαi DADBDC (NATBNC + TANBNC )}′ ui,N ]dS +
∫

∂�

(Aαi DANADBNBDCNCui,NN )dS,(63)

where the double bar symbol refers to the jump across the discontinuities on the boundary ∂� (i.e., ‖∗‖ =
(∗)+ − (∗)−) and the sum refers to the collection of all discontinuities. Since the virtual work statement

(
·
E = P) implies that the admissible mechanical powers are of the form

P =
∫

∂wt

ti uidS +
∫

∂w

miui,NdS +
∫

∂w

ri ui,NNdS +
∑

fi ui +
∑

hiui,N , (64)
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By comparing Eqs. (63) and (64), we find that

t = PN + d2

ds2
[Aα(D · T)2(D · N)]

− d

ds
[(Cg − A(∇α)D)(D · T)(D · N) − Aα(D · N)(D · T)(D · T′) + Aα(D · N)2(D · T,N )],

m = (Cg − A(∇α)D)(D · N)2 + Aα(D · N)[(D · N′)(D · T) + (D · N,N )(D · N)]
− d

ds
[2Aα(D · T)(D · N)2],

r = Aα(D · N)3,

f = (Cg − A(∇α)D)(D · T)(D · N) − d

ds
[2Aα(D · T)2(D · N)]

+Aα[(D · T′)(D · N)(D · N) + (D · T,N )(D · N)2],
d

ds
[f] = d

ds
[Aα(D · N)(D · N)],

h = 2Aα((D · T)(D · N)2, (65)

where t,m, and f are the expressions of edge tractions, edgemoments and the corner forces, respectively.More
importantly, unlike those from the second-gradient models, additional boundary conditions (i.e., r, d

ds [f] and
h) appeared as a result of the introduction of the third gradient of deformations. These boundary conditions are
the set of admissible contact interactions that can be sustained by third-gradient continua (see, also, [11,30,34]
and references therein). In fact, such interaction forces are in conjugation with the Piola-type triple stress and
are necessary to capture the internal energy contributions to the contact interactions on edges and points of
Cauchy cuts [28–30]. In the present case, this would mean the effects of local interactions between the fiber
and matrix on the adjoined deformation fields.

Remark The proposed model has a close similarity to the theory of micropolar elasticity, which admits addi-
tional degrees of freedom associated with the rotation of a local point (microstructure) pertaining to couple
stresses.Within the description of the proposedmodel, this is achieved via the computation of the third gradient
of the continuum deformation, i.e., the rate of changes in curvature (local point rotations), which is determined
by the imposition of the triple forces (e.g., r,h) on the desired boundaries. Therefore, the proposed model can
be used as an alternative 2D Cosserat theory of nonlinear elasticity.

In a typical environment where fibers are aligned along the directions of either normal and/or tangential to
the boundary (e.g., rectangular boundaries), we compute

(D · T)(D · N) = 0 and ∇T = ∇N = 0, (66)

and thereby reduce Eq. (65) to

t = PN,

m = [Cg − A(∇α)D](D · N)2,

r = Aα(D · N)3,

f = 0,
d

ds
[f] = 0,

h = 0, (67)

where

Pi A = μFi A − pF∗
i A − Cgi,BDADB + Aαi,BC DADBDC ,

gi = Fi A,BDADB and αi = Fi A,BC DADBDC . (68)

Hence, in this case (Eq. (66)), r is the only meaningful boundary force associated with the third gradient of
deformations (i.e., f, f ′ and h are identically vanishes), which is required to obtain the unique solution. We
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Fig. 1 Schematic of problem

note here that the clarification of such triple forces and associated boundary conditions (Eq. (65)) may be of
particular mechanical interest to practitioners and theoreticians alike. In this regard, a number of cases are
examined throughout the following section. However, the attempts are intrinsically limited due to the paucity
of experimental resources which certainly deserve further researches.

Lastly, by imposing the admissible set of boundary conditions (Eq. (67)), the solution of the PDE system
(Eqs. (50)–(51)) can be obtained via commercial packages (e.g., Matlab, COMSOL, etc.). We reserve the
details of numerical procedures in “Appendix” for the sake of coherence and consistency.

5 Results and discussion

For the purpose of demonstration, we simulate a set of numerical solutions describing the deformations of a
rectangular composite that is reinforced with fibers resistant to flexure and subjected to the double force m
(bending moment) and triple force r (see Fig. 1). More precisely, a half problem is considered in which the
corresponding boundary conditions are prescribed as

m1 = Cχ1,11 − Aχ1,1111 = M/μ, r1 = Aχ1,111 = r/μ,

m2 = Cχ2,11 − Aχ2,1111 = 0, r2 = Aχ2,111 = 0,

χ1 = 0, χ2 = 0, at x = c, (69)

and symmetric boundary conditions are imposed at x = 0. It is noted that, unless otherwise specified, the
corresponding data are obtained under the normalized setting (e.g., C

μ
= 150, A

μ
= 50, etc.). Also, here and

henceforth, we conveniently refer to material constants associated with the Piola-type double stress and triple
stress (i.e., C and A) as the ‘double stress parameter’ and ‘triple stress parameter,’ respectively.
The obtained solutions in Fig. 2 illustrate gradual decreases in deformed configurations of the composite with
increasing double stress parameter,C (bending stiffness of fibers), which also agrees with the results in [25,37].
Further, the corresponding deformation fields in Figs. 3 and 4 demonstrate sensitivity to both the triple stress
parameter, A, and the triple force, r, as intended, and accommodate the solutions from the second-gradient
model [25,37] when the third-gradient effects are removed (see Fig. 5).

More importantly, we examine shear strain fields and the associated shear angle distributions over the
domain of interest in order to have a more in-depth understanding of the influences of the third gradient of
deformations. In the analysis, the shear strain gradients and shear angles are computed using the following
relations [22]:

φ′ = u′′
2(1 + u′

1) − u′
2u

′′
1

u′2
2 + (1 + u′

1)
2

, (70)

and

φ = tan−1
(

χ2,1 − χ1,1

2 + χ1,1 + χ2,1

)

. (71)

It is shown in Fig. 6 that the magnitudes of shear strains either gradually increase or decrease with respect to the
signs of applied triple force, i.e., the shear strain increases when r > 0 and decreases with r < 0. This further
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Fig. 2 Deformed configurations with respect to C/μ

Fig. 3 Deformed configurations with respect to A/μ
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Fig. 4 Deformed configurations with respect to r/μ

Fig. 5 Comparison with the existing results [25,37]
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Fig. 6 Shear strain gradients with respect to r : r > 0 (left) and r < 0 (right)

Fig. 7 Shear angle contours with respect to r : r > 0 (left) and r < 0 (right)

Fig. 8 Shear angle contours: first gradient (left), second gradient (middle), third gradient (right)

leads to the smooth and dilatational shear angle distributions throughout the entire domain of interest where the
rate of dilatation is governed by the triple force r (Fig. 7). In other words, when the composite is subjected to the
double forcem, the proposedmodel predicts multiple configurations of shear angle distributions, depending on
the applied triple force r, whereas only one configuration (smooth but non-dilatational distribution) is possible
within the description of the strain gradient theory (see, for example, [23,24,27]). Indeed, the shear angle
distribution from the result of the second-gradient continuum model is the special case of those predicted by
the obtained solution in the limit of the vanishing triple force (i.e., r = 0, see Fig. 8). This also can be seen
directly from Eqs. (47), (67) and (68). For example, by setting r = 0, we find from Eq. (67)3 that,

r = Aα(D · N)3 = 0. (72)

Accordingly, the boundary conditions in Eq. (67) and the expression of the Piola-type stress (Eq. (68)) reduce
to

t = PN, m = Cg(D · N)2, and (73)

Pi A = μFi A − pF∗
i A − Cgi,BDADB . (74)
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Table 1 Field distributions predicted by the N th-order gradient continuum model

(a) (b) (c)

Similarly, by invoking Eq. (72), the system of coupled PDEs (Eq. (47)) becomes

Pi A,A = μFi A,A − p,AF
∗
i A − Cgi,ABDADB = 0. (75)

Hence, the corresponding equations are now reduced to those obtained from the strain gradient theory (see
Eqs. (24), (37), and (38) in [37]).

Remark The triple force r is meaningful only if its conjugate pair exists: the Piola-type triple stress. In the
present case, the stress expression in Eq. (46) is a combination of the Piola-type stress (μFi A), double stress
(Cgi,BDADB) and triple stress (Aαi,BC DADBDC ) such that the third gradient of the deformation term in
Eq. (46) (i.e., Aαi,BC DADBDC ) can be interpreted as the energy pair of the applied triple force r. The same
statement holds in cases of the second-gradient continuum models. For example, the Piola-type double stress
(Cgi,BDADB) is the energy conjugate to the double forcem (see, also, [28,29]).

Lastly, we summarize the associated field distributions predicted, respectively, by the first-, second- and
third-gradient continuum models for the purpose of comparison. In the summary, the second strain gradient,
strain gradient, shear angle, deformation gradient and boundary conditions are denoted as SSG, SG, SA, DG
and BCs, respectively. It is evident from Table 1 that the N th-order continuum model predicts continuous
(but not necessarily smooth) shear strain gradient fields up to (N − 1)th order. For example, the second-order
continuum model predicts the first gradient of the shear strain fields (SG), see case b) in Table 1. Further, in
order to uniquely determine such fields, the correspondingN th-order forces are required, which can be imposed
on the desired boundaries only if there exists their energy couple, the N th-order gradient of the deformation
map (see DG and BCs in Table 1).
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Fig. 9 CNC fiber composites bending test: experimental data and theoretical predictions

5.1 Characterization of the triple stress parameter

In the previous section, we observed that the responses of the composite and the associated shear strain and
shear angle distributions are sensitive to boundary forces (i.e., double and triple forces) and, in particular, their
energy couples via the N th-order stress parameters (i.e., C and A ). The double stress parameter C represents
the bending rigidity of a fiber such that each fiber family has their own uniqueC values, obtained from bending
experiments. However, little has been devoted to the characterization of the parameter A mainly due to the
complex nature of mechanical interactions on edges and points (see, also, [28–30]). Hence, in this section, we
address this deficiency and investigate whether there exists a unique characteristic constant A associated with
the Piola-type triple stress. The accuracy and utility of the proposed model are also examined via comparison
with the experimental results.

Two sets of experiments were designed for this purpose (see Figs. 9, 10): a three-point bending test of a
crystalline nanocellulose (CNC) fiber composite (C = 150GPa, μ = 1GPa); and a bending test of a nylon-
6 fiber neoprene rubber composite (C = 2000MPa, μ = 1MPa), which is clamped on both ends. In both
experiments, the out-of-plane direction (x3) is alignedwith either the loading cylinder or the guide clamps. This
setting is a particular case of the proposed model when c 	 d. The resulting displacements are simultaneously
recorded via the MTS load cell and high-speed camera.

Figures 9 and 11 illustrate that the proposedmodel successfully predicts the deformation profiles of both the
CNC fiber composite and nylon fiber composite with a maximum error of less then 2%. But more importantly,
the results in Fig. 12 indicate that there exists a certain range of values for A which minimize the prediction
errors. Further, we found that these characteristic numbers are unique for each composite and not affected by
either the types of boundary conditions or the applied loadings (e.g., r,m, see Fig. 12). Therefore, it is inferred
that A is indeed an intrinsic property of the examined composites pertaining to the Piola-type triple stress, and
can be uniquely determined for each case. For example, A = 127 for CNC fiber composite and A = 0.825
for nylon rubber composite. Here, we may refer to A as the triple modulus of composites for use in analogous
studies.

Lastly, we note that the obtained results can be further extended to encompass more practically important
problems: determining the triple modulus of the composites subjected to different loading conditions (e.g.,
bias extension); examining the existence of the triple modulus for an arbitrary composite; analyzing the effects
of the residual Piola-type triple stresses on the mechanical responses of a composite. The researches on these
subjects are currently underway, and our intention is to report elsewhere when we collect enough case studies.
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Fig. 10 Nylon-6 fiber neoprene rubber composite experimental setup

-10 -8 -6 -4 -2 0 2 4 6 8 10
X

0

0.1

0.2

0.3noi t celf e
D l a

mro
N : Y

Experiemnt 8cm
Experiemnt 7cm
Experiemnt 6cm
Proposed model 8cm
Proposed model 7cm
Proposed model 6cm

Fig. 11 Nylon-6 fiber neoprene rubber composite: experimental data and theoretical predictions
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Appendix: Finite element analysis of the fourth-order coupled PDE

The resulting systems of PDEs (Eqs. (50)–(51)) are sixth-order differential equations with coupled nonlinear
terms. The case of such less regular PDEs deserves delicatemathematical treatment as done similarly in [25,37]
and is of particular practical interest. Therefore, it is not trivial to demonstrate numerical analysis procedures
regarding FE analysis.
For preprocessing, Eqs. (50)–(51) may be recast as

μ
(

Q + χ1,22
)− Aχ2,2 + Bχ2,1 − CQ,11 + AS,11 = 0,

μ
(

R + χ2,22
)+ Aχ1,2 − Bχ1,1 − CR,11 + AT,11 = 0,

Q − χ1,11 = 0,

R − χ2,11 = 0,

S − Q,11 = 0,

T − R,11 = 0,

A − μ(Q + χ1,22) − CS = 0,

B − μ(R + χ2,22) − CT = 0, (76)

where Q = χ1,11, R = χ2,11, S = Q,11 and T = R,11. Thus, we reduced the order of deferential equations
from three coupled equations of sixth order to eight coupled equations of second order. In particular, the
nonlinear terms (e.g., Aχ2,2, Bχ2,1, etc.) in the above equations can be systematically treated via the Picard
iterative procedure;

− Ainitialχ
initial
2,2 + Binitialχ

initial
2,1 
⇒ −A0χ

0
2,2 + B0χ

0
2,1,

Ainitialχ
initial
1,2 − Binitialχ

initial
1,1 
⇒ A0χ

0
1,2 − B0χ

0
1,1, (77)

where the values of A and B continue to be updated based on their previous estimations (e.g., A1 and B1
are refreshed by their previous pair of A0 and B0) as iteration progresses. Hence, we generalize the above
expression for N number of iterations as

− AN−1χ
N−1
2,2 + BN−1χ

N−1
2,1 
⇒ −ANχN

2,2 + BNχN
2,1,

AN−1χ
N−1
1,2 − BN−1χ

N−1
1,1 
⇒ ANχN

1,2 − BNχN
1,1, (78)

in which the number of iteration can be determined by a convergence criteria.
In addition, the weighted forms of Eq. (76) are obtained by

0 =
∫

�e

w1(μ
(

Q + χ1,22
)− Aχ2,2 + Bχ2,1 − CQ,11 + AS,11)d�,

0 =
∫

�e

w2(μ
(

R + χ2,22
)+ Aχ1,2 − Bχ1,1 − CR,11 + AT,11)d�,

0 =
∫

�e

w3(Q − χ1,11)d�,

0 =
∫

�e

w4(R − χ2,11)d�,

0 =
∫

�e

w5(S − Q,11)d�,
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0 =
∫

�e

w6(T − R,11)d�,

0 =
∫

�e

w7(A − μ(Q + χ1,22) − CS)d�,

0 =
∫

�e

w8(B − μ(R + χ2,22) − CT )d�. (79)

Applying integration by parts and Green–Stoke’s theorem (e.g., μ
∫

�e w1χ1,22d� = −μ
∫

�e w1,2χ1,2d� +
μ
∫

�e w1χ1,2Nd
), we obtain from the above that

0 =
∫

�e

(μw1Q − μw1,2χ1,2 − w1A0χ2,2 + w1B0χ2,1 + Cw1,1Q,1 − Aw1,1S,1)d�

+
∫

∂
e

μw1χ1,2Nd
 −
∫

∂
e

Cw1Q,1Nd
 +
∫

∂
e

Aw1S,1Nd
,

0 =
∫

�e

(μw2R − μw2,2χ2,2 + w2A0χ1,2 − w2B0χ1,1 + Cw2,1R,1 − Aw2,1T,1)d�

+
∫

∂
e

μw2χ2,2Nd
 −
∫

∂
e

Cw2R,1Nd
 +
∫

∂
e

Aw2T,1Nd
,

0 =
∫

�e

(w3Q + w3,1χ1,1)d� −
∫

∂
e

w3χ1,1Nd
,

0 =
∫

�e

(w4R + w4,1χ2,1)d� −
∫

∂
e

w4χ2,1Nd
,

0 =
∫

�e

(w5S + w5,1Q,1)d� −
∫

∂
e

w5Q,1Nd
,

0 =
∫

�e

(w6T + w6,1R,1)d� −
∫

∂
e

w6R,1Nd
,

0 =
∫

�e

w7(A0 − μQ − CS − μw7,2χ1,2)d� −
∫

∂
e

μw7χ1,2Nd


0 =
∫

�e

w8(B0 − μR − CT − μw8,2χ1,2)d� −
∫

∂
e

μw7χ2,2Nd
, (80)

where �, ∂
 and N are the domain of interest, the associated boundary, and the rightward unit normal to the
boundary ∂
 in the sense of the Green–Stoke’s theorem, respectively. The unknowns, χ1, χ2, Q, R, S, T , A
and B can be written in the form of Lagrangian polynomial as

(∗) =
n=4
∑

j=1

[(∗) j� j (x, y)]. (81)

Thus, the test function w is obtained by

wm =
n=4
∑

i=1

wi
m�i (x, y) and m = 1, 2, 3, . . . , 8. (82)
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Here, wi is weight of the test function and �i (x, y) are the shape functions for the four-node rectangular
elements such that

�1 = (x − c)(y − d)

cd
, �2 = x(y − d)

−cd
, �3 = xy

cd
and �4 = y(x − c)

−cd
. (83)

By means of Eq. (81), Eq. (80) can be rewritten in terms of Lagrangian polynomial representation as

0 =
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

(μ�i� j + C�i,1� j,1)d�

⎫

⎬

⎭

Q j

−
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

(μ�i,2� j,2)d�

⎫

⎬

⎭

χ1 j −
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

(�i A0� j,2 − �i B0� j,1)d�

⎫

⎬

⎭

χ2 j

−
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

(A�i,1� j,1)d�

⎫

⎬

⎭

S j +
∫

∂
e

(μ�iχ1,2)Nd
 −
∫

∂
e

(C�i Q,1)Nd
 +
∫

∂
e

A�i S,1Nd
,

0 =
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

(μ�i� j + C�i,1� j,1)d�

⎫

⎬

⎭

R j

−
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

(μ�i,2� j,2)d�

⎫

⎬

⎭

χ2 j +
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

(�i A0� j,2 − �i B0� j,1)d�

⎫

⎬

⎭

χ1 j

−
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

(A�i,1� j,1)d�

⎫

⎬

⎭

Tj +
∫

∂
e

(μ�iχ2,2)Nd
 −
∫

∂
e

(C�i R,1)Nd
 +
∫

∂
e

A�i T,1Nd
,

0 =
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

(�i� j )d�

⎫

⎬

⎭

Q j +
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

�i,1� j,1)d�

⎫

⎬

⎭

χ1 j −
∫

∂
e

(�iχ1,1)Nd
,

0 =
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

(�i� j )d�

⎫

⎬

⎭

R j +
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

�i,1� j,1)d�

⎫

⎬

⎭

χ2 j −
∫

∂
e

(�iχ2,1)Nd
,

0 =
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

(�i� j )d�

⎫

⎬

⎭

S j +
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

�i,1� j,1)d�

⎫

⎬

⎭

Q j −
∫

∂
e

(�i Q,1)Nd
,

0 =
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

(�i� j )d�

⎫

⎬

⎭

Tj +
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

�i,1� j,1)d�

⎫

⎬

⎭

R j −
∫

∂
e

(�i R,1)Nd
,

0 =
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

(�i� j )d�

⎫

⎬

⎭

A j −
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

(μ�i� j )d�

⎫

⎬

⎭

Q j −
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

(C�i� j )d�

⎫

⎬

⎭

S j

−
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

(μ�i,2� j,2)d�

⎫

⎬

⎭

χ1 j +
∫

∂
e

(μ�iχ1,2)Nd
,

0 =
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

(�i� j )d�

⎫

⎬

⎭

Bj −
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

(μ�i� j )d�

⎫

⎬

⎭

R j −
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

(C�i� j )d�

⎫

⎬

⎭

Tj
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−
n
∑

i, j=1

⎧

⎨

⎩

∫

�e

(μ�i,2� j,2)d�

⎫

⎬

⎭

χ2 j +
∫

∂
e

(μ�iχ2,2)Nd
. (84)

Now, for the local stiffness matrices and forcing vectors for each elements, we find

⎡

⎢

⎢

⎢

⎢

⎢

⎣

K 11
11 K 11

12 K 11
13 K 11

14

K 11
21 K 11

22 K 11
23 K 11

24

K 11
31 K 11

32 K 11
33 K 11

34

K 11
41 K 11

42 K 11
43 K 11

44

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Local

⎡

⎢

⎢

⎢

⎢

⎢

⎣

χ1
1

χ2
1

χ3
1

χ4
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Local

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

F1
1

F1
2

F1
3

F1
4

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Local

, (85)

or alternatively, in a compact form,

[

K 11
i j

]

[χ i
1] = [F1

i ] for i, j = 1, 2, 3, 4, (86)

where
[

K 11
i j

]

=
∫

�e

(μ�i,2� j,2)d�, (87)

and

[F1
i ] = −μ

∫

∂
e

�iχ1,2Nd
 + C
∫

∂
e

�i Q,1Nd
 −
∫

∂
e

A�i S,1Nd
. (88)

Accordingly, the unknowns (i.e., Q, R, S, T , A and B) can be expressed as

Qi = {χ i
1},11, Ri = {χ i

2},11, Si = {Qi },11 etc. (89)

Finally, we repeat the same procedures for the rest of components (e.g.,
[

K 21
i j

]

[χ i
2] = [F2

i ], etc.) and thereby
obtain the following systems of equations (in the Global form) for each individual elements.

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[

K 11
] [

K 12
] [

K 13
] [

K 14
] [

K 15
] [

K 16
] [

K 17
] [

K 18
]

[

K 21
] [

K 22
] [

K 23
] [

K 24
] [

K 25
] [

K 26
] [

K 27
] [

K 28
]

[

K 31
] [

K 32
] [

K 33
] [

K 34
] [

K 35
] [

K 36
] [

K 37
] [

K 38
]

[

K 41
] [

K 42
] [

K 43
] [

K 44
] [

K 45
] [

K 46
] [

K 47
] [

K 48
]

[

K 51
] [

K 52
] [

K 53
] [

K 54
] [

K 55
] [

K 56
] [

K 57
] [

K 58
]

[

K 61
] [

K 62
] [

K 63
] [

K 64
] [

K 65
] [

K 66
] [

K 67
] [

K 68
]

[

K 71
] [

K 72
] [

K 73
] [

K 74
] [

K 75
] [

K 76
] [

K 77
] [

K 78
]

[

K 81
] [

K 82
] [

K 83
] [

K 84
] [

K 85
] [

K 86
] [

K 87
] [

K 88
]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Global

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

{χ i
1}

{χ i
2}

Qi

Ri

Ai

Bi

Si

Ti

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Global

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

{F1
i }

{F2}
{F3}
{F4}
{F5}
{F6}
{F7}
{F8}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Global

.

(90)
In the simulation, the following convergence criteria are used for both nonlinear terms;

|An+1 − An| = e1 ≤ ε, |Bn+1 − Bn| = e2 ≤ ε and ε = maximum error = 10−4, (91)

which demonstrate fast convergence within 20 iterations (see Table 2).
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Table 2 Maximum numerical errors with respect to the number of iterations

Number of iterations Maximum error

1 1.2e−01
5 5.7e−02
10 3.5e−03
17 9.2e−05
20 5.0e−05
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