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Abstract Crack nucleation issue is addressed in a comprehensive micromechanics-based framework allowing
to bridge the 2D model with the more realistic 3D representation of a crack. The sudden and abrupt nature of
the nucleation process argues in favour of adiabatic conditions rather than isothermal so that the formulation
of the energy balance is formulated in terms of internal energy instead of Helmholtz free energy. The proposed
theory provides themean to evaluate the temperature rise as a function of the created entropy at themicroscopic
scale and the internal energy crack density at the macroscopic one.

Keywords Crack nucleation · Adiabatic conditions · Micromechanics · Temperature rise · Thermodynamics
framework

List of symbols

t Time
x Macroscopic position vector
z Microscopic position vector
f Volume fraction of microcracks in the REV
d Damage parameter
T Stress vector
ξ Displacement field
σ Cauchy stress tensor
ε Infinitesimal strain tensor
ρ Mass density
� Crack length
F(�) 2D crack subset
F±(�) Upper and lower lips of the crack
N Outer unit normal to the crack upper lip
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ε Finite thickness of the macrocrack
Lε 3D geometrical model of a macrocrack
Ω0 Whole structure, including the crack
Ω(�) Complementary subset of the crack in Ω0
∂Ω0 Boundaries of Ω0
∂ΩT Subset of ∂Ω0 where the stress boundary conditions are defined
∂Ωξ Subset of ∂Ω0 where the displacement boundary conditions are defined
ρF Mass density force
CF (t) Scalar time function controlling the time-dependent intensity of the body forces
CT (t) Scalar time function controlling the time-dependent intensity of the stress boundary conditions
Cξ (t) Scalar time function controlling the time-dependent intensity of the displacement boundary condi-

tions
Utot Internal energy of Ω0
Ubulk Internal energy of Ω(�)
UF Internal energy of F
Ψ Helmholtz free energy
K Kinetic energy
Pe Rate of work done by external forces acting on the system in its actual motion
Φ(ξ) Work of the given external forces
Gc Critical energy release rate
u Internal energy density
ψ Helmholtz free energy density
s Entropy density
◦
scrdt Volume entropy created between time t and t + dt
◦
q Heat input density
r Heat supply density
q Heat flow vector
D Dissipation per unit volume
T Temperature
T 0 Temperature of reference
T 0c Heat capacity density
T 0k Strain latent heat density
Ciso Isothermal elastic tensor
Cad Adiabatic elastic tensor
cth Thermal diffusivity
tc Characteristic time of heat transfer
U Macroscopic internal energy density
UFD Internal energy density of a fully damaged material
τ Temperature variation with respect to the reference state
E Average strain of the REV
C
hom(d) Macroscopic homogenized elasticity of a microcracked domain

Σ Macroscopic stress
S Macroscopic entropy density
I Symmetrical fourth-order identity tensor
A Strain concentration tensor
gc Material constant characterizing the dissipative process
Gad

c Critical energy release rate in adiabatic context

1 Introduction

The usual energy balance proposed for crack propagation (e.g., [2,5,7,14]) is formulated under isothermal
conditions. This assumption can be justified if the propagation is sufficiently slow (see [16]) while the structure
is in contact with an isothermal reservoir. However, crack nucleation is a sudden and abrupt phenomenonwhich
is expected to involve a temperature rise along the nucleated crack. In this context, isothermal assumption may
be a rough approximation. This problem seems not to have focused the attention since the temperature rise
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itself and its determination are not considered (see [8,12,13]). The starting point of this study is to consider
that the adiabatic framework is better suited to capture the nucleation process rather than the isothermal one.

In isothermal conditions, the fundamental Clausius–Duhem inequality introduces the concept of dissipation
defined as the difference between the mechanical work and the Helmholtz free energy variation. In fact, the
concept of dissipation is intrinsically related to isothermal conditions and is not well suited for adiabatic
conditions. From a thermodynamical point of view, the irreversible phenomenon is responsible for a heat
creation while there is no heat transfer in adiabatic conditions. Hence, there is a heat accumulation along the
crack nucleation. If we have in mind to resort to a description of the crack as a surface, the heat accumulation
suggests that an internal energy surface density should be, in adiabatic conditions, the counterpart of dissipation
in isothermal conditions.

It should be recalled that the classical 2D geometrical model for cracks is primarily a mathematical model
which is introduced in order to derive analytical solutions such as stress intensity factors. It seems, however,
difficult to understand the thermodynamics at stake with such a description. More precisely, if we want to
clarify the physics of this internal energy surface density, a 3D description, in which the crack is given a finite
width, is due. The proposed point of view is to represent the nucleated crack as a region in which the material
has reached the final stage of a damage process. To some extent, this idea is also shared by the damage gradient
models (see [11]). In other words, we look for a micromechanics-based thermodynamics theory of damage in
order to bridge the mathematical 2D model with the 3D real nature of the crack.

Sections 2 and 3 are dedicated to the presentation of the thermodynamics principles, specifically in adiabatic
conditions. The internal energy is identified as the relevant quantity for deriving the energy balance of the
crack nucleation process. Section 4 is devoted to the micromechanics-based interpretation of the macroscopic
adiabatic crack. The macroscopic internal energy is derived, allowing for the derivation of both the state
equations of the damaged REV and the macroscopic thermodynamics driving force related to the damage
variable (Sect. 5). In Sect. 6, a 2D representation of the crack is proved to be consistent with the 3Dmodel. The
question of the dissipation mechanism is also addressed, and the temperature rise associated with the adiabatic
crack nucleation is proposed.

2 Macroscopic scale description

2.1 Crack description

To begin with, we will apply the thermodynamics principles at the macroscopic scale, meaning to the scale
of the considered structure. For the sake of simplicity, we assume that the crack length can be defined by a
unique scalar parameter �. At a given time t , the structure Ω0 is assumed to be partitioned in two subsets:

Ω0 = Ω(�) ∪ F(�) (1)

where F(�) is the crack and Ω(�) is the complementary subset of the crack in Ω0. In this section, the crack
is modelled as a surface, that is a 2D object. It means that the thickness of the crack is here not explicitly
considered. However, it is useful to keep in mind that the crack has indeed a finite thickness and is made of
elementary pieces without mechanical link between them. Thus, the energy of the crack is the energy of this
3D object. Since the crack has no stiffness, this energy does not include elastic contribution. This means that
the energy stored in the crack is thermal in nature.

2.2 Macroscopic scale thermodynamics

The following approach is very similar to the one classically applied in isothermal conditions in order to identify
the thermodynamics driving force associated with a crack propagation (see for instance [5]). The reasoning
will be held on the whole structure Ω0. Its boundary ∂Ω0 does not depend neither on � nor on time. It can
be split into two complementary parts, namely ∂ΩT (resp. ∂Ωξ ) where stress (resp. displacement) boundary
conditions are defined, such that ∂Ω0 = ∂ΩT ∪ ∂Ωξ (see Fig. 1). It is emphasized that the boundary of Ω(�)
can be split into ∂Ω0 and F(�) = F+(�)∪F−(�) where F+(�) (resp. F−(�)) is the upper (resp. lower) crack
lip. The unit vector normal to the upper (resp. lower) crack lip F+(�) (resp. F−(�)) is denoted by N (resp.
− N). The crack lips are not necessarily considered as stress free in order to take into account closed shear
cracks. Besides, the crack lips evolve during the propagation process.
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Fig. 1 Schematic representation of the structure Ω0 including the crack F(�)

For the sake of simplicity, a radial loading is considered. It involves scalar time functions CF (t), CT (t) and
Cξ (t) controlling the time-dependent intensity of the body forces, the stress and the displacement boundary
conditions, respectively. The mass density of force applied to the system can be written as ρF(x, t) =
ρCF (t)F0(x) where x is the position vector and ρ is the mass density. The boundary conditions on the stress
vector T and on the displacement ξ also read:

∀x ∈ ∂ΩT : T (x, t) = CT (t)T0(x), ∀x ∈ ∂Ωξ : ξ(x, t) = Cξ (t)ξ
0(x) (2)

Let K be the kinetic energy of the considered system. The first thermodynamics principle applied to Ω0 in
adiabatic conditions is:

U̇tot + K̇ = Pe (3)

where Pe is the rate of work done by external forces acting on the system in its actual motion:

Pe =
∫

Ω0

ρF · ξ̇dV +
∫

∂Ω0

T · ξ̇dA (4)

Recalling the considered radial loading path, it also reads1:

Pe = CF (t)
∫

Ω(�)

ρF0 · ξ̇dV + CT (t)
∫

∂ΩT
T0 · ξ̇dA + Ċξ (t)

∫
∂Ωξ

T · ξ0dA (5)

In the first principle (3), Utot corresponds to the total internal energy stored in Ω(�) ∪ F(�) at time t . This
quantity being extensive we derive:

Utot = Ubulk +UF (6)

where Ubulk (resp. UF ) is the internal energy stored into Ω(�) (resp. F(�)).
At a given time t , the displacement field solution of the problem involving a crack of length �(t) and a

loading C(t) will be referred to as ξ(t) = ξ (C(t), �(t)). Alongside the loading C(t), the crack length �(t)
appears as a second time-dependent parameter. Thus, it is convenient to introduce the partial time derivative
of a physical quantity a at a fixed crack geometry:

ȧ|� = ∂a

∂C |�
Ċ (7)

Hence, the displacement rate ξ̇ in the integrals of (5) can be computed as the sum of two terms:

ξ̇ = ξ̇ |� + ∂ξ

∂� |C
�̇ (8)

1 The volume Ω(�) over which is taken the integral in (5) can be replaced by Ω0 if needed.
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Using (8) in (5) allows to split Pe into two terms:

Pe = Pe|� + Pe|C (9)

where Pe|� stands for the rate of work done by external forces at fixed geometry:

Pe|� =
(
CF (t)

∫
Ω(�)

ρF0 · ξ̇ |�dV + CT (t)
∫

∂ΩT
T0 · ξ̇ |�dA

)

+ Ċξ (t)

(∫
∂Ωξ

T · ξ0dA

)
(10)

The crack length and thus the geometry being fixed, it is possible to use the principle of virtual rate of work.
It can be computed as:

Pe|� − K̇|� =
∫

Ω(�)

σ : ε̇|�dV (11)

where ε is the infinitesimal strain tensor. Based on local thermodynamics, the state equations for a linear
reversible elastic medium [given in (25)] yield:

σ : ε̇|� = u̇|� − ∂u

∂s
ṡ|� (12)

where u stands for the internal energy density. The considered evolution being reversible when � is fixed and
the conditions being locally adiabatic, the evolution is in fact isentropic, that is ṡ|� = 0. Consequently, the
integral form of (12) together with (11) yields:

Pe|� − K̇|� = U̇tot|� (13)

Then, introducing (13) in (3):

Pe|C − ∂K

∂� |C
�̇ = ∂Utot

∂� |C
�̇ (14)

Pe|C may be interpreted as the rate of work of the external forces applied on the system during the crack
propagation at a given and constant loading:

Pe|C =
(
CF (t)

∫
Ω(�)

ρF0 · ∂ξ

∂� |C
dV + CT (t)

∫
∂ΩT

T0 · ∂ξ

∂� |C
dA

)
�̇ (15)

Introducing Φ(ξ) as the work of the given external forces:

Φ(ξ) = CF (t)
∫

Ω(�)

ρF0 · ξdV + CT (t)
∫

∂ΩT
T0 · ξdA (16)

it is readily seen that:

Pe|C = ∂Φ

∂� |C
�̇ (17)

Combining (14) and (17) yields:
∂

∂�
(Utot + K − Φ)|C = 0 (18)

Equation (18) stands for the conservation of the mechanical energy in a propagation or nucleation process
occurring at fixed loading C. This property is a bit disturbing since its counterpart in isothermal conditions is:

− ∂

∂�
(Ψ + K − Φ)|C = Gc (19)

whereΨ stands for the Helmholtz free energy of the structure,Gc is the critical energy release rate andGc�̇ the
dissipation in isothermal conditions. In Eq. (18), the dissipation does not appear directly. However, we have
to keep in mind that this dissipation has been introduced precisely in isothermal conditions. We will show that
even if this notion is relevant in isothermal conditions, it is more convenient and more natural, in adiabatic
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evolutions, to deal with the classical notion of created entropy, which is in fact hidden in the definition of the
dissipation.

Following (6), Utot stands for the total internal energy of the structure. Owing to (1), it is readily seen that
U 0
tot = U 0

bulk +U 0
F = cste. Consequently, (18) can be rewritten as:

− ∂

∂�

(
Ubulk −U 0

bulk + K − Φ
)
|C = ∂

∂�

(
UF −U 0

F
)
|C (20)

Exponent 0 stands for the quantity taken at the initial time (or any time of reference) andU0
bulk (resp.U

0
F ) stands

for the internal energy contained at this initial time in the subset that now corresponds toΩ(�) (resp.F(�)). We
will later show that the right-hand side of this last equation accounts for the notion of created entropy and will
be regarded as a material constant. As explained previously, the crack has a heat capacity. Therefore, the way
the dissipated energy is handled constitutes the very difference between isothermal an adiabatic conditions:

– in isothermal conditions, the dissipated energy propagates in themedium through thermal diffusion process,
– in adiabatic conditions, the dissipated energy is stored in the crack domain since it cannot propagate at the
time scale at stake.

Prior and after nucleation, the Helmholtz free energy of the crack domain is negligible (�ΨF = 0). As such,
there is no reason to make a distinction betweenΨtot andΨbulk. In contrast, in adiabatic conditions, the internal
energy increase in the crack domain corresponds to the energy dissipated along the nucleation process.

3 Local macroscopic scale thermodynamics

The present section is devoted to the formulation of the left-hand side of (20) in terms of local energy densities.

3.1 Thermal exchange and dissipation

Restricting the study to the case where the local heat exchange can be described by a heat supply density r

and a heat flow vector q (e.g., [15]), the heat input density
◦
q is defined as:

◦
q = r − div q (21)

In addition, the variation of the entropy density between time t and t + dt reads:

ds

dt
= ṡ = r

T
− div

( q
T

)
+ δscr

dt
=

◦
q

T
+ 1

T 2 q · gradT + ◦
scr (22)

where
◦
scrdt (≥ 0) stands for the volume entropy created between time t and t + dt . The hypothesis made over

the characteristic time implies that the behaviour is adiabatic over every macroscopic subsystem. This implies
that r = 0 and q = 0. The Clausius–Duhem inequality can then be written in adiabatic conditions as:

D = σ : ε̇ − u̇ + T ṡ ≥ 0 (23)

where D = T
◦
scr stands for the dissipation per unit volume.

3.2 Internal energy density

Since the evolution is adiabatic and the behaviour outside the created crack is linear thermoelastic, the internal
energy density u solely depends on the state variables ε and s:

u (ε, s) = u0 + σ 0: ε + 1

2
ε:Cad: ε + T 0 (

s − s0
) +

(
s − s0

)2
2c

−
(
s − s0

)
c

k: ε (24)
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The behaviour being reversible, the dissipation D in (23) is equal to zero. We can then derive the two ther-
moelastic state equations:

⎧⎪⎨
⎪⎩

σ = ∂u

∂ε
= σ 0 + Cad: ε −

(
s − s0

)
c

k

T = ∂u

∂s
= T 0 + 1

c

((
s − s0

) − k: ε) (25)

Those state equations allow to identify the physical meaning of the (thermoelastic) material constants intro-
duced in (24). If T 0 is the temperature of reference, then T 0c can be interpreted as a heat capacity density,
T 0k stands for the strain latent heat density of the uncracked material and Cad is the adiabatic elastic tensor
of the uncracked material. The latter is linked to the usual isothermal elastic tensor by:

Cad = Ciso + 1

c
k ⊗ k (26)

For a volume element that does not belong to the created crack region, the evolution is both adiabatic and
reversible. As such it is in fact isentropic. Consequently, its internal energy density can be computed as:

u = u0 + σ 0: ε + 1

2
ε:Cad: ε (27)

With this last result, Eq. (20) takes the form:

− ∂

∂�

(∫
bulk

(
σ 0: ε + 1

2
ε:Cad: ε

)
dV + K − Φ

)
|C

= ∂

∂�

(
UF −U 0

F
)
|C (28)

Letting aside the kinetic term K , the left-hand side of this expression is similar to a potential energy in which
the elastic term is calculated with the adiabatic elastic tensor instead of the isothermal one. As such it is referred
to as a potential energy. Except for the fact that the elastic tensor refers to adiabatic conditions, (28) is identical
to the isothermal one.

4 Micromechanical approach for a macroscopic adiabatic crack

The purpose of this section is to show how the right-hand side of (28) can be linked to a notion of dissipation
or more precisely to a notion of irreversibility.

4.1 The micromechanical process leading to a macroscopic crack

Physically speaking, a macroscopic crack in its final stage (full damage process, see Fig. 2, right side) is at
some scale a set of elementary pieces without mechanical link between them. Therefore, in order to provide a
thermodynamics approach of the process yielding the macrocrack, a 3D geometrical model is due, where the
macrocrack appears as a layer Lε with its finite thickness ε. Let us introduce the density of internal energy
UFD corresponding to full damage:

UF =
∫
Lε

UFDdV (29)

In order to sort out the structure of the internal energy of the macrocrack and hence have access to UFD (and
further to UF ), we have to detail a micromechanical mechanism starting from the sound material and ending
when the elastic stiffness vanishes. Prior to this final stage, the material domain which is going to become the
nucleated macrocrack is the 3D structure Lε subjected to damage process. The damage process inside Lε is
described by a time-increasing density of microcracks (see Fig. 2, left side). As opposed to the macroscopic
crack, the microcracks have neither entropy nor heat capacity. This amounts to saying that microcracks can be
viewed as flat pores. The constitutive material inside Lε is linear elastic perfectly brittle.

Let tcmacro (resp. tcmicro) be the characteristic time of the heat transfer operating at the macroscopic (resp.

microscopic) scale. An order of magnitude of such quantities takes the form l2

cth
where l is the relevant
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Fig. 2 On the left: The transitory state towards full damage. On the right: 3D representation of a macroscopic crack as a layer of
thickness ε of a fully damaged material

characteristic length at the scale considered and cth is the thermal diffusivity. The nucleation characteristic
time tcnucl is supposed to be small as compared to tcmacro, but still large as compared to tcmicro. This amounts to
saying:

lmicro
2

cthmicro

= tcmicro � tcnucl � tcmacro = l2macro

cthmacro
(30)

where the microscopic and macroscopic thermal diffusivities cthmicro and cthmacro are believed to be of the same
order of magnitude. This framework justifies the definition of a uniform temperature at the scale of the REV.

4.2 Homogenization problem and macroscopic quantities

In order to derive the elastic moduli of the domain getting damaged, which is going to be the nucleated crack,
an REV of the microcracked domain has to be considered insideLε (see Fig. 3). E stands for the average strain
over the REV and f is the volume fraction of the microcracks in the REV. For forthcoming purposes, let us
recall that classical homogenization theories (e.g., [5,10]) prove that the relevant damage parameter involved
in the definition of the homogenized elastic moduli is not f but rather the crack density parameter ε� [1].
Assuming a uniform distribution of orientation of identical oblate spheroidal microcracks with diameter 2a
and aperture 2c, the latter is defined as ε� = Na3 where N is the number of microcracks per unit volume of
REV. Introducing the (uniform)microcrack aspect ratio X = c/a, the microcracks volume fraction is related to
the crack density parameter according to f = 4

3πXε�. As X → 0 for cracks, the latter provides a justification
of the fact that f is usually considered as an infinitesimal parameter satisfying f → 0. The damage parameter
d ∈ [0, 1] is thus defined as:

d = ε�

ε�
cr

(31)

where ε�
cr corresponds to the value of the crack density parameter for which the full damage state is reached.

Its value is determined according to the micromechanics model used for describing the damage process.
The solid matrix will be made of a thermoelastic material whose state equations are given by (25) and

whose microscopic internal energy density is computed as (24). Since the temperature is a controlled state

Fig. 3 Representation of the micromechanics-based damage model of the macrocrack
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variable, it is more convenient to consider the state equations:
⎧⎪⎨
⎪⎩

σ = ∂ψ

∂ε
= σ 0 + Ciso: ε − kτ

s = −∂ψ

∂T
= s0 + cτ + k: ε

(32)

where τ is the temperature variation with respect to the reference state, Ciso is the isothermal elastic tensor
which is related to the adiabatic oneCad according to (26).ψ is the microscopic Helmholtz free energy density:

ψ = ψ0 + σ 0: ε + 1

2
ε:Ciso: ε − τ k: ε − s0τ − c

2
τ 2 (33)

It is linked to the internal energy density u according to a Legendre transform u = ψ + T s. The thermoelastic
material parameters and the reference state of stress σ 0 are assumed uniform at the REV scale. Let z be the
microscopic position vector and χs (z) the solid matrix indicator function. Let also σ p(z) be the second-order
tensor field defined as:

σ p (z) = (σ 0 − kτ)χs(z) (34)

and C (z) the fourth-order tensor given by:

C (z) = Cisoχs (z) (35)

Taking advantage of (34) and (35) the microscopic solid matrix first state equation can then be expanded to
the whole REV as:

σ = C (z) : ε + σ p (z) (36)

It is convenient at this stage to define several macroscopic quantities. The macroscopic stress will be referred
to as Σ . By definition, it is equal to the average stress over the REV. The macroscopic entropy density will be
denoted by S. The entropy being extensive, S is defined as the average over the REV of the microscopic solid
matrix entropy density s. We thus have:

Σ = σ , S = (1 − f ) ss (37)

where a (resp. aα) stands for the volume average of a over the REV (resp. the phase α).

4.3 First macroscopic state equation

According to Levin’s theorem [5], the macroscopic stress reads:

Σ = C:A: E + σ p:A (38)

where the local strain A(z): E is the solution of the linear subproblem defined by uniform strain boundary
conditions (ξ = E · z) (see Fig. 3) and no prestress (σ p = 0). Due to the strain average rule, the concentration
tensor A(z) complies with the consistency rule:

I = A = fA
f + (1 − f )A

s
(39)

where I is the symmetrical fourth-order identity tensor. Recalling (34) and (35), (38) gives:

Σ = (1 − f )Ciso:As : E + (1 − f ) (σ 0 − kτ):As
(40)

The homogenized isothermal elastic tensor Chom = (1 − f )Ciso:As
is thus derived. Introducing the elastic

compliance tensor Siso = (Ciso)
−1, we also have:

(1 − f )A
s = Siso:Chom, fA

f = I − Siso:Chom (41)

where (39) has been used. In addition, the following quantities are introduced

Σ res = σ 0: Siso:Chom, K = k:Siso:Chom (42)
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so that the macroscopic state equation reads:

Σ = Σ res + C
hom: E − Kτ (43)

The involvedmacroscopic parameters depend on the damage level throughChom(d). As such, they are evolving
from the sound state to the end of the damage process. Since the macroscopic crack has been defined as the
final stage for which C

hom(d) = 0, we can already anticipate that Σ res and K also go to zero. Hence, as
expected, we have Σ = 0 in the macrocrack.

4.4 Second macroscopic state equation

In order to establish the second state equation, an intermediate result is due. Levin’s theorem allowed us to
derive the macroscopic stress Σ . The latter can also be derived from its definition (37) together with the first
state equation (32):

Σ = σ = (1 − f )Ciso: εs + (1 − f ) (σ 0 − kτ) (44)

where the temperature and the microscopic prestress σ 0 were assumed uniform.
Combining (44) with the first state equation (43) and definitions (42) yields:

(1 − f ) εs = Siso:
(
C
hom: E + σ 0: Siso:Chom

−k: Siso:Chomτ − (1 − f ) (σ 0 − kτ
)) (45)

Let X be defined as:
X = (1 − f ) Siso − Siso:Chom:Siso (46)

Equation (45) reduces to:
(1 − f ) εs = Siso:Chom: E − σ 0:X + τ k:X (47)

Combining (37) and (32) and (47), we successively obtain:

S = (1 − f ) s0 + (1 − f ) cτ + (1 − f ) k: εs (48)

and
S = (1 − f ) s0 − σ 0:X: k + ((1 − f ) c + k:X: k) τ + k: Siso:Chom: E (49)

Recognizing the macroscopic quantity K defined in (42), the second macroscopic state equation is derived:

S = Sres + Cτ + K : E (50)

with
Sres = (1 − f ) s0 − σ 0:X: k, C = (1 − f ) c + k:X: k (51)

As for Σ res and K in (43), Sres and C → 0 as d → 1. It is interesting that the Maxwell symmetry between
the two state equations (43) and (50) is an output of the upscaling process. It ensures the existence of a
thermodynamics potential.

4.5 Macroscopic internal energy density in a damaging process

We are left with the homogenization of the internal energy density. To do so, the starting point will be:

U = (1 − f ) us (52)

where u (resp. U ) is the microscopic (resp. macroscopic) internal energy density. The above equation is the
counterpart of the definition of (37). Using (32) and (33), the microscopic Helmholtz free energy density reads:

ψ = ψ0 + 1

2
σ 0: ε + 1

2
σ : ε − 1

2
sτ − 1

2
s0τ (53)

Since the internal energy density is related to ψ by:

u = ψ + T s = ψ + T 0s0 + τ(s − s0) + T 0(s − s0) + τ s0 (54)
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Equation (53) together with (54) yields:

u = u0 + T 0(s − s0) + 1

2
σ 0: ε + 1

2
σ : ε + 1

2
τ(s − s0) (55)

According to (52), the macroscopic internal energy density is:

U = (1 − f ) u0 + T 0(S − (1 − f ) s0) + (1 − f )
1

2
σ 0: εs

+ (1 − f )
1

2
σ : εs + 1

2
τ(S − (1 − f ) s0) (56)

It is readily seen, using themacroscopic constitutive law (43) and Eq. (47), that themacroscopic internal energy
density can be expressed as:

U = (1 − f ) u0 + 1

2
σ 0:Siso:Chom: E − 1

2
σ 0:X: σ 0 + 1

2
Σ res: E

+ 1

2
E:Chom: E + 1

2
(k:X: σ 0 − K : E + S − (1 − f ) s0)τ

+ T 0(S − (1 − f ) s0) (57)

where we took advantage of the Hill’s lemma [6]:

(1 − f ) σ : εs = σ : ε = σ : ε = Σ : E (58)

Eventually, using Eq. (50) together with (42) and (51), the latter can be rewritten as a function of its natural
variables E and S:

U = (1 − f ) u0 − 1

2
σ 0:X: σ 0 + T 0(S − (1 − f ) s0) + 1

2C

(
S − Sres

)2

+Σ res: E + 1

2
E:

(
C
hom + 1

C
K ⊗ K

)
: E − S − Sres

C
K : E (59)

Equation (59) is similar to (24) except for the fact that the material parameters are not constant and evolve
with the damage level. As stated earlier, the influence of the damage parameter is in fact hidden through the
dependency of Chom regarding d which thus impacts K , C and X.

4.6 A comprehensive micromechanics-based damage theory

In a purely micromechanics framework, the state equations of the damaged REV can be derived from (43) and
(50):

⎧⎪⎨
⎪⎩

Σ = Σ res (d) + (Chom (d) + 1

C (d)
K (d) ⊗ K (d)): E − (S − Sres (d))

C (d)
K (d)

T = T 0 + S − Sres (d)

C (d)
− 1

C (d)
K (d) : E

(60)

Alternatively, these equations could have been derived from a thermodynamics reasoning, where the macro-
scopic internal energy densityU , derived in (59), is the relevant macroscopic potential in adiabatic conditions:

Σ = ∂U

∂E
, T = ∂U

∂S
(61)

Recalling (23), the dissipation at the scale of the REV (therefore capital letters) is:

D = Σ : Ė − U̇ + T Ṡ ≥ 0 (62)

Taking advantage of (61) when ḋ 
= 0, (62) gives:

D = −∂U

∂d
ḋ ≥ 0 (63)
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where − ∂U
∂d appears as the macroscopic thermodynamics driving force associated with the damage variable

rate. A classical reasoning [9] suggests to write the damage criterion on this driving force:

−∂U

∂d
≤ gc (64)

where gc is a material constant which characterizes the dissipative process and will be associated later with
the creation of entropy (see Sect. 6.2).

4.7 Fully damaged macroscopic internal energy density

The sound state being a matrix without any microcracks ( f = 0), the macroscopic elastic tensor Chom is
then simply equal to the microscopic elastic tensor Ciso. Consequently, (46) implies the nullity of X and the
following quantities Σ res, K , Sres and C can be replaced by σ 0, k, s0 and c, respectively. In this case (59)
takes the form (24), as expected.

The purpose of this section is to consider the opposite case of a fully damaged material. Indeed, let us recall
that we have chosen to represent the 3D nucleated macrocrack as a fully damaged (d = 1) elastic medium.
Accordingly, the expression of the internal energy UFD, introduced in (29), is obtained by taking the limit
C
hom → 0. Consequently, in a fully damaged state we have:

C
hom = 0, Σ res = 0, K = 0, X = (1 − f )Siso (65)

Besides, the expressions of C and Sres reduce to:

Sres = (1 − f ) s0 − (1 − f ) σ 0: Siso: k , C = (1 − f ) c + (1 − f ) k: Siso: k (66)

Recalling that only the limit f → 0 is relevant:

UFD = u0 − 1

2
σ 0: Siso: σ 0 + T 0(S − s0)

+ 1

2 (c + k: Siso: k) (S − s0 + σ 0: Siso: k)2 (67)

As stated earlier, we consider an adiabatic process at the macroscopic scale. Consequently, the heat transfer
between the REV and its surrounding being equal to zero, the macroscopic entropy density variation between
the sound and fully damage states is only the created entropy δScr. Consequently, the internal energy density
in the macroscopic crack reads:

UFD = u0 − 1

2
σ 0: Siso: σ 0 + T 0δScr +

(
δScr + σ 0: Siso: k

)2
2 (c + k: Siso: k) (68)

The information regarding the dissipation in the nucleation process is characterized by δScr. In the simplified
case where σ 0 = 0, δScr controls the value of the residual energy (in the sense of the full damage stage). The
presence of a prestress also affecting UFD will be discussed later (see Sect. 5).

4.8 Path independence

A very instructive exercise is to verify whether or not Eq. (68) is compatible with the internal energy being a
state function. In other words, it is interesting to see if the path independence property holds true. The proposed
reasoning is sketched in Fig. 4.

More precisely, let us consider an initial state (0) of the REV (related quantities with upperscript 0). This
state is characterized by a temperature T 0, a stress state σ 0, an entropy density s0 and an internal energy density
u0. An adiabatic evolution towards a fully damaged (FD) state of the REV is considered. The evolution being
adiabatic, the entropy variation between states (0) and (FD) is a creation term denoted by δScr. The internal
energy level expression in this fully damaged state (FD) is given by (68).

Let us introduce the unloaded state (�) of the REV reached from (0) by an adiabatic reversible unloading
process. The temperature T � reached in these adiabatic conditions is a priori different from T 0. The evolution
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Fig. 4 Different paths leading to a fully damaged state

being isentropic the entropy density in the state (�) is s� = s0. Thus, the entropy variation between states (�)
and (FD) is also equal to δScr.

Let u� be the internal energy density in the state (�). Equation (68) can be used to derive the internal energy
density UFD when following the path (�) → (FD), provided that σ 0 and u0 be replaced by σ � = 0 and u�,
respectively:

UFD = u� + T � (δScr) + 1

2 (c + k:Siso: k) (δScr)
2 (69)

We are now left with the assessment of the compatibility between Eqs. (68) and (69).
The evolution (0) → (�) being isentropic, we have:

0 = s� − s0 = c(T � − T 0) + k: ε�
0 (70)

where ε�
0 is the strain reached in the path (0) → (�). The state (�) being unloaded the first state equation reads:

0 = σ � = σ 0 + Ciso: ε�
0 − k(T � − T 0) (71)

Combining Eqs. (70) and (71) yields:

T � − T 0 = k: Siso: σ 0

c + k: Siso: k , ε�
0 = k:Siso: σ 0

c + k:Siso: kSiso: k − Siso: σ 0 (72)

Between states (0) and (�), the Helmholtz free energy density variation is:

ψ� − ψ0 = σ 0: ε�
0 + 1

2
ε�
0:Ciso: ε�

0 − (T � − T 0)k: ε�
0

− c

2
(T � − T 0)2 − s0(T � − T 0) (73)

Recalling that u� = ψ� + s�T �, the associated internal energy density variation is:

u� − u0 = 1

2
σ 0: ε�

0 (74)

where (71) and (72) have been used. Taking advantage of (72), the latter may be reformulated as:

u� = u0 − 1

2
σ 0: Siso: σ 0 +

(
k: Siso: σ 0

)2
2 (c + k:Siso: k) (75)

Eventually, Eq. (69) together with (75) yields the internal energy density:

UFD = u0 − 1

2
σ 0:Siso: σ 0 + T �δScr

+
(
δScr + k: Siso: σ 0

)2
2 (c + k: Siso: k) − k: Siso: σ 0

c + k: Siso: k δScr (76)
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At last, Eq. (72) allows to write the internal energy obtained when taking the path (0) → (�) → (FD) as:

UFD = u0 − 1

2
σ 0: Siso: σ 0 + T 0δScr +

(
δScr + k:Siso: σ 0

)2
2 (c + k: Siso: k) (77)

The former expression (68) ofUFD is thus retrieved. This path independence is thus consistent with the internal
energy being a state function.

5 Conclusion on the macroscopic scale thermodynamics

In order to make use of (20), it was necessary to build up a thermodynamics model of the crack. To this end,
we resorted to an auxiliary density energy UFD related to UF according to (29). In turn, the mathematical
expression of UFD has been derived as a function of material constants as well as thermodynamical and
mechanical quantities (68). This was the purpose of Sect. 4.

For the sake of simplicity, δScr is considered as a material constant. It is then readily seen that (�UF =
UF −U 0

F ):

�UF = ε

∫
F(�)

(
−1

2
σ 0: Siso: σ 0 + T 0δScr +

(
δScr + σ 0: Siso: k

)2
2 (c + k: Siso: k)

)
d� (78)

Equation (20) then reduces to:

− ∂

∂�

(
Ubulk −U 0

bulk + K − Φ
)
|C

= ε

(
−1

2
σ 0: Siso: σ 0 + T 0δScr +

(
δScr + σ 0: Siso: k

)2
2 (c + k: Siso: k)

)
(79)

Although ε is small as compared to the macroscopic structure, it has a lower bound, namely the characteristic
size of the heterogeneities. Therefore, it would be physically meaningless to take the limit ε → 0 in (79).
Moreover, the right-hand side of this equation is a critical energy denoted by Gad

c :

− ∂

∂�

(
Ubulk −U 0

bulk + K − Φ
)
|C = Gad

c (80)

Note that Gad
c might not be a material constant in case of σ 0 
= 0.

To conclude, in adiabatic conditions, it is still possible to deal with an energy release rate provided that the
isothermal elastic tensor Ciso be replaced by the adiabatic elastic tensor Cad. Furthermore, we have to keep
in mind that the right-hand side of (80) is in fact derived from the internal energy contained in Lε which is a
noticeable difference with the usual isothermal reasoning based on the Helmholtz free energy. From a physical
point of view, this difference can be explained by the fact that an isothermal crack is not able to store any
Helmholtz free energy while an adiabatic crack does store internal energy. This internal energy accounts for
the dissipation associated with the created entropy.

6 Simplifications, surface density and dissipation

6.1 Surface density

The purpose of this section is to provide a 2D interpretation of the critical energy. However, it has to be
emphasized that in the proposed model we are not supposed to take the limit ε → 0. This can be understood
as follows: if the thickness of the crack ε → 0, the same holds for the crack heat capacity. Since the crack
has to store the dissipated energy released by nucleation, the temperature is going to rise infinite values [see
Eq. (90)].

Let us introduce the surface density of the created entropy δS2Dcr and the surface density of the heat capacity
C2DT 0. We can define those two quantities as (see Fig. 5):

δS2Dcr = εδScr, C2D = εC (81)
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Fig. 5 3D (leftside) versus 2D (rightside) crack model

Accordingly, we derive:

ε

(
−1

2
σ 0: Siso: σ 0 + T 0δScr +

(
δScr + σ 0: Siso: k

)2
2 (c + k: Siso: k)

)

= −ε
1

2
σ 0: Siso: σ 0 + T 0δS2Dcr +

(
δS2Dcr + εσ 0: Siso: k

)2
2C2D (82)

which can be simplified when the reference state does not include a prestress (σ 0 = 0):

ε

(
T 0δScr + δScr2

2C

)
= T 0δS2Dcr + δS2Dcr

2

2C2D (83)

Using (82) and (83) in (79) yields:

− ∂

∂�

(
Ubulk −U 0

bulk + K − Φ
)
|C = T0δS

2D
cr + δS2Dcr

2

2C2D (84)

In conclusion, a 2D representation of crack consistent with the 3D model is provided.

6.2 Dissipation

For isothermal crack propagation, the classical reasoning is based on the notion of dissipation in order to
measure the irreversibility instead of the created entropy. The quantity used to characterize the dissipation rate
per unit volume associated with a damage rate ḋ is gcḋ and the material constant introduced is gc instead of
δScr. However, for a fixed temperature it is readily seen that it is equivalent to deal with the notion of dissipation
or the notion of created entropy. When the crack is propagating with a created length d�, the dissipation is
equal to gc × d� × ε × 1 where 1 stands for the off plan direction (it was indeed previously admitted that the
crack is parametrized by �). Being equal by definition to T0δScr × d� × ε × 1 we have:

gc = T0δScr (85)

Note for forthcoming use that it is possible to define a surface density of critical energy Gc = εgc. It has to
be emphasized that the quantity measured experimentally is not gc but Gc. As such, it is rigorously equivalent
in isothermal conditions to consider δScr or gc as the material constant controlling the brittle behaviour. This
result is not surprising since the created entropy and the dissipation are related to each other through the
constant temperature T0.

If the relation between the dissipation and the created entropy is straightforward in isothermal conditions,
the question may be legitimately raised to know if we could work with the dissipation in adiabatic conditions

too. To do so, we need to go back to the dissipation definition D = T
◦
scr and to the state equations in the

damaged zone given in (60). For the sake of simplicity, we will now consider that σ 0 = 0. Since the evolution
is locally adiabatic Ṡ = Ṡcr, so that the dissipation reads:

D = T Ṡ = Ṡ

(
T 0 + S − s0 − K (d): E

C

)
(86)
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The dissipation at the end of the damaging process is obtained by integration of (86) from S = s0 to S =
s0 + δScr. It can be proved (see “Appendix”) that C can be approximated by c and that the term K (d): E may
be neglected, so that the dissipation reduces to:

gcḋ = D = Ṡ

(
T 0 +

(
S − s0

)
c

)
(87)

The integration of (87) over the whole damage process d = 0 → 1 yields:

gc = T 0δScr + δScr2

2c
= UFD (88)

where UFD is defined in (68) taking into account the assumption σ 0 = 0 and the simplification (92). Conse-
quently, Eq. (84) takes the usual form:

− ∂

∂�
(Ubulk + K − Φ)|C = εgc (89)

Solving (88) with respect to δScr, (60) yields the expression of the temperature T :

T − T 0 = δScr
c

= T 0

(√
1 + 2gc

cT 02
− 1

)
= T 0

(√
1 + 2Gc

εcT 02
− 1

)
(90)

This relation is in adequacy with the fact that the thinner the crack, the more important the temperature rise.
From a physical point of view, this phenomenon can be explained by the fact that the internal energy variation
is stored inside the crack as heat energy. As such, the heat energy will induce an increase in temperature which
is controlled by the crack width.

7 Conclusion

This paper is motivated by the fact that nucleation is an adiabatic evolution in nature. For the same reason, it is
also an undrained process if the material considered is a saturated porous solid (see [3,4]). This also holds for
dynamic propagation of existing cracks. This suggests to resort to a formulation of the energy balance in terms
of internal energy instead of Helmholtz free energy. This also reveals that the crack itself possesses an internal
energy which accounts for the irreversible phenomena taking place in the cracked region. The dissipation,
which is very much related to isothermal processes, has to be replaced by the crack internal energy.

To understand the thermodynamics at stake, a two-scale approach is necessary. On the one hand, the crack
is described by a line (resp. surface) at the macroscopic scale. This makes it possible to derive an energy
balance equation of the type (80). This equation accounts at this scale for the irreversible phenomena through
a linear (resp. surface) density Gad

c . This quantity physically represents nothing else than the crack internal
energy. On the other hand, the idea is to describe the crack at a refined scale. The crack has now a finite width
and has become a structure. It is the residual state of a fully damaging process. More precisely, at this scale it
is possible to refer to the constitutive material of the crack and to formulate a comprehensive micromechanics-
based damage model. As an output, this upscaling process provides a micromechanics interpretation of Gad

c
in terms of created entropy [see (79)]. Indeed, while dissipation is most of the time introduced in isothermal
evolutions, the created entropy reveals itself as the appropriate quantity to measure the irreversibility. There are
experimental evidences of temperature rise during dynamic crack propagation and nucleation. The proposed
theory provides themean to evaluate this temperature rise as a function of the created entropy at themicroscopic
scale and the internal energy crack density at the macroscopic one.
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Appendix

In order to integrate (86) between the sound and the fully damaged states, it is necessary to detail the quantities
K (d): E and C . Hence, we will give some precisions about their order of magnitude when dealing with a
claystone material. Let us consider the following orders of magnitude for such a material:

c = 1 × 103 JK−2 m−3, X ∼ S = 1 × 10−10 Pa−1, k = 1 × 105 PaK−1 (91)

where the thermal expansion coefficient α is around 1× 10−5 K−1. In this framework, the following simplifi-
cation may be used:

k:X: k � c (92)

Therefore C can be approximated by c.
Damage takes place when equality in (64) is reached. Considering the internal energy derived in (59), (64)

reads:

−1

2
E: ∂Cad

∂d
: E + S − s0

c

∂K
∂d

: E = gc (93)

Provided that the damage parameter range of variation is O(1), the order of magnitude of ∂Cad
∂d and ∂K

∂d is
|Cad| and |K |, respectively. Taking advantage of (91) and (92), the scale analysis of (93) gives:

|E| ∼ 1

|Cad|

((
S − s0

) |K |
c

)
⇒ |K : E|(

S − s0
) ∼ |K |2

|Cad|c � 1. (94)
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