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Abstract By using modern additive manufacturing techniques, a structure at the millimeter length scale
(macroscale) can be produced showing a lattice substructure of micrometer dimensions (microscale). Such
a system is called a metamaterial at the macroscale, because its mechanical characteristics deviate from the
characteristics at the microscale. Consequently, a metamaterial is modeled by using additional parameters.
These we intend to determine. A homogenization approach based on asymptotic analysis establishes a connec-
tion between these different characteristics at micro- and macroscales. A linear elastic first-order theory at the
microscale is related to a linear elastic second-order theory at the macroscale. Small strains (and, correspond-
ingly, small gradients) are assumed at both scales. A relation for the parameters at the macroscale is derived by
using the equivalence of energy at macro- and microscales within a so-called representative volume element
(RVE). The determination of the parameters becomes possible by solving a boundary value problem within
the framework of the finite element method. The proposed approach guarantees that the additional parame-
ters vanish if the material is purely homogeneous; in other words, it is fully compatible with conventional
homogenization schemes based on spatial averaging techniques. Moreover, the proposed approach is reliable,
because it ensures that the obtained additional parameters are insensitive to choices of the RVE consisting of
a repetition of smaller RVEs depending upon the intrinsic size of the structure.

Keywords Metamaterial · Homogenization · Strain gradient theory · Elasticity · Asymptotic analysis

1 Introduction

Periodic lattice-type structures involving large number of repetitive substructures continue to attract the interest
of many researchers because of their fascinating properties, such as relatively low manufacturing costs and
high specific stiffness [19,46–48,64,67]. The mechanical response of such a structure depends not only on
the material, but also on the morphology of its substructure [62,63]. Hence, an appropriate “metamaterial
description” must be used for mimicking the dependence on its substructure.

In order to design and fabricatemetamaterials for engineering applications, an accurate and efficient predic-
tion of their mechanical performances is important [28,32,51,94,98]. Indeed, standard numerical techniques,
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such as the finite element method (FEM), can be used for modeling a structure including every detail of its
subunits [100,101]. However, this requires the mesh size to be at least one order smaller than the geomet-
ric size of the substructure leading to very high computational costs. Hence, homogenization techniques are
developed to upscale the mechanical response at the microscale—the presence of the substructure leads to a
composite material, which can be seen as a heterogeneous material—to the macroscale by defining an appro-
priate constitutive equation. Particularly in composite materials, with fibers embedded in a matrix building a
periodic substructure, micro- and macroscale behaviors are modeled by the same linear elastic model, also
a.k.a. Cauchy continuum. The homogenization of such periodic structures toward an equivalent Cauchy
continuum has been investigated thoroughly [20,45,57,68,72,102].

Many approaches in the literature assume that there exists a representative volume element (RVE) with
periodic boundary conditions that precisely captures the deformation behavior of the whole geometry. Such
an approach utilizes the energy equivalence of the RVE at both macroscale and microscale, and it was also
used in [52]. The effective properties of such homogenized continua are in good agreement with experiments
[93] under the condition that L � l, where L represents the macroscopic length scale, i.e., (mean value of) the
geometric dimensions of the whole structure, and l represents the length scale of the microscale namely, the
geometric dimensions of the substructure. The quantity l will be used as the “length scale” of a basic cell of
the structure, as indicated in Fig. 1. Note that the concept of a basic cell is different from that of an RVE. It is
evident that a basic cell can be regarded as an RVE, and stacking or gathering several basic cells can construct
an RVE as well. Classical homogenization encounters limitations [10,60] when L is of a comparable order
with respect to l.

Size effects fail to be captured by a standard homogenization having the same-order theory at both scales. A
feasible approach is to use a first-order theory at the microscale and a second-order one at the macroscale. This
leads to additional parameters at themacroscale, which need to be determined.We refer to various formulations
of a second-order theory in [1–3,6–8,33,37,66,70,80,81,83,84,86,87,91,95]. Higher-order approaches are
also referred to as generalized continuum theories and homogenization within that framework is a challenging
task pursued by many scientists, among others by [17,31,40,49,56,76,85]. In most cases, it is agreed that
homogenization of an RVE by involving so-called higher gradient terms of the macroscopic field is a natural
way to include a size effect [14,41–44,60]. By using gamma convergence, homogenization results have been
obtained in [4,5,75]. A remarkable class of structures described at the macroscale by using a second gradient
elasticity theory are pantographic objects [18,89,92]. They have received a notable follow-up in the literature
[30,34,69,82,97,99], also from a mathematically rigorous standpoint regarding fundamental issues, such as
well-posedness [36].

A possibly promising homogenization technique is asymptotic analysis, which has been used to obtain
homogenized material parameters in [90]. This method decomposes the variables into their global variations
and into local fluctuations. Such a decomposition was used to generate closed-form equations to determine
constitutive parameters in one-dimensional problems, for example in the analysis of composites [16,22], while
2D problems [13,15,23,29,78] have been investigated numerically. FEM was applied in [73] demonstrating
that higher-order terms start dominatingwhen the difference between the parameters of the compositematerials
increases. A second-order asymptotic and computational homogenization technique is proposed by [13]. Here,
the boundary value problems generated by the asymptotic homogenizationwere solvedwith a quadratic ansatz.
However, there are still two main issues that are not well addressed when trying to homogenize structures in
the framework of generalized mechanics [96]:

– The first one concerns compatibility, in the sense that parameters of the strain gradient stiffness tensor
should vanish when the structure is purely homogeneous.

– The second one concerns reliability, such that the strain gradient stiffness tensor has to be insensitive to a
repetition of the basic cell.

A successful attempt is made in [59,60] establishing a connection between microscale parameters and
macroscale parameters (by using the strain gradient theory). A “correction” term was proposed, such that
the strain gradient stiffness tensor satisfied compatibility and reliability requirements. Different numerical
solution methods are used for this approach: Fast Fourier technique (FFT) is employed in [61] and FEM was
used in [15]. We follow their methodology and propose an alternative derivation for this “correction” term
in Sect. 3 in a somewhat pedagogical manner. Furthermore, we apply and validate the method for simple yet
general 2D metamaterials in Sects. 4 and 5 by using FEM. In order to demonstrate its versatility, computations
of the square lattice are performed in Sect. 6. The computations are performed with the aid of open-source
codes developed by the FEniCS project [2]. The proposed method delivers all metamaterial parameters in 2D
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by using a linear elastic material model at the microscale after a computational procedure as investigated in
what follows.

2 A preliminary remark on objective strain energy densities

The following analysis at the macroscale and at the microscale is heavily based on expressions for the strain
energy densities. In fact, in the end these will be formulated in terms of derivatives of the displacement, which
puts the objectivity of these expressions at stake and makes us wonder what the limits of application of the
proposed approach are. Let it be said here and now: The proposed approach holds for small deformations on
themicroscale as well as on themacroscale. However, the aforementioned pantographic structures can undergo
large reversible deformations. It was also for this reason that the authors of [33], who are protagonists of this
class of metamaterials, decided to formulate the strain energy density such that it is ready for a mathematical
treatment of isotropic second-order gradient elastic materials at large deformations. We will use their results
and specialize them to our case of interest, which are expressions for the strain energy density of a Cauchy
material on the microscale and of a second-order material on the macroscale subjected to small deformations.
In this context, the interested reader is also referred to Chapter 3 of [21], where the case of third-order elastic
continua for large deformations is examined.

In [33], the strain energy density is first expressed in terms of the deformation gradient and its gradient,
Fαi and Fαi, j , respectively. Following [33], we use small Latin indices to indicate Cartesian coordinates of
the reference placement, X . Later on, we will depart from this nomenclature and also use a similar symbol for
centers of mass. If required, Greek indices are used to characterize the current configuration. The principles
of rational mechanics are now applied to arrive at the following (objective) form for the strain energy density:

w = 1
2

(
Ei jCi jkl Ekl + 2Ei j Hi jklm Ekl,m + Ei j,k Di jklmn Elm,n

)
. (1)

The (constant) stiffness tensors C , H , D are of fourth, fifth, and sixth rank, respectively. They observe
certain symmetry properties, which follow from the semi-positiveness of the strain energy density and from
the symmetries of the Green–Lagrange tensor E = 1

2

(
F� · F − I

)
and its derivative w.r.t. to the reference

placement:
Ci jkl = C jikl = Ci jlk = Ckli j , Hi jklm = Hjiklm = Hi jkml = Hlmi jk

Di jklmn = Djiklmn = Di jkmln = Dlmni jk .
(2)

If the material is centrosymmetric, then H vanishes and C and D can be expressed by sums of products
of two and three unit tensors of second rank, respectively. This way C is reduced to two stiffness parameters
(the two Lamé coefficients) and D to five:

Ci jkl = λδi jδkl + μ
(
δikδ jl + δilδ jk

)
, Hi jklp = 0 ,

Di jklpq = c1
(
δi jδklδpq + δi jδkpδlq + δikδ jqδlp + δiqδ jkδlp

)

+ c2δi jδkqδlp + c3
(
δi jδ jlδpq + δikδ j pδlq

+ δikδ jqδlp + δilδ jkδlp + δi pδ jkδlq
)

+ c4
(
δilδ j pδkq + δi pδ jlδkq

)

+ c5
(
δilδ jqδkp + δi pδ jqδkl + δiqδ jlδkp + δiqδ j pδkl

)
.

(3)

It should be noted that in this form Eqs. (1) and (3) are the extension to what is known as the St. Venant–
Kirchhoff generalization of Hooke’s law for small strain linear elasticity to large strains, where the gradient
of the Green–Lagrange tensor is not present ([53], p. 250).

Recall that the Green–Lagrange tensor can be written in terms of displacement derivatives as follows:

Ei j = 1
2

(
ui, j + u j,i + uk,i uk, j

)
. (4)

Consequently its derivative reads:

Ei j,k = 1
2

(
ui, jk + u j,ik + ul,ikul, j + ul,i ul, jk

)
. (5)
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We define small strain second gradient theory such that we neglect all products of displacement derivatives
and if no distinction needs to be made between current and reference placement. Then, for an centrosymmetric
material we arrive at:

w = 1
2

(
Ci jklui, j uk,l + Di jklmnui, jkul,mn

)
. (6)

By right, following [33], all indices should be in Greek letters, since it is the current configuration which
is meant in the linear theory, but for convenience we refrain from doing so. Of course, if the classical Cauchy
continuum of linear elasticity with small strains is concerned, the second part in Eq. (6) must be omitted.
It should also be mentioned that this result is in agreement with Eq. (16) of [65], if third-order gradients
in displacement are neglected, and Eq. (19) of [58], where it is attempted to determine the seven stiffness
coefficients experimentally. It should be pointed out that these authors do not address the issue of objectiveness
of the strain energy and the small strain approximation, most likely because they were educated in the spirit
of classical Hookean elasticity.

In order to formulate boundary value problems for the displacement and their gradients, equations of
motions are required. They follow from the balance of momentum which will be reduced to the static case.
Hence, we need an expression for the stress tensor in terms of displacement gradients. The general theory
for stresses and the equations of motion of higher-order gradient continua undergoing large deformations
are outlined in [21], Chapters 1 and 2. We do not need such generality in the sequel. Hence, we follow the
way indicated in [65] and calculate hyperstresses of second and third rank, where according to Castigliano’s
principle, the strain energy density (6) can be used as their potential:

(2)
σ i j = ∂w

∂ui, j
,

(3)
σ i jk = ∂w

∂ui j,k
. (7)

Note that in the case of the traditional Cauchy continuum, the hyperstress of second rank,
(2)
σ , becomes the

ordinary Cauchy stress and the hyperstress of third rank,
(3)
σ , vanishes. The corresponding balance ofmomentum

reads in the static case:
(2)
σ i j, j − (3)

σ i jk, jk + fi = 0, (8)

where fi indicate the body forces.

3 Connection of micro- and macroscale parameters

Consider a continuum body occupying a domain � in two-dimensional space, � ∈ R
2. The metamaterial is

embodied in an RVE, �P , where periodically aligned RVEs constitute metamaterial domains,

∪�P = � , �P ∩ �Q = ∅ , P, Q = 1, 2, 3, . . . M, P �= Q. (9)

The RVE at the microscale represents the detailed substructure, such as the fibers and the matrix in a composite
material. The same RVE at the macroscale is modeled as a homogeneous metamaterial. We assume that the
corresponding stored energies are equal although the definitions at both scales differ.We use a first-order theory
for defining the volumetric energy (volume) density of anRVE at themicroscale “m,” and a second-order theory
at the macroscale, “M,” for the energy density, i.e., wm, and wM, respectively:

∫

�P
wm dV =

∫

�P
wM dV,

∫

�P

1

2
Cm
i jklu

m
i, j u

m
k,l dV =

∫

�P

1

2

(
CM
i jklu

M
i, j u

M
k,l + DM

i jklmnu
M
i, jku

M
l,mn

)
dV . (10)

Note that all fields are expressed in Cartesian coordinates. The microscale stiffness tensor, Cm
i jkl , is a function

in space. Consider a lattice substructure. Even if the trusses are made of a homogeneous material, the voids
between the trusses generate a heterogeneous substructure at the microscale, such that the microscale stiffness
tensor depends on space coordinates and possesses either the value of the trussmaterial or is equal to zero due to
the voids. In contrast to that, the macroscale material tensors, CM

i jkl and DM
i jklmn , are constant in space, because

they are generated by the homogenization procedure to be explained in the following. The continuum body at
the reference frame has particles at coordinates Xi , where they move to xi under a mechanical loading. The
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Fig. 1 Left: Continuum body in the reference frame. Right top: Deformation at the microscale. Right bottom: Corresponding
deformation at the macroscale

displacement is the deviation from the reference frame, and we emphasize that the microscale displacement,
umi , is different than the macroscale displacement, uMi ,

umi = xmi − Xi ,

uMi = xMi − Xi , (11)

because the current positions of particles differ. This difference between xmi and xMi is illustrated in Fig. 1. For
demonstrating the microscale deformation, the substructure is visualized as well. For simplicity, a well-known
example is used, namely composite materials with the red inclusion (fibers) embedded in the blue material
(matrix). For the homogenized case, the same particle moves to xMi expressed at the macroscale without the
substructure. We emphasize that micro- and macroscales are both expressed in the same coordinate system.
Two different cases are examined, a heterogeneous one on themicroscalewith knownmaterial properties versus
a homogeneous one on the macroscale with sought parameters. In order to identify the material parameters,
strain energy expressions for macro- and microscales are derived in what follows.

3.1 The macroscale energy for an RVE

Consider the macroscale case for an RVE, �P . As customary in spatial averaging, we define the geometric

center
c
X of the RVE:

c
X = 1

V

∫

�

X dV, (12)

approximate the macroscale displacement by a Taylor expansion around the value at the geometric center by
truncating after quadratic terms (in order to account for the strain gradient effect), and calculate displacement
gradients of this approximation

uMi (X) = uMi

∣
∣∣ c
X

+ uMi, j

∣
∣∣ c
X
(X j − c

X j ) + 1

2
uMi, jk

∣
∣∣ c
X
(X j − c

X j )(Xk − c
Xk),

uMi,l(X) = uMi, j

∣∣
∣ c
X
δ jl + 1

2
uMi, jk

∣∣
∣ c
X
(δ jl(Xk − c

Xk) + (X j − c
X j )δkl),
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= uMi,l

∣
∣∣ c
X

+ uMi,lk

∣
∣∣ c
X
(Xk − c

Xk),

uMi,lm(X) = uMi,lk

∣
∣∣ c
X
δkm = uMi,lm

∣
∣∣ c
X
. (13)

According to Eq. (13), spatial averaging the gradient terms of the displacement field leads to

〈uMi, j 〉 = 1

V

∫

�P
uMi, j dV = uMi, j

∣
∣∣ c
X

+ uMi, jk

∣
∣∣ c
X
Īk , Īk = 1

V

∫

�P
(Xk − c

Xk) dV,

〈uMi, jk〉 = 1

V

∫

�P
uMi, jk dV = uMi, jk

∣
∣∣ c
X
.

(14)

Since we require Īk = 0 from Eq. (12),

〈uMi, j 〉 = uMi, j

∣∣
∣ c
X

, 〈uMi, jk〉 = uMi, jk

∣∣
∣ c
X
. (15)

After inserting Eq. (15) into Eq. (13), we obtain

uMi (X) = uMi

∣
∣∣ c
X

+ 〈uMi, j 〉(X j − c
X j ) + 1

2
〈uMi, jk〉(X j − c

X j )(Xk − c
Xk),

uMi, j (X) = 〈uMi, j 〉 + 〈uMi, jk〉(Xk − c
Xk),

uMi, jk(X) = 〈uMi, jk〉.
(16)

Now, by using the last relation in Eq. (16) on the right-hand side of Eq. (10), the macroscale energy of an RVE
reads as follows, because the macroscale stiffness tensors are constant in space:

∫

�P

1

2

(
CM
i jlmu

M
i, j u

M
l,m + DM

i jklmnu
M
i, jku

M
l,mn

)
dV = 1

2
CM
i jlm

∫

�P
uMi, j u

M
l,m dV

+1

2
DM
i jklmn

∫

�P
uMi, jku

M
l,mn dV = 1

2
CM
i jlm

∫

�P

(
〈uMi, j 〉 + 〈uMi, jk〉(Xk − c

Xk)
)

×
(
〈uMl,m〉 + 〈uMl,mn〉(Xn − c

Xn)
)
dV + 1

2
DM
i jklmn

∫

�P
〈uMi, jk〉〈uMl,mn〉 dV

= 1

2
V

(
CM
i jlm〈uMi, j 〉〈uMl,m〉 + (CM

i jlm Īkn + DM
i jklmn)〈uMi, jk〉〈uMl,mn〉

)
, (17)

where

Īkn = 1

V

∫

�P

(
Xk − c

Xk

) (
Xn − c

Xn

)
dV . (18)

Consequently, the macroscale energy of an RVE is expressed in terms of the gradient of macroscopic defor-
mation. In what follows, it will be shown, by making use of asymptotic homogenization analysis, that the
microscale energy can be formulated in terms of the gradient of macroscopic deformation as well leading to
connections between the parameters.

3.2 The microscale energy for an RVE

Following the asymptotic homogenization method in [77], we reformulate the left-hand side of Eq. (10). The
asymptotic homogenization method separates length scales by using global coordinates, X , for describing the
global variation of the displacement, and by using local coordinates, y, for describing the local fluctuation of
the displacement. We refer to [74] and [35, Appendix B] for a more detailed investigation of the multiscale
asymptotic analysis applied in this work. We introduce the local coordinates:

y j = 1

ε

(
X j − c

X j

)
, (19)
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Fig. 2 Illustration of the approximation of the asymptotic expansion

where ε is a homothetic ratio scaling global and local coordinates. We stress that the dimensions of an RVE
in local coordinates can be arbitrarily chosen by varying ε. For example, as depicted in Fig. 2, the size of
an RVE is given by l in global coordinates, whereas it is denoted by w in local coordinates. If we choose
l = 0.001mm, as measured in global coordinates, X , then it can be homothetically scaled to any dimension,
such as w = 0.001mm or w = 1000mm in local coordinates, y, by setting the homothetic ratio to ε = 1.0
or ε = 10−6, in such a way that the size of the RVE is kept constant in the global coordinates. We remark
that the homothetic ratio is used to describe the relationship for the sizes of an RVE between global and
local coordinates; however, the ratio between macroscale and microscale remains the same, L/ l = const.
We assume that the displacement field is a smooth function on the macroscopic level and y-periodic in local
coordinates resulting in vanishing mean local fluctuations within each RVE. Hence, the decomposition of the
microscale displacement is additively decomposed into a macroscale displacement and into local fluctuations
defined on different scales—they are independent.

Following [61], the displacement field of an RVE, �P , at global coordinates X , is expanded by using an
asymptotic series with homothetic ratio ε, where, in general, the corresponding coefficients depend on global
coordinates, X , as well as on local coordinates, y, which are related by Eq. (19):

um(X) = 0
u(X, y) + ε

1
u(X, y) + ε2

2
u(X, y) + · · · , (20)

where
n
u(X, y) (n = 0, 1, 2, …) are assumed to be y-periodic. We shall see later that the first term

0
u(X, y) is

independent of y. We apply now the elasticity problem in statics [by using Eq. (8) for a Cauchy continuum]
as it needs to be fulfilled within the RVE:

(
Cm
i jklu

m
k,l

)
, j + fi = 0 ∀X ∈ �P , (21)

where the body force, f , is a given function. By inserting Eq. (20) as well as using the chain rule with the aid
of the relation in Eq. (19), we obtain

umi, j =
(
0
ui (X, y) + ε

1
ui (X, y) + ε2

2
ui (X, y) + · · ·

)

, j

= 0
ui, j + ∂

0
ui

∂yk

δk j

ε
+ ε

1
ui, j + ε

∂
1
ui

∂yk

δk j

ε
+ ε2

2
ui, j + ε2

∂
2
ui

∂yk

δk j

ε
+ · · · (22)

Using the latter in Eq. (21),

(
Cm
i jkl

(
0
uk,l + 1

ε

∂
0
uk

∂yl
+ ε

1
uk,l + ∂

1
uk

∂yl
+ ε2

2
uk,l + ε

∂
2
uk

∂yl

))

, j

+ ∂

∂y j

(
Cm
i jkl

(1
ε

0
uk,l + 1

ε2

∂
0
uk

∂yl
+ 1

uk,l + 1

ε

∂
1
uk

∂yl
+ ε

2
uk,l + ∂

2
uk

∂yl

))
+ fi = 0, (23)

and then, gathering terms having the same order in ε leads to the following terms:
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– of the order ε−2,

∂

∂y j

(
Cm
i jkl

∂
0
uk

∂yl

)
= 0, (24)

– of the order ε−1,
(
Cm
i jkl

∂
0
uk

∂yl

)

, j
+ ∂

∂y j

(
Cm
i jkl

0
uk,l

) + ∂

∂y j

(
Cm
i jkl

∂
1
uk

∂yl

)
= 0, (25)

– and of the order ε0,

(
Cm
i jkl

0
uk,l

)
, j +

(
Cm
i jkl

∂
1
uk

∂yl

)

, j
+ ∂

∂y j

(
Cm
i jkl

1
uk,l

) + ∂

∂y j

(
Cm
i jkl

∂
2
uk

∂yl

)
+ fi = 0. (26)

By solving these partial differential equations, Eq. (20) can be rewritten as:

umi (X, y) = 0
ui (X) + εϕabi ( y)

0
ua,b(X) + ε2ψabci ( y)

0
ua,bc(X) + · · · , (27)

where ϕabi ( y) and ψabci ( y) are both y-periodic, and they are the solutions of the following two partial
differential equations:

∂

∂y j

(
Cm
i jkl

(∂ϕabk

∂yl
+ δakδbl

))
= 0, (28)

∂

∂y j

(
Cm
i jkl

(∂ψabck

∂yl
+ ϕabkδlc

))
+ Cm

ickl

(∂ϕabk

∂yl
+ δkaδlb

)
− CM

icab = 0. (29)

It should be noted that the choice of the indices of the third-order tensor ϕ and fourth-order tensor ψ differs
from those in [15,61]. Since ϕ and ψ are expressed in the Cartesian coordinates, we choose to use lower
indices like ϕabk and ψabck here. They are mathematically and physically exactly identical to those in [15,61].

We refer to the appendix for a derivation of Eqs. (27), (28), and (29). Since the first term
0
ui (X) depends only

on the macroscopic coordinates, X , it is assumed to be the known macroscopic displacement
0
ui (X) = uMi (X)

such that Eq. (20) provides

umi (X, y) = ui (X)M + εϕabi ( y)uMa,b(X) + ε2ψabci ( y)uMa,bc(X) + · · · . (30)

Wewish to express the energy on themicroscale; thus, we need the gradient of themicroscale displacement:

umi, j =
(
uMi + εϕabi u

M
a,b + ε2ψabci u

M
a,bc + · · ·

)

, j

= uMi, j + ∂ϕabi

∂y j
uMa,b + εϕabi u

M
a,bj + ε

∂ψabci

∂y j
uMa,bc + ε2ψabci u

M
a, jbc + · · · ,

(31)

with the same accuracy, i.e., after neglecting higher than second gradients and inserting Eq. (16) with the aid
of Eq. (19), we write

umi, j =
(
δiaδ jb + ∂ϕabi

∂y j

)
uMa,b + εuMa,bc

(
ϕabiδ jc + ∂ψabci

∂y j

)
+ · · ·

=
(
δiaδ jb + ∂ϕabi

∂y j

)(
〈uMa,b〉 + εyc〈uMa,bc〉

)
+ ε〈uMa,bc〉

(
ϕabiδ jc + ∂ψabci

∂y j

)
+ · · ·

= Labi j 〈uMa,b〉 + εMabci j 〈uMa,bc〉 + · · · ,

(32)

where

Labi j = δiaδ jb + ∂ϕabi

∂y j
,

Mabci j = yc
(
δiaδ jb + ∂ϕabi

∂y j

)
+

(
ϕabiδ jc + ∂ψabci

∂y j

)
.

(33)
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By using the latter on the left-hand side of Eq. (10), the microscale energy becomes
∫

�P

1

2
Cm
i jklu

m
i, j u

m
k,l dV = 1

2

∫

�P

(
Cm
i jkl Labi j Lcdkl〈uMa,b〉〈uMc,d〉

+ ε2Cm
i jkl Mabci j Mdef kl〈uMa,bc〉〈uMd,e f 〉 + 2εCm

i jkl Labi j Mcdekl〈uMa,b〉〈uMc,de〉
)
dV

= V

2

(
C̄abcd〈uMa,b〉〈uMc,d〉 + D̄abcde f 〈uMa,bc〉〈uMd,e f 〉 + Ḡabcde〈uMa,b〉〈uMc,de〉

)
(34)

where

C̄abcd = 1

V

∫

�P
Cm
i jkl Labi j Lcdkl dV,

D̄abcde f = ε2

V

∫

�P
Cm
i jkl Mabci j Mdef kl dV,

Ḡabcde = 2ε

V

∫

�P
Cm
i jkl Labi j Mcdekl dV . (35)

Because we have assumed centrosymmetric materials, the rank 5 tensor vanishes, Ḡ = 0. We realize imme-
diately by comparison with Eq. (17) that

CM
i jlm = C̄i jlm,

CM
i jlm Īkn + DM

i jklmn = D̄i jklmn, (36)

where

Īkn =
∫

�P
(Xk − c

Xk)(Xn − c
Xn) dV = ε2

∫

�P
yk yn dV . (37)

Therefore, we have generated an algorithm delivering effective parameters:

CM
abcd = 1

V

∫

�P
Cm
i jkl Labi j Lcdkl dV,

DM
abcde f = ε2

(
1

V

∫

�P
Cm
i jkl Mabci j Mdef kl dV − CM

abe f

∫

�P
yc yd dV

)
, (38)

after computing ϕ and ψ in an RVE.

4 Numerical solution of strain gradient homogenization problems

The final goal is to obtain the coefficients in the classical stiffness tensor CM
i jlm and for the strain gradient

stiffness tensor DM
i jklmn . For their determination, we need to solve Eqs. (28), (29). For the sake of simplicity,

we restrict the analysis to a 2D case, such that all indices are from {1, 2}. Within the RVE, which is the
computational domain, �, Eqs. (28), (29) are solved by using the Galerkin procedure in the FEM with
continuous shape functions. All boundary conditions are assumed to be periodic; in other words, the values of
φabi , ψabci are given by Dirichlet boundary conditions.

Indeed, the solutions of Eqs. (28), (29) are determined for specific a, b indices (classical coefficients) as
well as a, b, c indices (strain gradient coefficients). Consider the case where a = 1 and b = 1 leading to the
weak form of Eq. (28) after multiplying by an arbitrary test function vanishing on Dirichlet boundaries and
integrating by parts:

∫

�

(
Cm
i jkl

(∂ϕ11k

∂yl
+ δ1kδ1l

))
∂δϕ11i

∂y j
dV = 0, (39)
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Fig. 3 Geometry of square lattice structures and different selections of RVE

from which we determine ϕabi after solving for ab = 11, 12, 21, 22. By knowing ϕ, for example in the case
of a = 1, b = 1, and c = 2, we then solve

∫

�

((
Cm
i jkl

(∂ψ112k

∂yl
+ ϕ11kδl2

))
∂δψ112i

∂y j

−Cm
i2kl

(∂ϕ11k

∂yl
+ δk1δl1

)
δψ112i + CM

i211δψ112i

)
dV = 0. (40)

The result for ψ follows after solving for abc = {111, 112, 121, 122, 211, 212, 221, 222}. By inserting ϕ and
ψ in Eq. (33) and then applying Eq. (38), we determine CM and DM.

We have used the open-source software FEniCS for our computations. The CAD models of the RVE have
been created on the open-source platform SALOME 7.6, and FEM discretizations of the CAD models were
realized by the mesh generator NetGen built in SALOME 7.6. Application of the periodic conditions and
creating the matrices was done via Python. We emphasize that the generated mesh has to possess perfectly
matching vertices on opposite (periodic) boundaries for consistency. Via NetGen, this has been automatically
fulfilled by mapping the meshes between periodic surfaces. The mesh is then transferred to FEniCS, and the
numerical solution of weak forms has been obtained by using the iterative solver gmreswith the preconditioner
jacobi with relative tolerance 10−5 and absolute tolerance 10−10 to ensure the accuracy of the calculations.

5 Identification of the classical and strain gradient stiffness tensors

In order to demonstrate the approach, the classical and strain gradient stiffness tensors are identified for specific
cases. First, consistency is examined by computing CM and DM for the case of a homogeneous material. As
expected, the approach delivers zero for DM (within the numerical tolerance). Concretely, the implementation
leads to DM components 10−6 N or smaller for a material with a Young’s modulus, E , of 100MPa and
a Poisson’s ratio, ν, of 0.3. This is consistent with the interpretation that for a homogeneous material, all
corresponding strain gradient material parameters must vanish.

Then a simple geometry, the so-called square lattice structure in 2D, is investigated. The square lattice
structure has been widely used in engineering practice [9], as shown in Fig. 3, where gray lines build up
a truss- like structure. This inner structure is expected to deliver a D4 invariant material symmetry group
[11,12,79].

For the microscale material parameters of the lattice structure, isotropic material properties are used:

Cm
i jkl = λδi jδkl + μδikδ jl + μδilδ jk,

λ = Eν

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
. (41)

Voigt notation is used for representing the tensors; for convenience, we refer to Tables 1 and 2 for the chosen
convention based on the work by [12].
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Table 1 Voigt notation used for 2D strain tensors

I 1 2 3

i j 11 22 12

Table 2 Voigt notation used for 2D strain gradient tensors

I 1 2 3 4 5 6

i jk 111 221 122 222 112 121

Table 3 Material properties used in lattice structures

Type E in MPa ν

Matrix 100.0 0.3
Inclusion 10−30 10−30

Table 4 Parameters determined for the square lattice

C1111 in MPa C1122 in MPa C1212 in MPa

11.177 0.555 0.060

D111111 in N D111221 in N D111122 in N

0.005379 0.042197 −0.047860

D221221 in N D221122 in N D122122 in N

1.597997 0.076341 0.033462

5.1 Parameter determination for the square lattice structure

In the case of the square lattice structure, we assume that the material parameters of the inclusion are much
smaller than those of the matrix. Simply stated, we consider an additively manufactured truss-like structure
with rods made out of a polymer and voids being the inclusions. By choosing material properties as compiled
in Table 3 and the volume fraction of the inclusion to be 81%, we select different RVEs and determine the
parameters. The RVEs are generated by repeating the corresponding basic cell, while the size of the basic cell
is kept constant. Specifically, the RVEs constitute of one cell, four cells, and nine cells, as depicted in Fig. 3.
The results for

CM =
⎛

⎝
C1111 C1122 0

C1111 0
sym. C1212

⎞

⎠ ,

DM =

⎛

⎜⎜⎜
⎜⎜
⎝

D111111 D111221 D111122 0 0 0
D221221 D221122 0 0 0

D122122 0 0 0
D111111 D111221 D111122

sym. D221221 D221122
D122122

⎞

⎟⎟⎟
⎟⎟
⎠

. (42)

are compiled in Table 4.
In order to investigate how the size of the basic cell affects classical and strain gradient stiffness tensors,

different sizes of basic cells (0.2 × 0.2, 0.5 × 0.5) are selected and the corresponding results are compared
with those obtained with the basic cells size 1× 1, see Fig. 4 for the basic cells. Due to the fact that these three
structures have the same topology, the same material properties, and the same inclusion volume fraction, the
corresponding classical stiffness tensors are identical. However, this is not so in the case of the strain gradient
stiffness tensors, as compiled in Table 5. All nonvanishing parameters approach zero as the size of basic cells
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Fig. 4 Different sizes of basic cell with the same volume ratio

Table 5 Identified nonzero strain gradient stiffness parameters for the square lattice structure in units of N

Type D111111 D111221 D111122 D221221 D221122 D122122

1×1 0.005379 0.042197 −0.047860 1.597997 0.076341 0.033462
0.5×0.5 0.001344 0.010549 −0.011965 0.399499 0.019085 0.008365
0.2×0.2 0.000215 0.001688 −0.001914 0.063919 0.003054 0.001385

is decreasing. We remark that this fact is intuitively correct. Indeed, when the size of basic cells vanishes, the
material becomes homogeneous resulting in a vanishing DM. This computation also illustrates the role of the
homothetic ratio ε. To this end, let us consider the parameter D221221 as shown in Table 5. In the case of a
basic cell 1×1, this parameter is four times larger than that computed for the case of a basic cell 0.5×0.5, and
it is 25 times larger than that computed for the case of a basic cell 0.2×0.2. The magnification factors (4 or
25) are equal to the square of homothetic ratios of these three basic cells as directly given in Eq. (35).

6 Computational validation of determined parameters

In order to verify and to validate the numerical values of the determined parameters, we perform three different
computations: a computation on the microscale by incorporating the inner structure, a computation only with
the determined classical stiffness tensor on the macroscale by using the homogenized structure, and another
computation with both the determined classical stiffness tensor and the strain gradient tensor on the macroscale
by using the homogenized structure.

As suggested in [39,71,88], the problem of strain gradient elasticity is solved by using a weak form
that, in the linear setting, leads to an H2 norm about the trial solutions as well as test functions. Hence, the
corresponding finite-dimensional approximations are guaranteed to lie in a function space that is at least of
C1 continuity. In order to obtain this property, isogeometric FEM is employed with non-uniform rational
Bezier splines (NURBS)-based shape functions. The isogeometric FEM is able to ensure Cn continuity in one
single patch, which is appropriate for 2D simple geometries as in the present case. A detailed discussion of
the NURBS basis and isogeometric FEM as well as the weak formulation of strain gradient elasticity can be
found in [24–27,38,50,54,55]. The deformation energy that quantitatively describes the overall deformation
behavior of the structures is used to compare the results.

The boundary conditions for the simulations are shown in Fig. 5. The left side of the structure is clamped,
and on the right side of the structure, a rotation is prescribed along the center of the right edge. Two different
types of computations are performed in the following subsections. In Sect. 6.1, the computations are done for
the lattice structures with different macrosizes but the same sizes of basic cell, and in Sect. 6.2, we conduct
computations for lattice structures with the same macrosizes but with different sizes of internal basic cells.
The total volume remains the same in this case due to the fact that the ratio of the cell wall length to thickness
of the basic cell is held constant with a ratio 1 to 10.
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Fig. 5 Boundary conditions for computations

Fig. 6 Selected simulations for square lattice with the same size microstructure

6.1 Computations for square lattices with the same basic cell sizes and varied macrosizes

In this section, computations for the square lattice with the same sizes of the basic cell but with different
macrosizes as shown in Fig. 6 are performed. The size of the basic cell is 1mm×1mm, and the selected
lattices are of the macrosizes:

– 2mm×2mm,
– 4mm×4 mm,
– 6mm×6 mm,
– 10mm×10mm.

The results of the simulations are shown in Fig. 7, where the vertical axis stands for the strain energy of the
structures (in mJ) and the horizontal axis stands for the prescribed rotation (in rad). The black solid lines in
Fig. 7 represent the results on the microscale. We consider this solution to be the correct one. The blue dashed
line with square markers represents the computations of the homogenized structure by using the classical
stiffness tensor. The yellow dashed line with circle markers represents the simulations for the homogenized
structure when taking the strain gradient effect into account.



1264 H. Yang et al.

Fig. 7 Comparison of strain energies for square lattice structures with different macroscale sizes

The blue lines show a smaller strain energy with regard to the microscale due to the absence of the
higher-order strain gradient energy. We remark that while keeping the sizes of the basic cells unchanged, with
increasing macrosizes of the structures, namely L/ l becoming larger and larger, the computational results of
the classical elasticity theory approach that on themicroscale.Wemay say that in a largemacroscale L/ l > 10,
classical elasticity is adequate to guarantee the accuracy of the computation. However, when the macroscopic
length scale is of the same order of its sizes of the internal substructures, the strain gradient effect becomes
significant. This phenomenon is also known as size effect.

6.2 Computations for square lattices with varied basic cell sizes and the same macrosizes

In order to verify the identified parameters for square lattices with different basic cell sizes but the same
macrosizes even further, computations are conducted in this section. Three square lattices are selected as
shown in Fig. 8. These three lattices possess the same macrosizes 4 mm × 4 mm. Their basic cell sizes are 1
mm × 1 mm, 0.5 mm × 0.5 mm, and 0.2 mm × 0.2 mm for the left, the middle, and the right lattice as shown
in Fig. 8, respectively, which divides the macro-domain into 16, 64, and 400 basic cells. The computations are
shown in Figs. 9 and 10. Figure9 indicates that with increasing basic cell sizes, the strain energy at the rotation
of 0.2 radian shows an increasing trend at the microscale. As it was mentioned above, this scale-dependent
(depends on L/ l) phenomenon is also known as size effect.

The computations on the macroscale of elasticity are identical for these three cases due to the fact that the
ratio of the cell wall length to the thickness of the basic cell is fixed with a ratio 1 to 10. The computation
on the macroscale of elasticity is independent of the scale ratio, and they show a significant error compared
with the microscale where the scale ratio (L/ l) is getting smaller, and the size effect could not be ignored.
When the scale ratio (L/ l) is getting larger, which means the basic cell sizes is decreasing, the computations
on the macroscale of elasticity are gradually approaching those of the microscale. In such a case, for example
L/ l > 20, the size effect can be ignored. It can be also observed from Fig. 10a–c that the computations with
strain gradient show a good quantitative match with the microscale, which means that by taking the strain
gradient stiffness tensor into account, the size effect of the lattice structure is fully resolved.
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Fig. 8 Selected simulations for square lattices with basic cells of varied sizes

Fig. 9 Comparative computations between microscale and macroscale of elasticity

Fig. 10 Comparisons between computations in microscale, macroscale of elasticity, and macroscale of strain gradient for square
lattice structures with different number of cells
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7 Conclusions

Ahomogenization approach based on the asymptotic analysis has been exploited for developing amethodology
in order to determine stiffness parameters of a metamaterial. Specifically, the strain gradient theory was used
on the macroscale. The expressions of classical stiffness tensor and strain gradient stiffness tensor have been
derived, and the FEM has been successfully used to solve the partial differential equations generated from
the homogenization procedure. The so-called square lattice structure has been investigated, and their material
parameters are explicitly computed. The proposed approach guarantees that the parameters of strain gradient
stiffness tensors vanish as the material becomes homogeneous.Moreover, it ensures that strain gradient-related
parameters are independent on the repetition of RVE, but dependent on the intrinsic size of the material. In
order to validate the parameters determined by this methodology, additional numerical computations of the
square lattice with different sizes have been performed. The numerical results show that the size effect of the
lattice can be accurately captured by using the strain gradient theory with the parameters determined by the
methodology applied herein. We emphasize that this methodology can be applied to any metamaterial made
of a substructure with an RVE.

Acknowledgements We express our gratitude to Emilio Barchiesi, Ivan Giorgio, and Francesco dell’Isola for valuable discus-
sions. We also thank David Kamensky for the help of implementation of isogeometric FEM in FEniCS.

Appendix: Asymptotic solution for the displacement field

The asymptotic solution for an RVE is derived. Specifically, the solutions of Eqs. (24), (25), and (26) are shown.
We start with Eq. (24). Because Cm

i jkl is a function of y, the only possible general solution of Eq. (24) is to

restrict
0
ui (X), since it is y-periodic and has a bounded gradient. The solution in the order of ε−2 can be given

as:
0
ui = 0

ui (X). (43)

Note that
0
ui (X) depends only on the macroscopic coordinates. It is assumed to be the known macroscopic

displacement
0
ui (X) = uMi (X). By substituting Eq. (43) into Eq. (25), by introducing ϕabc = ϕabc( y), for the

inverse operation, we obtain

∂Cm
i jab

∂y j

∂
0
ua

∂Xb
= − ∂

∂y j

(
Cm
i jkl

∂
1
uk

∂yl

)
,

∂Cm
i jab

∂y j
= − ∂

∂y j

(
Cm
i jkl

∂ϕabk

∂yl

)
,

∂

∂y j

(
Cm
i jkl

(∂ϕabk

∂yl
+ δakδbl

))
= 0. (44)

Then, the general solution of Eq. (25) can be given as:

1
ui = ϕabi

0
ua,b + 1

ūi (X), (45)

where
1
ūi = 1

ūi (X) are integration constants in y.

Substitution of Eqs. (43) and (45) (with
1
ūi (X) = 0) into Eq. (26) leads to

Cm
i jkl

0
uk,l j + Cm

i jkl
∂ϕabk

∂yl

0
ua,bj + ∂

∂y j

(
Cm
i jklϕabk

)0
ua,bl + ∂

∂y j

(
Cm
i jkl

∂
2
uk

∂yl

)
+ fi = 0. (46)

Please note that the body force f keeps unchanged on the micro- and macroscales. We recall the governing
equation in the macroscale which reads [3]:



Determination of metamaterial parameters 1267

(
∂wM

∂uMi, j
−

( ∂wM

∂uMi, jk

)

,k

)

, j

+ fi = 0,

CM
i jklu

M
k,l j − DM

i jklmnu
M
l,mnk j + fi = 0. (47)

By neglecting the fourth-order term in Eq. (47) and by using
0
ui (X) = uMi (X), we obtain

fi = −CM
i jklu

M
k,l j = −CM

i jkl
0
uk,l j . (48)

Substituting Eq. (48) into Eq. (46) leads to

∂

∂y j

(
Cm
i jkl

∂
2
uk

∂yl

)
= −

(
Cm
icab + Cm

i jkl
∂ϕabk

∂yl
δ jc + ∂

∂y j

(
Cm
i jklϕabk

)
δlc − CM

icab

)
0
ua,bc. (49)

Because
0
ua,bc is constant in y, we can introduce ψabci depending on y and decompose as follows:

2
ui = ψabci

0
ua,bc + 2

ūi (X), (50)

where ψabcd = ψabcd( y) and
2
ūi (X) are integration constants in y. By substituting Eq. (50) (with

2
ūi (X) = 0)

into Eq. (49), it is found that the tensor ψabcd must fulfill the following equation:

∂

∂y j

(
Cm
i jkl

(∂ψabck

∂yl
+ ϕabkδlc

)
)

+ Cm
ickl

(∂ϕabk

∂yl
+ δkaδlb

)
− CM

icab = 0, (51)

such that Eq. (20) provides

umi (X, y) = 0
ui (X) + εϕabi ( y)

0
ua,b(X) + ε2ψabci ( y)

0
ua,bc(X) + · · · . (52)

References

1. Abali, B.E.: Revealing the physical insight of a length-scale parameter in metamaterials by exploiting the variational
formulation. Contin. Mech. Thermodyn. 31, 885–894 (2019)

2. Abali, B.E., Müller, W.H., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action
principles. Arch. Appl. Mech. 87(9), 1495–1510 (2017)

3. Abali, B.E., Müller, W.H., Eremeyev, V.A.: Strain gradient elasticity with geometric nonlinearities and its computational
evaluation. Mech. Adv. Mater. Mod. Process. 1, 4 (2015)

4. Alibert, J., Della Corte, A.: Second-gradient continua as homogenized limit of pantographic microstructured plates: a
rigorous proof. Z. Angew. Math. Phys. 66(5), 2855–2870 (2015)

5. Alibert, J.J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement
gradients. Math. Mech. Solids 8(1), 51–73 (2003)

6. Altenbach, H., Eremeyev, V.: On the linear theory of micropolar plates. ZAMM-J. Appl. Math. Mech. 89(4), 242–256
(2009)

7. Altenbach, H., Eremeyev, V.A.: Direct approach-based analysis of plates composed of functionally graded materials. Arch.
Appl. Mech. 78(10), 775–794 (2008)

8. Andreaus, U., Spagnuolo, M., Lekszycki, T., Eugster, S.R.: A Ritz approach for the static analysis of planar pantographic
structures modeled with nonlinear Euler–Bernoulli beams. Contin. Mech. Thermodyn. 30(5), 1103–1123 (2018)

9. Arabnejad, S., Pasini, D.: Mechanical properties of lattice materials via asymptotic homogenization and comparison with
alternative homogenization methods. Int. J. Mech. Sci. 77, 249–262 (2013)

10. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification
procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011)

11. Auffray, N., Bouchet, R., Brechet, Y.: Derivation of anisotropicmatrix for bi-dimensional strain-gradient elasticity behavior.
Int. J. Solids Struct. 46(2), 440–454 (2009)

12. Auffray, N., Dirrenberger, J., Rosi, G.: A complete description of bi-dimensional anisotropic strain-gradient elasticity. Int.
J. Solids Struct. 69, 195–206 (2015)

13. Bacigalupo,A.: Second-order homogenization of periodicmaterials based on asymptotic approximation of the strain energy:
formulation and validity limits. Meccanica 49(6), 1407–1425 (2014)

14. Bacigalupo, A., Paggi, M., Dal Corso, F., Bigoni, D.: Identification of higher-order continua equivalent to a cauchy elastic
composite. Mech. Res. Commun. 93, 11–22 (2018)

15. Barboura, S., Li, J.: Establishment of strain gradient constitutive relations by using asymptotic analysis and the finite element
method for complex periodic microstructures. Int. J. Solids Struct. 136, 60–76 (2018)



1268 H. Yang et al.

16. Barchiesi, E., dell’Isola, F., Laudato, M., Placidi, L., Seppecher, P.: A 1D continuum model for beams with pantographic
microstructure: asymptotic micro-macro identification and numerical results. In: dell’Isola, F., Eremeyev, V., Porubov, A.
(eds.) Advances in Mechanics of Microstructured Media and Structures, vol. 87. Springer, Berlin (2018)

17. Barchiesi, E., Ganzosch, G., Liebold, C., Placidi, L., Grygoruk, R., Müller, W.H.: Out-of-plane buckling of pantographic
fabrics in displacement-controlled shear tests: experimental results and model validation. Contin. Mech. Thermodyn. 31,
33–45 (2018)

18. Barchiesi, E., Placidi, L.:A reviewonmodels for the 3D statics and 2Ddynamics of pantographic fabrics. In:WaveDynamics
and Composite Mechanics for Microstructured Materials and Metamaterials, pp. 239–258. Springer, Berlin (2017)

19. Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids 24, 212–234
(2018)

20. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures, vol. 374. American Mathe-
matical Society, Providence (2011)

21. Bertram, A.: Compendium on gradient materials including Solids and Fluids. Magdeburg, Berlin (2019). https://www.lkm.
tu-berlin.de/fileadmin/fg49/publikationen/bertram/Compendium_on_Gradient_Materials_June_2019.pdf

22. Boutin, C.: Microstructural effects in elastic composites. Int. J. Solids Struct. 33(7), 1023–105 (1996)
23. Boutin, C., dell’Isola, F., Giorgio, I., Placidi, L.: Linear pantographic sheets: asymptotic micro-macro models identification.

Math. Mech. Complex Syst. 5(2), 127–162 (2017)
24. Capobianco, G., Eugster, S.: Time finite element based Moreau-type integrators. Int. J. Numer. Methods Eng. 114(3),

215–231 (2018)
25. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids 21(5), 562–577

(2016)
26. Cazzani, A.,Malagù,M., Turco, E., Stochino, F.: Constitutivemodels for strongly curved beams in the frame of isogeometric

analysis. Math. Mech. Solids 21(2), 182–209 (2016)
27. Cazzani, A., Stochino, F., Turco, E.: An analytical assessment of finite element and isogeometric analyses of the whole

spectrum of timoshenko beams. ZAMM-J. Appl. Math.Mech. 96(10), 1220–1244 (2016)
28. Chen, C., Fleck, N.: Size effects in the constrained deformation of metallic foams. J. Mech. Phys. Solids 50(5), 955–977

(2002)
29. Cuomo, M., Contrafatto, L., Greco, L.: A variational model based on isogeometric interpolation for the analysis of cracked

bodies. Int. J. Eng. Sci. 80, 173–188 (2014)
30. De Angelo, M., Spagnuolo, M., D’Annibale, F., Pfaff, A., Hoschke, K., Misra, A., Dupuy, C., Peyre, P., Dirrenberger, J.,

Pawlikowski, M.: The macroscopic behavior of pantographic sheets depends mainly on their microstructure: experimental
evidence and qualitative analysis of damage in metallic specimens. Contin. Mech. Thermodyn. 31(4), 1181–1203 (2019)

31. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic
lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A: Math. Phys. Eng.
Sci. 472(2185), 20150, 790 (2016)

32. dell’Isola, F., Placidi, L.: Variational principles are a powerful tool also for formulating field theories. In: Variational models
and methods in solid and fluid mechanics, pp. 1–15. Springer, Berlin (2011)

33. dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. Lond.
A: Math. Phys. Eng. Sci. 465, 2177–2196 (2009)

34. dell’Isola, F., Seppecher, P.,Alibert, J.J., Lekszycki, T.,Grygoruk,R., Pawlikowski,M., Steigmann,D.,Giorgio, I.,Andreaus,
U., Turco, E., Gołaszewski, M., Rizzi, N., Boutin, C., Eremeyev, V.A., Misra, A., Placidi, L., Barchiesi, E., Greco, L.,
Cuomo, M., Cazzani, A., Della Corte, A., Battista, A., Scerrato, D., Eremeeva, I.Z., Rahali, Y., Ganghoffer, J.F., Müller,
W., Ganzosch, G., Spagnuolo, M., Pfaff, A., Barcz, K., Hoschke, K., Neggers, J., Hild, F.: Pantographic metamaterials:
an example of mathematically driven design and of its technological challenges. Contin. Mech. Thermodyn. 31, 851–884
(2018)

35. Efendiev, Y., Hou, T.Y.: Multiscale Finite Element Methods: Theory and Applications, vol. 4. Springer, Berlin (2009)
36. Eremeyev, V.A., dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak

solutions. J. Elast. 132, 175–196 (2017)
37. Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids

Struct. 49(14), 1993–2005 (2012)
38. Eugster, S., Hesch, C., Betsch, P., Glocker, C.: Director-based beam finite elements relying on the geometrically exact beam

theory formulated in skew coordinates. Int. J. Numer. Methods Eng. 97(2), 111–129 (2014)
39. Fischer, P., Klassen, M., Mergheim, J., Steinmann, P., Müller, R.: Isogeometric analysis of 2D gradient elasticity. Comput.

Mech. 47(3), 325–334 (2011)
40. Forest, S., Dendievel, R., Canova, G.R.: Estimating the overall properties of heterogeneous Cosserat materials. Model.

Simul. Mater. Sci. Eng. 7(5), 829 (1999)
41. Forest, S., Pradel, F., Sab, K.: Asymptotic analysis of heterogeneous Cosserat media. Int. J. Solids Struct. 38(26–27),

4585–4608 (2001)
42. Franciosi, P., El Omri, A.: Effective properties of fiber and platelet systems and related phase arrangements in n-phase

heterogenous media. Mech. Res. Commun. 38(1), 38–44 (2011)
43. Franciosi, P., Lormand, G.: Using the radon transform to solve inclusion problems in elasticity. Int. J. Solids Struct. 41(3–4),

585–606 (2004)
44. Franciosi, P., Spagnuolo, M., Salman, O.U.: Mean green operators of deformable fiber networks embedded in a compliant

matrix and property estimates. Contin. Mech. Thermodyn. 31, 101–132 (2018)
45. Ghosh, S., Lee, K., Moorthy, S.: Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homoge-

nization and Voronoi cell finite element model. Comput. Methods Appl. Mech. Eng. 132(1–2), 63–116 (1996)
46. Gibson, L.J.: Biomechanics of cellular solids. J. Biomech. 38(3), 377–399 (2005)
47. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge (1999)

https://www.lkm.tu-berlin.de/fileadmin/fg49/publikationen/bertram/Compendium_on_Gradient_Materials_June_2019.pdf
https://www.lkm.tu-berlin.de/fileadmin/fg49/publikationen/bertram/Compendium_on_Gradient_Materials_June_2019.pdf


Determination of metamaterial parameters 1269

48. Giorgio, I., Andreaus, U., Lekszycki, T., Corte, A.D.: The influence of different geometries of matrix/scaffold on the
remodeling process of a bone and bioresorbable material mixture with voids. Math. Mech. Solids 22(5), 969–987 (2017)

49. Giorgio, I., Rizzi, N., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational
analysis. Proc. R. Soc. A: Math. Phys. Eng. Sci. 473(2207), 20170, 636 (2017)

50. Greco, L., Cuomo, M.: B-spline interpolation of Kirchhoff–Love space rods. Comput. Methods Appl. Mech. Eng. 256,
251–269 (2013)

51. Hendy, C.R., Turco, E.: Numerical validation of simplified theories for design rules of transversely stiffened plate girders.
Struct. Eng. 86, 21 (2008)

52. Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strain. Proc. R. Soc. Lond. A. Math. Phys. Sci.
326(1565), 131–147 (1972)

53. Holzapfel, G.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, New York (2000)
54. Hughes, T.J., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh

refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)
55. Kamensky, D., Bazilevs, Y.: tiGAr: Automating isogeometric analysis with FEniCS. Comput. Methods Appl. Mech. Eng.

344, 477–498 (2019)
56. Kouznetsova, V., Geers, M.G., Brekelmans, W.M.: Multi-scale constitutive modelling of heterogeneous materials with a

gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 54(8), 1235–1260 (2002)
57. Kushnevsky, V., Morachkovsky, O., Altenbach, H.: Identification of effective properties of particle reinforced composite

materials. Comput. Mech. 22(4), 317–325 (1998)
58. Lam, D.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys.

Solids 51(8), 1477–1508 (2003)
59. Li, J.: Establishment of strain gradient constitutive relations by homogenization. C. R. Méc. 339(4), 235–244 (2011)
60. Li, J.: A micromechanics-based strain gradient damage model for fracture prediction of brittle materials—Part I: homoge-

nization methodology and constitutive relations. Int. J. Solids Struct. 48(24), 3336–3345 (2011)
61. Li, J., Zhang, X.B.: A numerical approach for the establishment of strain gradient constitutive relations in periodic hetero-

geneous materials. Eur. J. Mech.-A/Solids 41, 70–85 (2013)
62. Liu, H., Li, B., Tang, W.: Manufacturing oriented topology optimization of 3D structures for carbon emission reduction in

casting process. J. Clean. Prod. 225, 755–770 (2019)
63. Liu, H., Li, B., Yang, Z., Hong, J.: Topology optimization of stiffened plate/shell structures based on adaptivemorphogenesis

algorithm. J. Manuf. Syst. 43, 375–384 (2017)
64. Lu, Y., Lekszycki, T.: Modelling of bone fracture healing: influence of gap size and angiogenesis into bioresorbable bone

substitute. Math. Mech. Solids 22(10), 1997–2010 (2017)
65. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)
66. Mindlin, R.D., Eshel, N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)
67. Mróz, Z., Lekszycki, T.: Optimal support reaction in elastic frame structures. Comput. Struct. 14(3–4), 179–185 (1981)
68. Nazarenko, L., Stolarski, H., Khoroshun, L., Altenbach, H.: Effective thermo-elastic properties of random composites with

orthotropic components and aligned ellipsoidal inhomogeneities. Int. J. Solids Struct. 136, 220–240 (2018)
69. Nejadsadeghi, N., De Angelo, M., Drobnicki, R., Lekszycki, T., dell’Isola, F., Misra, A.: Parametric experimentation on

pantographic unit cells reveals local extremum configuration. Exp. Mech. 59(6), 927–939 (2019)
70. Nejadsadeghi, N., Placidi, L., Romeo, M., Misra, A.: Frequency band gaps in dielectric granular metamaterials modulated

by electric field. Mech. Res. Commun. 95, 96–103 (2019)
71. Niiranen, J., Khakalo, S., Balobanov, V., Niemi, A.H.: Variational formulation and isogeometric analysis for fourth-order

boundary value problems of gradient-elastic bar and plane strain/stress problems. Comput. Methods Appl. Mech. Eng. 308,
182–211 (2016)

72. Noor, A.K.: Continuum modeling for repetitive lattice structures. Appl. Mech. Rev. 41(7), 285–296 (1988)
73. Peerlings, R., Fleck, N.: Computational evaluation of strain gradient elasticity constants. Int. J. Multisc. Comput. Eng. 2(4),

599–619 (2004)
74. Peszynska,M., Showalter, R.E.:Multiscale elliptic-parabolic systems for flow and transport. Electron. J. Differ. Equ. (EJDE)

147, 1–30 (2007)
75. Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic

medium. Contin. Mech. Thermodyn. 9(5), 241–257 (1997)
76. Pietraszkiewicz, W., Eremeyev, V.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct.

46(3–4), 774–787 (2009)
77. Pinho-da Cruz, J., Oliveira, J., Teixeira-Dias, F.: Asymptotic homogenisation in linear elasticity. part I: mathematical

formulation and finite element modelling. Comput. Mater. Sci. 45(4), 1073–1080 (2009)
78. Placidi, L., Andreaus, U., Della Corte, A., Lekszycki, T.: Gedanken experiments for the determination of two-dimensional

linear second gradient elasticity coefficients. Z. Angew. Math. Phys. 66(6), 3699–3725 (2015)
79. Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear d4 orthotropic

second gradient elastic model. J. Eng. Math. 103(1), 1–21 (2017)
80. Placidi, L., Barchiesi, E., Battista, A.: An inverse method to get further analytical solutions for a class of metamaterials

aimed to validate numerical integrations. In: Mathematical Modelling in Solid Mechanics, pp. 193–210. Springer, Berlin
(2017)

81. Placidi, L., Barchiesi, E., Misra, A.: A strain gradient variational approach to damage: a comparison with damage gradient
models and numerical results. Math. Mech. Complex Syst. 6(2), 77–100 (2018)

82. Placidi, L., Barchiesi, E., Turco, E., Rizzi, N.L.: A review on 2D models for the description of pantographic fabrics. Z.
Angew. Math. Phys 67(5), 121 (2016)

83. Placidi, L., Misra, A., Barchiesi, E.: Simulation results for damage with evolvingmicrostructure and growing strain gradient
moduli. Contin. Mech. Thermodyn. 31, 1143–1163 (2018)



1270 H. Yang et al.

84. Placidi, L., Misra, A., Barchiesi, E.: Two-dimensional strain gradient damage modeling: a variational approach. Z. Angew.
Math. Phys. 69(3), 56 (2018)

85. Rahali, Y., Giorgio, I., Ganghoffer, J., dell’Isola, F.: Homogenization à la Piola produces second gradient continuummodels
for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

86. Rosi, G., Giorgio, I., Eremeyev, V.A.: Propagation of linear compression waves through plane interfacial layers and mass
adsorption in second gradient fluids. ZAMM-J. Appl. Math. Mech. 93(12), 914–927 (2013)

87. Rosi, G., Placidi, L., Auffray, N.: On the validity range of strain-gradient elasticity: a mixed static-dynamic identification
procedure. Eur. J. Mech.-A/Solids 69, 179–191 (2018)

88. Rudraraju, S.,Van derVen,A.,Garikipati, K.: Three-dimensional isogeometric solutions to general boundary value problems
of Toupin’s gradient elasticity theory at finite strains. Comput. Methods Appl. Mech. Eng. 278, 705–728 (2014)

89. Scerrato, D., Giorgio, I., Rizzi, N.L.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numer-
ical investigations. Z. Angew. Math. Phys. 67(3), 53 (2016)

90. Smyshlyaev, V.P., Cherednichenko, K.: On rigorous derivation of strain gradient effects in the overall behaviour of periodic
heterogeneous media. J. Mech. Phys. Solids 48(6–7), 1325–1357 (2000)

91. Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed
pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)

92. Steigmann, D., dell’Isola, F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching.
Acta Mech. Sin. 31(3), 373–382 (2015)

93. Sun, C., Vaidya, R.: Prediction of composite properties from a representative volume element. Compos. Sci. Technol. 56(2),
171–179 (1996)
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