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Abstract Finite elementmethod (FEM) is commonly usedwith topology optimization algorithms to determine
optimum topology of load-bearing structures. However, it may possess various difficulties and limitations for
handling the problems with moving boundaries, large deformations, and cracks/damages. To remove limita-
tions of the mesh-based topology optimization, this study presents a robust and accurate approach based on the
innovative coupling of peridynamics (PD) (a meshless method) and topology optimization (TO), abbreviated
as PD–TO. The minimization of compliance, i.e. strain energy, is chosen as the objective function subjected
to the volume constraint. The design variable is the relative density defined at each particle employing bidi-
rectional evolutionary optimization approach. A filtering scheme is also adopted to avoid the checkerboard
issue and maintain the optimization stability. To present the capability, efficiency, and accuracy of the PD–
TO approach, various challenging optimization problems with and without defects (cracks) are solved under
different boundary conditions. The results are extensively compared and validated with those obtained by
element-free Galerkin method and FEM. The main advantage of the PD–TO methodology is its ability to han-
dle TO problems of cracked structures without requiring complex treatments for mesh connectivity. Hence, it
can be an alternative and powerful tool in finding optimal topologies that can circumvent crack propagation
and growth in two- and three-dimensional structures.
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1 Introduction

The increasing need for cost-effective, light-weight, and high-performance structures has led to the structural
optimization methods classified into sizing, shape, and topology optimization [1,2]. Topology optimization
finds an optimal material layout within a predefined design domain by minimizing or maximizing a given
objective function while satisfying design constraints. Since topology optimization provides the most practical
and potential design space among the other structural optimizationmethods, it has been extensively applied in a
wide range of engineering disciplines [3–7] including automotive [8–10] and aerospace [11–14] industries. For
example, various topology optimization models have been proposed in the last few decades [15]. Remarkably,
topology optimization methods are even utilized to predict optimal distribution of shear pivot stiffness of
pantographic metamaterials [16].

The homogenization method is the first approach proposed by Bendsoe [17]. Since then, several topol-
ogy optimization approaches have been introduced [18–28]. Among these, the most well-known ones are
the solid isotropic material with penalization (SIMP) method [18,19], level set-based method [20,21], evo-
lutionary structural optimization (ESO) method [22,23], and bi-evolutionary structural optimization (BESO)
method [24–26]. Apart from these approaches, the multi-material topology optimization can also be defined
using a new definition of relative densities for multi-materials as presented in [27,28]. Additionally, the level
set method was also used for topology optimization of multi-material-based flexoelectric composites [28].
The SIMP and BESO methods are the most commonly used approaches among material distribution models
because of their simplicity in terms of coding implementation. For instance, the SIMP method is recently uti-
lized to perform concurrent optimization ofmaterial density and anisotropy in two-dimensional structures [29].
Another recent application of the SIMP approach also involves the thermodynamic topology optimization and
its comparison with heuristic optimization schemes [30].

In the SIMPmethod, the design variables are defined by the relative densities, changing continuously in the
range of 1 and a nearly zero positive value, which represent the solids and voids, respectively. On the other hand,
in the ESO and BESOmethods, the design variables are directly set to binary values of 1 or 0, corresponding to
solid and void materials, respectively. Hence, during the optimization process, unlike those used in the SIMP
method, there is no any intermediate design variable in ESO and BESO methods. Consequently, the ESO and
BESO methods are referred to as a class of discrete topology optimization algorithms. The ESO method is
an empirical approach that gradually removes inefficient parts from the structure during the evolution of the
structure. The rejection criterion of ESO approach was originally defined based on von Mises stress and then
modified to the strain energy in [31]. The BESO method is an extended version of the ESO approach, where
the capability of the ESO method is improved by allowing both addition of efficient parts and removal of
inefficient parts simultaneously [32,33].

Most of these aforementioned optimization techniques mainly employed a mesh-based numerical method,
i.e. finite elementmethod (FEM) or isogeometric analysis (IGA) [34]. However, various limitations are encoun-
tered when performing the topology optimization analysis using FEM or IGAmethods especially for problems
involving moving boundaries, large deformations, and cracks/defects. Generally, complex boundary and inter-
face tracking algorithms and re-meshing strategies are employed to tackle with such challenges. However,
regenerating the mesh of design domain and interface tracking in each optimization iteration can be very
complex and computationally expensive [35].

Recently, meshless methods have received a great deal of attention to overcome the difficulties mentioned
in the above paragraph. In the mesh-free methods, a set of particles can arbitrarily be distributed within the
design domain without requiring any mesh connectivity, thus providing an easiness to discretize the design
domain. Nevertheless, mesh-free methods have been rarely used with the aim of the topology optimization.
To give some examples, element-free Galerkin method (EFG) is one of the first meshless methods that was
employed to perform topology optimization [36–39]. Yang et al. [36] employed the EFG method to minimize
the weight of structures subjected to the displacement constraints using the SIMP-based topology optimization
approach. Moreover, Shobeiri [37] also integrated the EFG method with the BESO approach for the topology
optimization of continuum structures. Shortly after, Shobeiri [38] investigated cracked structures based on the
integration of the EFG and BESO.

Radial point interpolationmethod [40] and local Petrov–Galerkinmixed collocationmethod [41] are among
other meshless approaches used in topology optimization studies. Most recently, Lin et al. [42] proposed a
structural topology optimizationmethod using smoothed particle hydrodynamicsmethod and amodifiedSIMP-
based approach. Peridynamics (PD) theory is another fast-growing meshless approach that was introduced by
Silling [43] and Silling et al. [44]. The PD is considered as a nonlocal reformulation of the classical continuum
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mechanics (CCM) equations [45–48]. PD has been also used for describing growth phenomena in bones in
recent years [49–51], where nonlocal biological interaction has the same mathematical form as mechanical
nonlocal interactions. The theory has been successfully used to simulate crack growth [52], failure inmulti-scale
models including nanostructures [53], study damage and failure in concrete columns [54], model fracture in
functionally gradedmaterials [55], fatigue [56], torsion [57], buckling [58] and corrosion [59] failures, simulate
hydraulic fracturing process “fracking” [60], and predict failure in composite materials [61,62]. PD improves
the simulation of the crack growth compared to the weakly nonlocal approaches reported in the literature [63–
66]. Most recently, PD is also utilized for toughness enhancement and material design of brittle materials by
introducing micro-cracks in the vicinity of the macro-cracks [67].

A discrete model for crack growth in continua based on the analogy with robot swarms has been proposed
recently [68–72]. In this discrete approach, the ideas of peridynamics are exploited and, when its continuum
counterpart is considered, it is proven that second and higher gradient continua are a kind of intermediate step
between nonlocal discrete interactions and PD. It has to be remarked that when pantographic structure has
infinitely stiff-in-extension constitutive bars [73–75], their continuum models must belong to the class which
is studied in PD. Peridynamic formulation was improved for the non-uniform discretizations and varying
horizons in [76,77]. The inherent ability of PD for dealing with discontinuities (e.g. cracks) and their growth
lends itself to topology optimization of structures in the presence of such imperfections in a robust manner.

In this study, a novel coupling of PD and topology optimization, named concisely as PD–TO, is introduced
for the topology optimization and design of a continuum with and/or without cracks (defects). To the best
knowledge of the authors, there is no study available in the literature concerning the topology optimization
integrated with PD applied to problems with the presence of cracks. Therefore, the proposed PD–TO approach
in this study is of its first kind in the literature. The minimization of compliance, namely strain energy, is
chosen as the objective function under the volume constraint. The design variables are the relative density
defined at particles using BESO approach. The filtering scheme is adopted to avoid the checkerboard issues
and provide a high stability during optimization. The advantage of the PD–TO methodology is its simplicity
in terms of coding implementation and effectiveness, robustness, and high accuracy to perform topology
optimization of two- and three-dimensional problems without requiring any re-meshing of the design domain.
These capabilities are validated and demonstrated by solving various challenging numerical examples.

In the following sections, the PD theory and its discretized version of equations are discussed in the first
instance (Sect. 2). Then, in Sect. 3, the BESOmethod is defined with an explanation of sensitivity analysis and
the filtering scheme. After that, in Sect. 4, the proposed PD–TO approach is applied to different case studies
including the structures with embedded cracks. Finally, the findings of the research are summarized in the
conclusions section (Sect. 5).

2 Peridynamics (PD)

In this study, the original peridynamic formulation introduced by Silling [43] named as bond-based PD is
utilized due to its simplicity. However, it is straightforward to extend it to more advanced PD formulations
including state-based PD. The PD is a nonlocal continuum mechanics formulation. Therefore, the continuum
(analysis domain) is represented by the ensemble of infinitely small volumes called material points (particles).
As opposed to CCM, in PD, a material point can interact with other points which are far from each other in
a nonlocal manner and each interaction is called as peridynamic bond. The range of interactions is named
as horizon, which represents the family of the material points, H (Fig. 1). The horizon, H , can be a sphere
or a circle with a radius denoted by δ (Fig. 1) for a three-dimensional (3-D) or two-dimensional (2-D) body,
respectively.

The PD equation of motion of a material point located at x can be expressed as [78]

ρ (x) ü (x, t) =
∫

H

f
(
u′ − u, x′ − x, t

)
dH + b (x, t) (1)

where ρ is the density, ü is the acceleration, b is the body force, and f is the pairwise force density between
material points x and x′. The pairwise force density function can be defined as:

f
(
u′ − u, x′ − x, t

) ≡ f = f
ξ + η

|ξ + η| (2)
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Fig. 1 The family H of the material point i within the horizon radius δ

where ξ represents the relative position vector between material points x and x′ in the original configuration,
i.e. ξ = x − x, and η represents the relative displacement vector, i.e. η = u − u. The magnitude of the force
density, f , can be expressed for an elastic isotropic material as:

f = cs (3)

where c is the bond constant and s is the stretch. The bond constant for an isotropic material can be expressed
in terms of the material constants of CCM as:

c = 9E

πhδ3
(4)

with E and h representing the elastic modulus and the thickness of the 2-D domain, respectively. The stretch
of a PD bond is defined as:

s = |ξ + η| − |ξ|
|ξ| (5)

The PD force given in Eq. (3) can be obtained from the micro-potential of the PD bond which can be written
as:

w ≡ w
(
u′ − u, x′ − x, t

) = 1

2
cs2 |ξ| (6)

where |ξ| is the length of the PD bond. Moreover, the strain energy density of the material point located at x
can be expressed in terms of micro-potential of PD bonds associated with this material point as:

W (x, t) = 1

2

∫

H

w
(
u′ − u, x′ − x, t

)
dH (7)

Finally, integrating the strain energy density over the domain of the body, β, the total strain energy of the body
can be calculated as:

C =
∫

β

W (x, t) dβ (8)

Although several analytical solutions to the PD equation given in Eq. (1) are available in the literature [79],
numerical techniques, especially meshless method, are usually utilized. Therefore, to obtain the numerical
solution based on meshless method, Eq. (1) can be written in a discrete form for the material point i as:

ρ (xi ) ü (xi , t) =
N f∑
j=1

f
(
u j − ui , x j − xi , t

)
Vj + b (xi , t) (9)
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where N f is the number of family members of the material point i , j represents a material point inside the
horizon (family) of the material point i , and Vj denotes the volume of material point j . Similarly, the strain
energy density of the material point i can be written in discrete form as:

W (xi , t) = 1

2

N f∑
j=1

w
(
u j − ui , x j − xi , t

)
Vj (10)

Note that, for bond-based PD, Poisson’s ratio, υ, is equal to 1/3 for 2-D isotropic materials. Elastic modulus
value, E , is specified as the harmonic average of the elastic moduli values of the two interacting particles i
and j as:

E = 2Ei E j

Ei + E j
(11)

To obtain static condition, the adaptive dynamic relaxation (ADR) technique introduced in [78,80] has been
widely used in the literature. In ADR technique, the PD equation given in Eq. (1) yields a static solution by
imposing a fictitious damping to the system. AlthoughADR is a powerful technique, attaining a static condition
takes a certain number of fictitious time steps which increases the computational time and may not be very
suitable for optimization problems. Therefore, direct solution approach presented by Bobaru et al. [81] has
been utilized in this study by directly equating the inertia term in Eq. (1) to 0. This approach requires solution
of a matrix equation and can provide a quicker solution in comparison with the ADR technique.

In order to introduce the resulting final set of equations for the direct solution [57], the PD force density
given in Eq. (2) can be linearized for material point i by considering the work done by Silling [82] as:

f
(
u j − ui , x j − xi , t

) ≡ f
(
ηi j , ξi j , t

) ≡ fi j = c
ξi j ⊗ ξi j∣∣ξi j ∣∣3

ηi j = c∣∣ξi j ∣∣Ti jηi j (12)

where sign ⊗ represents the dyadic product, and ξi j and ηi j are the position vector and relative displacement
vector defined for the interaction between the particles i and j , respectively. The matrix Ti j is a transformation
matrix for associating the relative displacement with bond direction in the reference (undeformed) configura-
tion. Hence, this matrix is defined by the direction of cosines of the bond in the undeformed configuration as:

Ti j =
[
cos2 θi j cos θi j sin θi j
sin θi j cos θi j sin2 θi j

]
(13)

where the direction of cosines can be calculated between the material points i and j as:

ξi j∣∣ξi j ∣∣ =
{
cos θi j
sin θi j

}
(14)

Inserting Eq. (12) into Eq. (9) and setting the acceleration term to zero lead to the PD equation of motion for
a particle i as:

N f∑
j=1

c∣∣ξi j ∣∣Ti jηi j V j + bi = 0 (15)

Equation (15) can also be presented in an alternative form as:

N f∑
j=1

c∣∣ξi j ∣∣ [Ti j − Ti j ]
{
ui
u j

}
Vj = bi (16)

which can be written in the form of compact matrix–vector representation as:

kidi = bi (17)

where the stiffness matrix for a particle i can be explicitly defined as:

ki =
⎡
⎣Ti1

c∣∣ξi1∣∣ + · · · + Ti N f

c∣∣∣ξi N f

∣∣∣
− Ti1

c∣∣ξi1∣∣ · · · − Ti N f

c∣∣∣ξi N f

∣∣∣

⎤
⎦ (18)
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with the associated displacement vector:

di =

⎧⎪⎪⎨
⎪⎪⎩

ui
u1
...
uN f

⎫⎪⎪⎬
⎪⎪⎭

(19)

with

ua =
{
uxa
uy
a

} (
a = i, 1, . . . , N f

)
(20)

where uϕ
a (ϕ = x, y) denotes the displacements along x- and y-direction for thematerial point i and thematerial

points located within its horizon.
The PD equation of motion for the quasi-static case can be obtained as a single matrix–vector form in the

global domain β by rigorously assembling Eq. (17) for all the material points as:

KD = B (21)

K =
N⋃
i=1

ki , D =
N⋃
i=1

di , B =
N⋃
i=1

bi (22)

where K, D, and B are the global stiffness matrix, displacement vector, and force vector of all material points
constructed by using local stiffness matrix ki , displacement vector di , and force vector bi of each material
point i through the assembly process, ∪. Note that the variable N denotes the total number of particles in
the physical domain, β. Boundary conditions can be imposed by introducing additional particles around the
boundaries and creating an imaginary material domain equivalent to the horizon size [52]. In PD, external
loads can be applied as a body force onto a single layer of particles, which is also used in this study.

3 Bi-evolutionary structural optimization (BESO)

3.1 Problem statement

The topology optimization problem for the PD material domain, β, may be stated as the minimization of an
objective function, G ≡ G (κ), with a constraint, F ≡ F (κ), as:

min
κ

G (κ)

s.t.

{
F (κ) = 0
0 ≤ κ (x) ≤ 1, ∀ x ∈ β

(23)

where κ is the design variable related to the density of the material point located at the position x. In the SIMP
method, the power-law interpolation scheme is defined for the elastic modulus of each particle i based on the
design variable value as well as the elastic moduli of solid and void materials as:

Ei ≡ Ei (κi ) = Ev + (κi )
p (

Es − Ev
)

(24)

Here, Ev and Es are the stiffness of void and solid materials, respectively, where Es 	 Ev , and κi is the design
variable of particle i . The first Ev term on the right-hand side of Eq. (24) ensures that Ei is always positive
definite. The power, p, of the design variable is referred to as “penalization parameter” to obtain distinct design
variables.

In the BESOmethod, the design variable can have two states: 1 or 0, representing solid and void materials,
respectively. For void particles, enforcing κi to acquire a very small value rather than zero enables one to set
Ev = 0 in Eq. (24). This simplifies Eq. (24) to the following form:

Ei = (κi )
p Es (25)

where the design variable should be selected as κi = 1 or κi = κmin for solid or void particles, respectively.
Note that the minimum value of the design variable can be defined as 0 < κmin ≤ 10−3 and the associated
penalty parameter is chosen to have a value in the range of 1 ≤ p ≤ 5. In this study, we directly used Eq. (25)
in the BESO optimization model, where the minimum design variable and the penalty parameter are selected
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Fig. 2 Design domain of a cantilever beam: a 2-D design domain; b 3-D design domain

as κmin = 10−3 and p = 3, respectively. The selection of small value for design variable of void was referred
to as the soft-kill BESO approach [26]. The most beneficial aspect of using a small value instead of 0 is to
avoid from removing the particles in the design domain during the optimization process.

The stiffness is the most widely used criterion in classical engineering topology optimization with a
predefined target volume. The compliance is commonly selected as the objective function, which is the inverse
of the overall stiffness of a structure. The compliance can be defined using the total strain energy of a structure
calculated in PD given by Eq. (8). Accordingly, the optimization model can be stated with the objective to
minimize this compliance, C , with respect to each design variable, κi , as:

min
κ i

C (κi ) ≡ C = ∑
i = 1NW (xi ) Vi

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

KD = B
∑N

i=1 κi Vi∑N
i=1 Vi

= V̄

κi = 1 or κi = κmin

(26)

where the minimization problem is subjected to the solution of the global displacements to update the strain
field, and the maximum allowable (target) volume constraint denoted by the symbol V̄ , which is the ratio of
the target volume to the total volume of the design space.

3.2 Sensitivity numbers

In the BESO method based on FEM, the elemental sensitivity number is defined as a measure to change the
material phase of element (e.g. from solid to void or vice versa) in order to minimize the objective function.
The elements can be removed or added using the relative ranking of the sensitivity of an individual element.
Applying the same procedure to PD material points with the optimization steps, the sensitivity number can be
defined based on derivative of the strain energy or the compliance with respect to the design variable as:

αi = − 1

p

∂C (κi )

∂κi
(27)

The sensitivity number of void elements is equal to zerowhen the penalization coefficient tends to go to infinity.
The derivative of the compliance can be calculated analytically as:

∂C (κi )

∂κi
= − p (κi )

p−1 Cs
i (28)

where Cs
i is the compliance of solid particle, which can be the basis for the compliance of a particle that may

be either solid or void. This relation can be established through the multiplication of penalized design variable
and the compliance of the solid particle as:

Ci = (κi )
p Cs

i (29)
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(a) PD 60×30 (b) FEM 60×30

(c) PD 100×50 (d) FEM 100×50

(e) PD 200×100 (f) FEM 200×100

Fig. 3 Comparison of design space discretization of FEM and PD for the filter radius of 3

Fig. 4 Time comparison of topology approaches based on FEM and PD for different discretizations
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Table 1 Comparison of total time and average time for each iteration of topology approaches based on FEM and PD for different
discretizations

Approaches Peridynamics Finite element method

Discretization Coarse Medium Fine Coarse Medium Fine

Total time (min) 1.45 1.33 3.12 1.01 1.71 4.10
Average time for each iteration (s) 1.18 1.40 2.84 1.21 1.47 4.04

Fig. 5 The optimal topology obtained for 3-D analysis: a design domain; b optimized topology

Substituting the compliance of solid particle defined inEq. (29),Cs
i = Ci (κi )

−p, intoEq. (28) and subsequently
using Eq. (28) together with Eq. (27) lead to the final form of the sensitivity number defined as:

αi = Ci

κi
for (κi = 1 or κi = κmin) (30)

where the strain energy of each particle Ci can be calculated at each optimization iteration step after the
solution of the displacement field as:

Ci = W (xi ) Vi (31)

Note that this form of the Ci has already been incorporated into the design variable of the particle i through
the definition of the elastic modulus defined by Eq. (25).

3.3 Filter scheme and stabilization

A filtering or smoothing technique is applied to the sensitivity numbers to eliminate the instabilities and
checkerboard patterns as in the case of SIMP approach. For filtering purpose, a circular sub-domain with the
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(a)

(b)

Fig. 6 Analysis of the filter radius for the fine discretization (200 × 100) and: a filter radius of 3; b filter radius of 6

radius of rmin is defined at the centroid of i th particle, which includes a set of neighbour particles, j . Neighbour
particles influence the sensitivity of the i th particle according to the distance between the particles, ri j . Using
the Shepard interpolation scheme, the sensitivity number at each particle can be defined as:

α̃i =
∑n

j=1 ψ
(
ri j

)
α j∑n

j=1 ψ
(
ri j

) (32)

where α̃i is the smoothed sensitivity number, ri j = ∣∣ξi j ∣∣ is the distance between the particle i and j , n is the
total number of particles in the sub-domain of i , and ψ

(
ri j

)
is a weighting function defined as:

ψ
(
ri j

) =
{
rmin − ri j for ri j < rmin
0 for ri j ≥ rmin

(33)

The optimization process can be stabilized utilizing an iterative approach. Therefore, the smoothed sensitivity
numbers, α̃i , are arithmetically averaged using their values from the previous iteration as:

α̃k
i = α̃k

i + α̃k−1
i

2
(34)

where k is the current iteration number and α̃k
i is the kth averaged sensitivity numbers.

3.4 Optimization evolution

An effective algorithm is applied to add and remove the particles to satisfy the predefined target volume based
on the ranking of the sensitivity numbers in the BESO method. The volume of the structure is initialized
with the total percentage of design domain and gradually decreased until it satisfies the target volume. The
evolutionary volume ratio introduced in [83,84] is a controlling parameter to push the percentage of structure’s
volume to the target volume percentage. Hence, the evolutionary volume ratio, RE , defines the percentage of
the decrease or increase in the structure’s volume.
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(a)

(b)

(c)

(d)

Fig. 7 Optimal topologies for 100 × 50 material points for different horizon sizes: a λ = 2; b λ = 3; c λ = 4; and d λ = 5
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(a)

(b)

(c)

(d)

Fig. 8 Comparison of particle discretization and filtering effects: structured particles a without filtering and b with filtering;
unstructured particles c without filtering and d with filtering
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Fig. 9 The design domain for a cantilever beam with an edge crack

Fig. 10 The iteration histories of the compliance of cantilever beam with and without crack

In each kth iteration, the target volume of the next iteration V k+1
tar is defined based on the evolutionary

volume ratio as:

V k+1
tar = V k

tar (1 − RE ) (35)

where V k
tar is the unity for the first iteration. In this study, the design variables are updated by means of the

optimality criteria. The pseudocode of the optimality criteria is shown in Algorithm 1. The minimum and
maximum strain energy or compliance of particles is assigned to low and high variables, given in Algorithm 1,
at each iteration. A threshold, αth, is defined according to the ranking of the sensitivity numbers and the target
volume percentage. Accordingly, the solid particles are removed when their sensitivity numbers are higher
than the threshold. Moreover, the void particles are switched to the solid particles if their sensitivity numbers
are lower than the threshold.
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Finally, a convergence criterion can be defined to stop the optimization process after satisfying the target
volume. Using a predefined error tolerance τ̄ , the convergence criterion τ k , can be evaluated for the change of
the objective function as:

(a)

(b)

(c)

Fig. 11 Optimal topologies for the cantilever beam: a structure without crack; structure with crack: b l = 50 mm and c l = 5 mm
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Fig. 12 The comparison of strain energy distributions for the cantilever beam: a structure without crack; structure with crack: b
l = 50 mm and c l = 5 mm

Fig. 13 Design domain of a simply supported beam with an edge crack
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Fig. 14 The iteration histories of the compliance of the simply supported beam with and without edge crack

τ k =
∣∣∣∑k−5

m=k−9

(
Cm+5 − Cm

)∣∣∣∣∣∣∑k−5
m= k−9 C

m
∣∣∣

≤ τ̄ for k > 10 (36)

where the Cm corresponds to the objective function of mth iteration. The optimization process stops when the
convergence criterion is fully satisfied meaning that the global minimum value of the objective function as
well as the final optimized topology is achieved.

4 Numerical examples

In this section, several numerical examples are considered and solved to demonstrate the suitability of PD–TO
approach for topology optimization of structures with and without cracks. Firstly, two- and three-dimensional
topology optimization of a cantilever beam is performed for validation and parameter selection of the present
approach. Then, a cantilever beam with an edge crack is analysed to investigate the effect of crack location on
the optimal topology. Next, the effect of crack size on the topology optimization is examined through a simply
supported beam with an edge crack. The same problem is studied to demonstrate the effect of multiple cracks
at the supports as well. Finally, a simply supported beam with an internal crack is analysed to study the effect
of crack orientation on the optimal topology.

Note that, for all the cases, the objective is to design the stiffest structure based on the minimal target
volume constraint. In the following examples, unless otherwise stated, the penalization parameter is equal to
p = 3 and Poisson’s ratio is υ = 1/3. Young’s modulus of void materials is defined based on the relation
given by Eq. (25). The evolutionary ratio of the volume is set to be RE = 2%. The optimization process begins
with the total solid particles in the design domain and ends after satisfying the proposed convergence criterion
given by Eq. (36).

4.1 A cantilever beam

In this section, a cantilever beam, which is frequently reported in the literature for the validation purposes, is
analysed using the PD–TO approach. As depicted in Fig. 2, design space of the beam consists of two and three
dimensions for length-to-width ratio of 2 : 1, where the length and width are 100 mm and 50 mm, respectively.
The thickness is 7 mm in 3-D model depicted in Fig. 2b. The beam is subjected to a concentrated force of
F = 100 N at the centre of the free end. Young’s modulus of solid material is E = 200 GPa, and the volume
fraction constraint is set to V̄ = 0.5. The results of the proposed approach are compared with the optimal
results of the BESO approach based on the FEM reported in [26]. The 2-D model is discretized into 60 × 30
(coarse discretization), 100× 50 (medium discretization), and 200× 100 (fine discretization) particles. In this
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(a)

(b)

(c)

(d)

Fig. 15 Optimal topologies for the simply supported beam: a structure without crack; structure with crack: b a = 9 mm; c
a = 12 mm; and d a = 15 mm

comparison, the filter radius is equal to rmin = 3 for all three discretizations. The topology starts from the full
solid materials in the design domain and gradually evolves based on the BESO approach. The black and white
areas denote the solid and void materials, respectively. It is clear that the design space expands by increasing
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Fig. 16 The comparison of strain energy distributions for simply supported beam: a structure without crack; structure with crack:
b a = 9 mm; c a = 12 mm; and d a = 15 mm

the number of particles within the beam (Fig. 3). Accordingly, the optimal topology is more detailed with the
better link connections in the structure for the fine discretization (Fig. 3e, f). It can be seen from Fig. 3 that the
peridynamics-based topology optimization (PD–TO) approach generates results in very close agreement with
the results obtained by FEM-based topology optimization (FEM–TO).

The computational time for each iteration is compared in Fig. 4, indicating that PD–TO approach is
computationally less expensive than the FEM-based one. The total time of the optimization analysis and
the average time of each iteration in this analysis are given in Table 1 for all discretization and numerical
approaches. It can be seen that the PD–TO is approximately 25% faster than the FEM–TO for fine discretization,
which can be attributed to the form of stiffness matrix constructed and its associated solution through matrix
decomposition algorithm. It should be noted that both PD–TO and FEM–TO solutions are obtained utilizing
the same computational capabilities.

To demonstrate the capabilities of the proposed algorithms further, we have also solved topology optimiza-
tion problem in 3-D space as shown in Fig. 2b. The 3-D beam is discretized into 100 × 50 × 7 particles, and
the volume constraint is 0.5 with the filter radius of 3. Recall that the load is applied at the centre of the free
edge as given in Fig. 2b. The design domain and the optimal topology are shown in Fig. 5a, b, respectively.
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Fig. 17 Multiple crack formations at the constraints of the simply supported beam

Fig. 18 The iteration history of the compliance for the simply supported beam with multiple cracks

Expectedly, the 2-D and 3-D optimized configurations can have slightly different topological features at the
intersections of the links as can be seen from the comparison of Figs. 3c and 5b. This minuscule difference is
related to the fact that the 3-D structure has a design space along the thickness, which can bear the load and
results in a more complex strain energy distribution throughout the 3-D domain. Nevertheless, both optimal
geometries have many common features including void region formed in vicinity of the rear and front sections
of the beam. In addition, they have a similar stiff skeleton formed by solid particles around the border of the
beam model. This case illustrates that the proposed approach can be used for 3-D topology optimization.

In addition to 3-D analysis, in the following, the parameters of the topology optimization and PD are
investigated. Firstly, the effect of the filter radius is analysed on the optimal topology. The design space
is influenced by the filter radius, which plays an important role in the final topology. Figure 6 shows that
the optimal topology of the fine discretization with the filter radius of 6 is almost the same as the medium
discretization with the filter radius of 3. Enlarging the filter radius from 3 to 6 for the same discretization
decreases the number of geometrical links and increases the thickness of these links. Given that the medium
discretization with the filter radius of 3 and the fine discretization with filter radius of 6 lead to the same
topology, we have used the medium discretization for modelling of structure with cracks in the next sections,
thereby obtaining computationally less expensive solutions.

The second important parameter investigated herein is the horizon size. In Fig. 7, the optimal topologies
are shown for the different horizon sizes δ = λ�x where λ ranges from 2 to 5 and �x is the particle spacing
for medium discretization. It is apparent from Fig. 7 that as the horizon size increases, the number of links in
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(a) (b)

(c) (d)

(e) (f)

Fig. 19 Evolution of topology for the simply supported beam with multiple cracks: a initial design; b iteration 10; c iteration 20;
d iteration 30; e iteration 40; and f optimal solution

Fig. 20 Strain energy distributions for Example 5

the topology becomes unchanged. Considering the trade-off between the computational time and the optimum
topology, we have chosen horizon size of δ = 3�x in the rest of this study.

Apart from filter radius and horizon size, the effect of the filtering scheme is also investigated for the
structured and unstructured discretization. Particle-based methods with uniform particle distributions can
easily discretize the complex design space commonly encountered in industrial applications. However, in
order to demonstrate that the PD–TO approach is robust and independent of uniformity of particle distribution,
we have also considered unstructured configurations as well. To make a meaningful assessment, the design
space is discretized into 5000 non-uniform and 100 × 50 uniform particle distributions with the same filter
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Fig. 21 The design domain of the simply supported beam having an interior crack with different orientations

radius of 3. The unstructured particle distribution is generated by using the centroids of polygonal finite
element mesh generated utilizing the open source code provided by Talischi et al. [85]. Figure 8 shows the
comparison of the optimal topologies with and without using the sensitivity filtering for the structured and
unstructured discretization. The filtering scheme can remove significantly the checkerboard phenomena in
the structured discretization of the proposed mesh-free approach. The unstructured discretization shows less
sensitivity to the filtering scheme and has less isolated particles. The optimal results of the structured and
unstructured discretization are almost analogous to each other, and the filtering technique helps to stabilize the
final topology for both cases. Hence, the filtering scheme is applied to all the test cases in the rest of this study.

4.2 A cantilever beam with an edge crack

In this example, the effect of the crack location is investigated for a cantilever beam. The beam has a length-to-
width ratio of 3:1 and includes a crack with the size of a = 6 mm, which is located at a position of l measured
from the clamped edge as shown in Fig. 9. Two different crack locations, namely l = 50 mm and l = 5 mm,
are studied. The beam is subjected to a concentrated force of F = 100 N at the right bottom corner. The
dimension of the beam is 150 × 50 mm2 which is discretized into 90 × 30 particles, and Young’s modulus of
solid particles is Es = 100 GPa. The target volume constraint is V̄ = 0.5 for the design domain. The PD–TO
simulation parameters for this test case are the same as the ones selected in Sect. 4.1.

The optimal topologies of the beam are obtained for two different positions of the crack as well as for
the beam with no crack. Figure 10 shows the histories of the compliance where the material removal causes
increase in the compliance at the initial iterations. Once the material removal is complete, the volume fraction
is fixed and the compliance starts to converge rapidly towards an optimal level for each case. The optimal
topologies of the beam are shown in Fig. 11 for the beam without crack and the beam with different crack
locations. Our results are in agreement with those reported in reference [38] where the optimization was based
on the BESO approach integrated with EFG method. In line with nature of the optimization process, the
material removal takes place in low strain energy locations at each iteration. Accordingly, it can be seen from
Fig. 11 that the presence of crack and/or its location alters optimized topologies due to influence of defect
(crack) on the strain energy distribution (Fig. 12) in the structure. Otherwise stated, the optimal topologies
are formed such that the crack does not propagate in the beam. Overall, such problem given in this example
may not be effectively analysed utilizing optimization approaches based on classical continuum mechanics.
In fact, the classical form of equation of motion for a material point involves the divergence of stress fields,
which cannot be easily calculated at the position of discontinuity on a design domain (e.g. stress singularity at
presence of crack). In the optimizationmethods based on classical mechanics, this limitationmay be commonly
encountered when performing topology optimization of cracked structures. We circumvent this limitation
through introducing the novel PD–TO approach. Hence, this example problem proves that the present PD–TO
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(a)

(b)

(c)

(d)

(e)

Fig. 22 Optimal topologies for the simply supported beam with an interior crack: a θ = 90◦, l = 10 mm; b θ = 60◦, l =
10.25 mm; c θ = 45◦, l = 10.25 mm; d θ = 30◦, l = 10.25 mm; and e θ = 0◦, l = 10 mm
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Fig. 23 The iteration histories of the compliance of the simply supported beam with an interior crack

approach becomes a better candidate than those of conventional counterparts, especially for finding optimal
topologies of cracked/damaged geometries.

4.3 A simply supported beam with an edge crack

In this case, we have modelled a simply supported beam with length-to-width ratio of 2:1 as shown in Fig. 13.
A downward concentrated force with the magnitude of F = 200 N is applied onto the middle of the top free
side. The material of the solid particles has a Young’s modulus of Es = 200 GPa. The design domain of the
beam (120× 60 mm2) is uniformly discretized into 80× 40 particles. Each particle is assigned with a design
variable κi , and the target volume constraint is chosen to be V̄ = 0.4. The effect of the crack length in the plate
is investigated. As illustrated in Fig. 13, the crack with a length of a is embedded at the middle of the bottom
free edge. The other problem parameters, namely rmin = 3 and δ = 3�x , are the same as those chosen in
Sect. 4.1. The topologies are investigated for three different cases with varying crack lengths, and the results
are compared with optimal topology obtained for the beam without any crack.

The optimization histories of the structural compliance are depicted in Fig. 14, in which the compliance
increases until satisfying the volume constraint. Then, it decreases smoothly, while the volume is almost
unchanged. It is clear that the increase in the crack size leads to higher compliance values. The optimal
topologies of the beams with and without crack are shown in Fig. 15. The results can be compared with the
results demonstrated in reference [38], where the current optimal results are very analogous to their results.
It can be seen that the presence of a crack significantly influences the final optimized topology. The strain
energy distributions of the optimal topologies are compared in Fig. 16. It shows that the strain energy close
to the crack tips is relatively higher than other areas and in turn, the optimal topology evolves in such a way
to prevent the crack propagation. Hence, the change in the crack length yields different optimized topologies.
The speed of the convergence of the optimization process is sufficiently high demonstrating the numerical
stability of the proposed approach.

Additionally, we have scrutinized the effect of themultiple cracks at the constraints on the optimal topology.
The same design domain (Fig. 13) is studiedwith two interior cracks as depicted in Fig. 17. The aforementioned
problem setting and parameters are kept same as well. Herein, the cracks with the length of a = 18 mm are
oriented by positive and negative 45◦ with respect to the bottom boundary edge (Fig. 17). Figure 18 indicates
that the compliance converges to a constant value demonstrating that target volume fraction is achieved during
the optimization process. Figure 19 presents the evolution history of the topologies for the different iteration
steps where the presence of cracks at the supports leads to a distinctively different topologies in comparison
with that of the structure without crack as given in Fig. 15a. In line with the previous examples, the strain
energy in the optimal topology acquires higher values close to the crack tips (Fig. 20).
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Fig. 24 Comparison of strain energy distributions for the simply supported beam with an interior crack: a θ = 90◦, l = 10 mm;
b θ = 60◦, l = 10.25 mm; c θ = 45◦, l = 10.25 mm; d θ = 30◦, l = 10.25 mm; and e θ = 0◦, l = 10 mm

4.4 A simply supported beam with an interior crack

Here, we have investigated the effect of crack direction on the optimal topology of a simply supported beam
through changing the crack angle, θ = 0◦, 30◦, 45◦, 60◦, 90◦, as shown in Fig. 21. The problem setting and
parameters are very similar to the previous example (Sect. 4.3), with the differences in the beam dimensions
(40 × 20 mm2), crack length (a = 14 mm) and locations (l = 10 mm, l = 10.25 mm), and target volume



Topology optimization of cracked structures 1669

constraint (V̄ = 0.5). Figure 22 shows that crack orientation has a notable effect on the optimal topology.
Given that high strain energy values are developed in the vicinity of the crack tips, more solid materials points
are assigned to these locations rather than the interior parts of the beam as also observed in the previous
examples. Hence, the optimal topologies evolve in the direction of preventing the crack propagation. Figure 23
presents the iteration histories of the compliance which levels off after satisfying the target volume constraint.
In addition, Fig. 24 clearly reveals that the strain energies of the optimized topologies are maximized at the
locations of the loading, constrained boundaries, crack tips, and the junction of the three main members (links)
of the geometry.

The current test problemmay be analysed using the optimization approaches based onfinite elementmethod
and classical continuum mechanics; however, this process would require modelling the crack as voids in the
mesh-based discretization of the design domain. For each orientation of the crack, a cumbersome meshing and
update of the discretizationwould be necessity, and therefore, topology optimization processmay be dependent
on the size of the mesh at the crack tips. Hence, the main disadvantage of a mesh-based discretization is that
defining and tracking a crack (defect) may not be as easy as in the case of a particle-based discretization. Since
the PD naturally allows the direct solution through particle discretization and its equations apply everywhere
regardless of discontinuities, the optimization of the current geometry would be relatively easy. Hence, the
results of this complex example reveal the superior modelling, analysis, and optimization capability of PD–TO
approach in comparison with conventional FEM–TO approaches for structures with embedded cracks.

5 Concluding remarks

This study presents an alternative topology optimizationmethodology to find the optimal topology of structures
with andwithout cracks by combining peridynamics with the BESO approach. Unlike themesh-basedmethods
such as FEM, topology optimization of cracked structures can be easily performed utilizing the presented PD–
TO approach. This is because crack paths can be effortlessly defined in PDwithout any additional treatments to
maintain mesh connectivity as in the case of mesh-based methods. Moreover, a sensitivity filtering technique
is also applied to the PD–TO methodology to avoid the checkerboard patterns and increase the stability of
optimization process. Therefore, PD–TO approach can provide sufficient numerical accuracy and stability for
the purpose of topology optimization.

To demonstrate the capability and potential applicability of the proposed PD–TO approach, challenging
2-D and 3-D benchmark test cases are solved. The results illustrated that the crack location, orientation, and
length have substantial effect on the optimized topologies. In addition, it is demonstrated that the optimal
topology can always be obtained independent of simulation parameters such as the utilization of unstructured
particle distribution, particle resolution, horizon size, and filter radius, among others. Furthermore, it is shown
that PD–TO approach can be computationally faster and in turn more efficient than the FEM-based approach.
Finally, the outcomes of this study show that the current PD–TO approach can be an effective tool in finding
optimal topologies which can prevent crack propagation and growth in engineering structures. The future
directions of the current study will focus on modelling optimization problems including large deformations
and nonlinear effects.
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