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Abstract Different constitutive models along with various numerical implementation approaches have been
proposed for shapememory alloys (SMAs) in the last decades. Since 1-Dmodels are only suitable for particular
geometries and loading types, due to the broad variety of SMA components in smart structures, 3-D rate-
dependent modeling of SMAs is a necessity. In the present research, a fully coupled rate-dependent model to
study thermomechanical response of shape memory alloys under multiaxial loadings is presented. The model
is implemented into ABAQUS commercial finite element package by developing a user-defined material
subroutine. Most of the available works are limited to just mechanical loadings and/or simple geometries, but
the current model is able to simulate both shape memory effect and pseudoelasticity. Furthermore, it is capable
of being applied to any geometry undergoing thermal/mechanical cycling under a wide range of strain rates
spanning quasi-static to high-rate conditions. The obtained numerical results by the model are validated by
experimental, analytical, and numerical findings of available three-dimensional case studies in the literature.
The predicted results by the current model are shown to be in good agreement with the findings of previous
investigations.

Keywords Shape memory alloy · Multiaxial loading · Thermomechanical model · Three-dimensional
model · Finite element method · UMAT

1 Introduction

Shape memory alloys (SMAs), which are known as a category of smart materials, have special characteristics
including shape memory effect (SME) and pseudoelasticity (PE) owing to their martensitic phase transforma-
tion. These characteristics have attracted the attention of researchers to employ them in customary as well as
high-tech areas comprising aerospace, automotive, robotics, and biomechanics [1]. Shape memory effect is
the ability to recover deformed shape into a predefined one by heating up to austenite transformation tempera-
ture. On the other hand, pseudoelasticity, which is observed at high temperatures, accompanies large amounts
of recoverable strains up to 8.5% without heating requirements [1]. These particular behaviors make shape
memory alloys attractive candidates in a wide range of applications from areas where other smart materials are
applicable (such as piezoelectric materials to control sound radiation and vibrations [2–5]) to cases in which
hysteresis and the consequent damping [6] or self-healing [7] in these alloys are employed. An interesting
application of SMAs may follow the key idea of metamaterials that is to design a material starting from the
main behavior which one wants to be attained and to propose a particular substructure which is able to accom-
plish this goal [8–10]. From the viewpoint of thermomechanical response, the existence of hysteresis in SMAs
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leads their behaviors to be rate-dependent. There aremodels for hysteretic phenomena in both rate-independent
and rate-dependent behaviors of typical materials [11–13].

Various configurations of SMAs are used in engineering applications. Since SMA wires, springs, foils,
and strips are commonly subjected to uniaxial loadings under small amounts of deformation, they are mostly
simulated by one-dimensional models. However, either applying large amounts of deformation on the above-
mentioned configurations or employing complex geometries such as endodontic files reveals the necessity of
employing multiaxial models. To investigate plates and shells made of SMAs or other materials undergoing
phase transitions, Eremeyev and Pietraszkiewicz [14] found 2-D shell relations from the variational principle of
the stationary total potential energy. Based on an extension of this approach [15], two-dimensional thermome-
chanics of shells undergoing diffusionless, displacive phase transitions of martensitic type for shell materials
was developed [16]. From the integral forms of balance laws of linear momentum, angular momentum, and
energy as well as the entropy inequality, Eremeyev and Pietraszkiewicz [17] obtained the local static balance
equations along the curvilinear phase interface. They discussed general forms of the constitutive equations
for thermoelastic and thermoviscoelastic shells. They also derived the thermodynamic condition allowing one
to determine the interface position on the deformed shell midsurface. These 2-D models can capture some
peculiarities of phase transitions like the ones in a full 2-D analysis; however, they are approximated models
and are shown to be valid for certain assumptions [18].

Early 3-Dmodels of SMAswere presented for quasi-static circumstances which consider the applied strain
rate to be low enough so that the temperature variations become negligible. Boyd and Lagoudas [19] presented
a model for multiaxial loading of SMAs by employing a four-lined phase diagram. Lim and McDowell [20]
found that proposed SMAmodels for proportional loadings are not necessarily appropriate to be used for non-
proportional ones. Subsequently, Peng et al. [21] presented the concept of generalized effective stress which
was inspired from von Mises equivalent stress. However, coefficients of the proposed generalized effective
stress werematerial-dependent. Bouvet et al. [22] proposed amodel for proportional as well as nonproportional
loadings of pseudoelastic SMAs by introducing the phenomenon of phase transformation surfaces. Simulating
the response of an SMA component exposed to a multiaxial loading can be conducted by considering differ-
ent variants of martensite, which leads to considerable time-consuming and numerically complicated models
[23,24]. Kadkhodaei et al. [25] proposed a model for multiaxial nonproportional loadings under quasi-static
circumstances by applying the so-called microplane theory to SMAs. Their approach has been shown to be
simpler for numerical implementations and to be extensible for addressing various details in the responses of
shape memory alloys [26–29]. Three-dimensional models are also beneficial for designing/studying function-
ally graded shape memory alloys. Xue et al. [30] investigated the amounts of stress in a functionally graded
SMA cylinder subjected to inner and outer pressures as well as thermal gradient using finite element analysis.

Since cyclic loading of SMAs is accompanied by energy dissipation and temperature variations, the applied
stress–strain rate greatly influences the stress–strain response of an SMA component.Many attempts have been
made to propose a thermomechanical model for an SMA wire subjected to cyclic loadings [31–34]. Morin
et al. [34] presented a rate-dependent model to determine the stabilized dissipated energy in stress–strain
response of an SMA wire. Alipour et al. [35] implemented the uniaxial model of Kadkhodaei et al. [33]
into ABAQUS finite element software to enable a fully coupled thermomechanical model to be utilized in
finite element simulation of smart structures containing SMA wires. Toward generalizing 1-D models to 3-D
ones, Boyd and Lagoudas [19] presented a multiaxial rate-dependent model by proposing a correlated Gibbs
free energy. Morin et al. [36] simulated the mechanical response of SMA cylinders surrounded by different
environments of air as well as water under various strain rates by a three-dimensional thermomechanical
model. However, capabilities of their model were investigated just for uniaxial tensile loadings. Mirzaeifar
et al. [37] employed the Gibbs free energy as the thermodynamic potential, proposed a 3-D rate-dependent
model, and studied themechanical response of SMAwires and bars subjected to tensile loadings under different
convection conditions. Although their model was presented in three dimensions, their studies were conducted
by a reduced one-dimensional problem using finite difference method. In another investigation, Mirzaeifar
et al. [38] reduced their three-dimensional model to one-dimensional pure torsion and studied mechanical
response of circular bars under various ambient conditions. Such numerical implementations mostly confine
the formulation to a specific geometry or cycling type, i.e., mechanical or thermal loading. Andani et al.
[39] investigated the thermomechanical response of pseudoelastic bars subjected to tension–torsion loading.
Although they employed a three-dimensional rate-dependent model, the formulation was simplified for 2-D
rate-dependent loadings. They also presented a correlation for free heat convection of an SMAbar and validated
their approach by empirical findings [39]. Andani et al. [40] further presented general equivalent stress and
strain to investigate the pseudoelastic response of SMAs under nonproportional tension–torsion loadings. As
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stated above, although most of the available models have been derived for multiaxial loadings, they have
been either solved intrinsically like one-dimensional cases or proposed particularly for the pseudoelasticity
response. Moreover, their numerical implementation method has been limited to a specified geometry. On the
other hand, investigations in the literature are mostly narrowed to mechanical loadings, and less attention has
been paid to thermal cycling of SMAs.

In this paper, a three-dimensional rate-dependent model for shape memory alloys is presented in a contin-
uum framework by extending Kadkhodaei’s formulation [33] for 3-D loadings. Furthermore, a user-defined
material subroutine (UMAT) is provided by which the formulation is implemented into ABAQUS commercial
finite element package. It is shown that the model is able to simulate shape memory effect as well as pseudoe-
lasticity under different strain rates spanning quasi-static to high-rate loadings. Although most of the available
works are limited to specified geometries and/or loading types, the presented approach in this work is capable
ofmodeling SMAcomponents with any geometry and boundary conditions under bothmechanical and thermal
loadings. The obtained numerical results for different geometries and loading types including tensile loading
of SMA wires/bars, uniaxial loading of SMA thin-walled tubes, multiaxial loading of thin-walled tubes, and
axial loading of SMA helical springs are validated against available experimental, analytical, and numerical
findings reported in former studies.

2 Modeling

Total strain tensor of SMAs (ε) can be decomposed into elastic (εe) and transformation (εtr) parts:

ε = εe + εtr (1)

where the elastic tensor is defined by:
εe = C−1:σ = S:σ (2)

in which C is the stiffness tensor, S is the compliance tensor, and σ is the stress tensor. According to Reuss
scheme, the Young’s modulus is defined by Eq. (3):

1

E
= ξ

EM
+ 1 − ξ

EA
(3)

where EM, EA, and ξ are the Young’s modulus of pure martensite, the Young’s modulus of pure austenite,
and martensite volume fraction, respectively. Martensite volume fraction, which comprises stress- (ξs) and
temperature-induced (ξT) portions, is calculated for different regions of a stress–temperature phase diagram
by kinetic evolution functions [41,42]:

ξ = ξT + ξs (4)

Derivation of the Young’s modulus with respect to martensite volume fraction yields Eq. (5):

dE

dξ
= E2(ξ)

(
1

EA
− 1

EM

)
(5)

Thus, one may consider the following relations:

C = EC′ (6)

S = S′

E
(7)

Derivatives of the stiffness and compliance tensors with respect to time are expressed by the following equa-
tions:

Ċ = dE

dξ
C′ξ̇ (8)

Ṡ =
(

1

EM
− 1

EA

)
S′ξ̇ (9)

Ċ = −C:Ṡ:C (10)
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On the other hand, the transformation strain tensor in Eq. (1) can be expressed by:

εtr = ε∗ξs (11)

In this correlation, ε∗ is the maximum recoverable strain tensor in which the constant volume limitation upon
martensitic transformation is satisfied. Maximum recoverable strain tensor is defined for forward as well as
backward transformation by:

ε∗ = 3

2

σ′

σ̄
ε∗ (12)

where ε∗, σ′, and σ̄ are the maximum recoverable strain in simple tensile test, the deviatoric stress tensor, and
von Mises effective stress, respectively. The deviatoric stress tensor and effective stress are calculated by the
equations below:

σ′ = σ − 1

3
Tr(σ)I (13)

σ̄ =
√
3
2
σ′:σ′ (14)

Since the evolution functions ofmartensite volume fraction are defined for axial loadings, themartensite volume
fraction is calculated in multiaxial loadings based on the value of effective stress. In order to consider rate
dependency in SMAmodels, appropriate energy functions are needed to be applied along with the constitutive
equations. In this work, the Helmholtz free energy is considered as:

ψ = εe:C:εe
2ρ

− C:α:εe(T − T0)

ρ
+ C

(
(T − T0) − T ln

(
T

T0

))
+ λ

T ∗ (T − T ∗)ξ (15)

in which ρ, α, T0, T ∗, λ, and C are mass density, thermal expansion tensor, reference temperature, phase
equilibrium temperature, latent heat of martensitic transformation, and specific heat, respectively. According
to Eq. (15), specific entropy (η) and specific internal energy (u) are defined by the following relations:

η = −∂ψ

∂T
= C:α:εe

ρ
+ C ln

(
T

T0

)
− λ

T ∗ ξ (16)

u = ψ + Tη = εe:C:εe
2ρ

+ C:α:εeT0
ρ

+ C(T − T0) − λξ (17)

Ignoring the second term in Eq. (17) based on small contribution of the thermal expansion [35], u̇ is expressed
as

u̇ = εe:C:ε̇e
ρ

+ εe:Ċ:εe
2ρ

+ CṪ − λξ̇ (18)

On the other hand, the first law of thermodynamics is:

ρu̇ + ∇ · q − σ:ε̇ = 0 (19)

Substituting the values of ε̇e and εe into Eq. (18), u̇ and the first law of thermodynamics are determined by
Eqs. (20) and (21):

u̇ = S:σ:C:(ε̇ − ε̇∗ξs − ε∗ξ̇s)
ρ

− S:σ:C:Ṡ:C:S:σ
2ρ

+ CṪ − λξ̇ (20)

[
−

(
1

EM
− 1

EA

)
σ:S′:σ
2

− ρλ

]
ξ̇ + σ: (−ε̇∗ξs − ε∗ξ̇s

) + ρCṪ + ∇ · q = 0 (21)

The derivatives of maximum recoverable strain tensor, stress-induced, and temperature-induced martensite
volume fraction with respect to time in Eq. (21) are calculated by Eqs. (22) and (23):

ε̇∗ = dε∗

dσ

∂σ

∂ε
ε̇ (22)



Fully coupled thermomechanical modeling 1687

ξ̇s,t = ∂ξs,t

∂σ̄

dσ̄

dσ

∂σ

∂ε
ε̇ + ∂ξs,t

∂T
Ṫ (23)

By neglecting the associated term with elastic deformations in Helmholtz free energy (Eq. (15)) due to its
small contribution [35], the first law of thermodynamics is obtained as:

−ρλξ̇ − σ:ε̇ + ρCṪ + ∇ · q = 0 (24)

Simultaneous solution of the first law of thermodynamics and the constitutive equation (Eq. 1) gives the
instantaneous amounts of temperature, stress, and strain variations of an SMA under any thermomechanical
loading.

3 Numerical implementation

ABAQUS finite element commercial package was employed for numerical implementation of the presented
model. The material behavior was defined by developing a user-defined material subroutine (UMAT). The
first law of thermodynamics is contributed in the UMAT to a variable, named RPL, which corresponds to the
volumetric heat generation per unit time [43]. Therefore, according to Eq. (24), the RPL is stated for SMAs
by:

RPL = ρλξ̇ + σ:ε̇ (25)

Table 1details the incremental computation algorithmof the developedUMAT. In this table,Ms,Mf , As, Af ,CA,
CM, σ cr

s , σ cr
f , σAM

s , σAM
f , σMA

s , and σMA
f denote the start and finish temperatures of martensite transformation,

the start and finish temperatures of austenite transformation, the slope of backward transformation strip, the
slope of forward transformation strip, the start and finish stresses of detwinning, the start and finish stresses
of forward transformation, and the start and finish stresses of backward transformation, respectively. Figure 1
illustrates schematic representation of a phase diagram in which the above-mentioned material parameters are
depicted.

Since shape memory alloys have rather complex thermomechanical behaviors, solution of their nonlinear
constitutive equationsmay accompany convergence difficulties. Oneway to optimize convergence in numerical
implementation of the developed approach is to use a stress-based algorithm since the evolution rules of the
martensite volume fraction are direct functions of stress. Moreover, the techniques of model order reduction
may be beneficial in this regard.

4 Results and discussions

In this section, numerical and empirical findings in the literature under quasi-static as well as rate-dependent
circumstances are employed to verify the presented model in different loading types. As the first case study,
the obtained finite element results by the current model for quasi-static loadings are validated by 1-D FE
results of Alipour et al. [35], who implemented the uniaxial model of SMAwires into ABAQUS finite element
software. It is worth mentioning that 3-D geometry of a wire is utilized in the present results. Figure 2 shows
this comparison for the pseudoelastic response of an SMA wire subjected to tensile loading using the material
parameters of Table 2, and Fig. 3 compares the results for quasiplastic response where detwinning occurs. In
Figs. 2 and 3, the results are reported at the temperatures of 55 ◦C and 25 ◦C, respectively. In Fig. 4, a constant
stress of 140MPa is applied and the wire is then subjected to thermal cycling between the temperatures of 5 ◦C
and 60 ◦C. The illustrated curves provide the SMA response within the so-called dual transformation region
[42]. Figures 2, 3, 4 show that the presented 3-D model can successfully investigate 1-D quasi-static responses
of an SMA.

For the next verification step, the given material parameters in Table 3 are utilized to evaluate the ability
of the presented formulation in considering the influences of strain rate on typical 1-D response of an SMA
wire. Figures 5 and 6 illustrate the temperature–strain and stress–strain responses of an NiTi wire at two
strain rates of 0.0005 s−1, and 0.01 s−1, respectively. Maximum errors of 0.3% and 0.1% are seen in the
predicted temperatures at the strain rates of 0.01 s−1 and 0.0005 s−1, respectively, compared to the results
obtained by Kadkhodaei et al [33]. As expected, the developed model predicts more pronounced variations in
the temperature of an SMA specimen at higher strain rates.
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Table 1 UMAT algorithm for three-dimensional loading of SMAs

Input: ‚ ‚ ‚ ‚

Output: + ‚ +

+

‚ ‚ + ‚
+

‚

Loading

1.Calculate Critical Stresses: = + ( + − )‚

= + ( − ) (for > )
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+
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-
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4. > After Transformation

-
Unloading
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-

4. < After Transformation
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Fig. 1 Stress–temperature phase diagram of an SMA
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Fig. 2 Comparison between the results of Alipour et al. [35] and the current model for an SMAwire subjected to tension at 55 ◦C:
a variation in martensite volume fraction and b stress–strain response

Table 2 Utilized material parameters for Figs. 2, 3, 4 [35]

Mf (◦C) Ms (◦C) As (◦C) Af (◦C) CA (MPa/◦C) CM (MPa/◦C)

9 18.4 34.5 49 13.8 8

σ cr
f (MPa) σ cr

s (MPa) EA (GPa) EM (GPa) ε∗

170 100 67 26.3 0.067

Mechanical response of an SMA can be affected by either geometrical changes in its configuration or
application of large amounts of deformation. Since these effects are mostly neglected in numerical models, it
is beneficial to employ a 3-D model using a finite element software even for simple geometries such as bars.
Hence, numerical and experimental results of Mirzaeifar et al. [37] are utilized to study the stress–temperature
and stress–strain responses of an SMA bar with 12.7 mm diameter subjected to tensile loading as shown in
Fig. 7. The applied strain rate, initial temperature, and ambient temperature are 0.001 s−1, 304.6 K, and 301 K,
respectively. Figure 7 illustrates that the FE simulation results by presented 3-D model are in good agreements
with empirical as well as analytical results of Mirzaeifar et al. [37]. Stress distribution in the cross section of
thin wires is usually considered to be uniform; however, in the case of SMA bars, according to temperature
distribution in the cross section, this assumption may be influenced by size effect and the ambient/loading
conditions [37]. Implementation of the current model into ABAQUS provides the ability of simulating SMA
bars with any cross section considering the above-mentioned effects. On the other hand, stress concentration
induced by grippers for an SMA bar subjected to tension is another issue which can lead stress distribution of
an SMA bar to be nonuniform, and such details are able to be taken into account by the current model.

To verify the model in torsion, two common geometries of bars and thin-walled tubes can be employed in
the finite element simulations. SMA thin-walled tubes demonstrate uniform stress distribution under torsion
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Fig. 3 Comparison between the results of Alipour et al. [35] and the current model for an SMAwire subjected to tension at 25 ◦C:
a variation in stress-induced martensite volume fraction and b stress–strain response
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Fig. 4 Comparison between the predicted strain–temperature response by the current model and the numerical results of Alipour
et al. [35] for an SMA wire subjected to thermal cycling in the dual transformation region

Table 3 Utilized material parameters for rate-dependent simulation of an SMA wire (Figs. 5 and 6) [33]

Mf (◦C) Ms (◦C) As (◦C) Af (◦C) CA (MPa/◦C) CM(MPa/◦C) ε∗

42 55 52 65 8 12 0.067

EA(GPa) EM(GPa) σ cr
f (MPa) σ cr

s (MPa) ρ (kg/m3) C (J/kg.K) λ (J/kg)

45 20.3 172 138 6500 600 5000

at their cross section and also a high potential in convective heat transfer in comparison with SMA bars.
Therefore, they are preferred over solid bars for studying torsion. Predictions of the proposed model for
variations in temperature and stress with respect to strain in an SMA tube are compared with Mirzaeifar’s
findings [38] in Fig. 8. Temperature and equivalent strain rate are 287 K and 0.0005 s−1, respectively. For
details of the employed material parameters to obtain Fig. 8, readers may refer to Mirzaeifar’s papers [37,38].
To fulfill the model verification in the case study of torsion, the findings of Andani et al. [39] under the shear
strain rate of 0.004 s−1 are also utilized as shown in Fig. 9. In addition to torsional loadings of SMA tubes,
due to the importance of thin-walled tubes in multiaxial loadings, the tensile loading of this configuration
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Fig. 5 a Temperature variation and b stress–strain response simulated by Kadkhodaei’s model [33] and current formulation for
an NiTi wire subjected to tensile loading under the strain rate of 0.0005 s−1
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Fig. 6 a Temperature variation and b stress–strain response simulated by Kadkhodaei’s model [33] and current formulation for
an NiTi wire subjected to tensile loading under the strain rate of 0.01 s−1
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Fig. 7 Comparison of predicted results by the current model with experimental and numerical data of Mirzaeifar et al. [37] for
tensile loading of an SMA bar: a stress–temperature response and b stress–strain response
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Fig. 8 Comparison of the predicted results by the current model with available numerical and experimental findings for a thin-
walled SMA tube subjected to torsion: a temperature-equivalent strain response and b equivalent stress-equivalent strain response
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Fig. 9 Comparison of predicted results by the current model with numerical and experimental findings of Andani et al. [39] for
a thin-walled SMA tube subjected to torsion: a temperature changes and b shear stress–shear strain response

is also considered as a valuable case study for researchers. Therefore, further investigation is performed on
tensile loading of SMA tubes under 0.01 s−1 strain rate as illustrated in Fig. 10. Figures 8 9, 10 indicate
that the present model is able to predict thermomechanical responses of SMA tubes as well. However, as
shown in Figs. 8a, 9a, and 10a, there are differences between the theoretically predicted temperatures and the
experimentally measured ones. Two main reasons may cause these differences. First, heat transfer between
the SMA component and its grippers exists in practice but is not considered in the numerical simulations
conducted in either this research or the reference works. Second, phase transformation does not actually
take place homogenously, and the local phenomena of nucleation and propagation of a phase front cause
instantaneous temperature of an SMA part to be different at different locations. Such details are not taken
into account in the reported theoretical results. Moreover, depending on the location where the experimental
temperatures are measured, the observed amount of error may differ. In Figs. 8b and 9b, where shear stress–
strain responses are illustrated, some discrepancies between the numerical and the empirical results may be
mainly due to the so-called phenomenon of tension–torsion coupling [44–46] under torsion. Briefly describing,
when an SMA specimen is under torsion, axial deformationsmay occur. Therefore, similar to the response of an
anisotropic material, axial stress and strain may be induced too. The extent of such axial deformations depends
on several material and geometric parameters [45], which are not reported in the reference experiments since
such details have not been the subject of those works. Since tension–torsion coupling is ignored in the reported
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Fig. 10 Numerical and experimental predictions for a temperature variations and b stress–strain response for an SMA tube
subjected to tensile loading
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Fig. 11 Proportional strain path used for multiaxial simulation [40]

theoretical responses, the observed errors may arise. In 8.b, 9.b, and 10.b, some residual strain is observed
at the end of unloading in the empirical results while the theories predict complete recovery of the induced
deformations. Such unrecoverable strains can be minimized (or even diminished) in practice by training the
experimental samples.

The next studied case is tension–torsion of an SMA tube in accordance with the work of Andani and
Elahinia [40]. The proportional loading/unloading cycle illustrated in Fig. 11 is considered in this case. Shown
in Fig. 12 is a comparison between obtained numerical results by the present model and experimental as well as
numerical findings of Andani and Elahinia [40] for shear and normal strain rates of 0.0024 s−1, and 0.003 s−1,
respectively. The aforementioned tension–torsion coupling is more pronounced in this combined loading and
may cause the observed differences between the experimental and theoretical results. The applied von Mises
equivalent stress and strain under tension–torsion loading paths have been recommended to be replaced by
generalized equivalent stress and strain [44–46], and this promotion can be considered in future works. It
is worth noting that conducting a tension–torsion test on an SMA tube has a crucial challenge of applying
adequate gripping force so that the axial and torsional degrees of freedom remain independent of each other.

Springs are widely used in common applications of SMAs and, in the case of large applied displacements,
experience not only shear stresses but also noticeable normal ones [47]. Simulating the response of an SMA
spring under thermal cycling by 1-D numerical models is not as straightforward as mechanical loadings. On the
other hand, 2-D/3-D rate-dependent models related to mechanical loadings of SMA springs have been rarely
presented in the literature. Thus, employing 3-D fully coupled models implemented by finite element method
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Fig. 12 Comparison between results predicted by the current model and numerical as well as experimental data of Andani and
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Fig. 13 Comparison between the predicted force–displacement response of a helical spring by the presented model and experi-
mental findings [48]

Table 4 Employed material parameters for finite element simulation of an SMA spring [48]

σAM
s (MPa) σAM

f (MPa) σMA
s (MPa) σMA

f (MPa) E (GPa) ε∗

297 772 306 78 46 0.07

plays an important role in studying SMA springs particularly those which are thermally actuated. To study
the ability of the proposed model in SMA springs, experimental results of Savi et al. [48] are compared with
predicted numerical results by the proposed approach as shown in Fig. 13. The force–displacement response
of a spring with the geometrical characteristics of 1.7 mm wire diameter, five active coils, and 13.8 mm spring
diameter was investigated at two final displacements of 80 mm and 120 mm by employing material parameters
of Table 4. As Fig. 13 shows, maximum errors of 8% and 11% are seen in the calculated forces at the final
displacements of 80 mm and 120 mm, respectively.

Since SMA rate-dependent models simultaneously solve the constitutive and thermal equations, heat trans-
fer circumstances strongly influence the temperature variations as well as stress–strain response. Accordingly,
different convective heat transfer coefficients comprising infinite h, which is associated with quasi-static con-



Fully coupled thermomechanical modeling 1695

65

70

75

80

85

90

( )

0

100

200

300

400

500

600

0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1

( )

(a) (b)
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of SMA wires at the ambient temperature of 70 ◦C under 0.01 s−1 strain rate

dition, temperature-dependent h [49], h = 10 (W/m2K), and h = 0 (associated to adiabatic condition) are
considered to study the effect of heat transfer coefficient on thermomechanical response of an SMA wire.
Figure 14 illustrates the temperature–strain and stress–strain responses using the given material parameters
in Table 3. As expected, adiabatic conditions suppress heat transfer with ambient so that the temperature at
the end of loading reaches the maximum value of 87 ◦C. On the other hand, for temperature-dependent con-
vective heat transfer coefficient, temperature at the end of cycling is lower than the ambient temperature. As
shown in Fig. 14, heat transfer conditions can strongly influence the trend of temperature–stress variations
so an appropriate h value for a problem must be chosen depending on the geometry/material parameters and
loading/ambient conditions.

As the last case study, capabilities of the model in cyclic loadings of SMA wires under 0.01 s−1 strain rate
are evaluated in Fig. 15 by utilizing the material parameters of Table 3. As this figure depicts, the temperature–
strain and stress–strain responses converge to stabilized curves after a few transient cycles. Simulating the
cyclic behavior of an SMA component under a multiaxial loading is useful for the calculation of stabilized
dissipated energy and, in turn, prediction of fatigue lifetime. On the other hand, thermal cycling on an SMA
component results in functional fatigue, which is also able to be studied by the proposed model.

As can be seen in Figs. 6a, 8a, 9a, 10a, 14a, and 15a, SMA components may experience considerable
temperature variations upon loading/unloading depending on loading characteristics, material, geometry, and
environment parameters. This temperature variation, which is due to the elastocaloric effect, has been employed
in the last years to propose a solid-state refrigerator [50]. With the use of 3-D rate-dependent models, such as
the one presented here, elastocaloric effect in SMA refrigerators can be evaluated and optimized to increase
efficiency of the system.

5 Conclusions

In this paper, a three-dimensional, fully coupled, rate-dependentmodel for shapememory alloyswas presented.
The model was numerically implemented by ABAQUS finite element software through providing a user-
defined material subroutine (UMAT). The obtained numerical results by the current model were shown to be in
reasonable agreementwith available theoretical and empirical data for different cases including tension, torsion,
and proportional tension–torsion of prismatic parts as well as axial loading of SMA helical springs. It was
illustrated that the presented model is able to simulate the response of an SMA component in quasi-static and
rate-dependent circumstances, under thermal as well as 3-Dmechanical loadings, not only for pseudoelasticity
but also for shape memory effect. Owing to the numerical implementation of the model by ABAQUS, different
geometries and boundary conditions, thermomechanical loadings, and convective heat transfer coefficients
are able to be investigated by the current approach. The developed UMAT is also able to be employed in
finite element analysis of smart structures where an SMA element is applied as an actuator, a damper, or an
elastocaloric cooler/heat pump. Moreover, the presented approach provides the capability of studying cyclic
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Fig. 15 a Temperature–strain response, b stress–strain response, c temperature–time response, and d stress–temperature response
for cyclic mechanical loading of an SMA wire

thermomechanical loadings which makes it beneficial to analyze structural/functional fatigue behavior and to
design, evaluate, or optimize SMA components under fatigue loadings. To promote potentials of the presented
model, it may be incorporated by nonlocal constitutive equations to capture nucleation and propagation of
phase fronts in an SMA. Additionally, generalized equivalent stress and strain should be replaced with the
utilized equivalent von Mises ones in this work to provide the ability to consider tension–torsion coupling and
the related phenomena especially under nonproportional loadings.
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