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Abstract This study focuses on dynamic buckling of functionally graded material (FGM) cylindrical shells
under thermal shock. The transient non-uniform temperature fields in the FGM shells subjected to dynamic
thermal loading are determined using an analytic method. Based on the Hamiltonian principle, the dynamic
thermal buckling problem of the FGM cylindrical shells is transformed into the symplectic space for solving.
At the same time, the buckling thermal loads and buckling modes corresponding to generalized eigenvalues
and eigen solutions of canonical equations can be calculated via the bifurcation conditions. The dynamic
thermal buckling characteristics of the FGM cylindrical shells as well as the solving processes are given by the
symplectic method. A complete dynamic buckling modes space is presented for the FGM cylindrical shells.
The effects of the material gradient, parameters of structural geometry and thermal loadings on the dynamic
buckling temperature are discussed.

Keywords Functionally graded materials · Cylindrical shells · Dynamic buckling · Thermal shock ·
Symplectic method

List of symbols

L Length (m)
R Radius (m)
h Thickness (m)
P Material properties
E Young‘s modulus (GPa)
u, v, w Displacement components (m)
x, θ, z Coordinates
ρ Mass density (kg/m3)
α Thermal expansion coefficient (1/K)
C Thermal capacity [J/(kg K)]
K Thermal conductivity (W/mK)
V Volume fractions
k Power law index
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μ Poisson‘s ratio
εxx , εxθ , εθθ Strains
σxx,σθθ Normal stresses (MPa)
σxθ Shear stress (MPa)
κxx , κθθ Curvature
κxθ Torsional curvature
T Temperature (K)
t Time (s)
MT Bending moment (N m)
�T Temperature rise (K)
T0 Initial temperature (K)
Nxx , Nθθ , Nxθ Membrane forces
Mxx , Mxθ , Mθθ Membrane moments
U Strain energy
Ū Density of strain energy
L̄ Lagrange density function
H Hamiltonian function
ϕ State vector
λn Eigenvalue
ϕn Eigenvector
c1, c2, c3, c4 Constants
λ j Eigen solutions
hr Heat exchange coefficient
�Tcr Critical temperatures (K)
�t Increment of time (s)
m Axial wave
n Circumferential wave
λ Radius–thickness ratio
a Parameter of the load
NT Thermal membrane force (N)

1 Introduction

Functionally graded materials are new composite materials whose material properties vary continuously and
smoothly in a specific direction [1,2]. FGM structures can effectively reduce thermal stresses so that they
are applied in extreme thermal environments. However, the FGM structures are usually subjected to dynamic
thermal loadings, the temperature variations result in transient thermal stresses, even thermal buckling [1–
5]. Up to now, many works on the thermal stability of FGM structures have been published, but most of
them were only limited to the static problems. For example, Javaheri and Eslami [3] examined the buckling
characteristics of rectangular FGM plates subjected to different thermal loadings and the closed form solutions
were provided. Ma andWang [4,5] carried out the nonlinear bending and post-buckling studies for the circular
FGM plates subjected to the mechanical and thermal loadings according to the first- and third-order plate
theories, respectively. The post-buckling behaviors of piezoelectric FGM plates under complicated loadings
were investigated by Liew et al. [6]. In addition, Li et al. [7,8] researched the buckling and post-buckling
of functionally graded beams and imperfect FGM plates using the shooting method. It was found that the
deformations are still bifurcation buckling for boundary clamped FGM beams and perfect plates, even if they
were subjected to non-uniform heating loads, whereas the imperfect FGM plates do not display bifurcation
buckling.

Since FGM structures usually serve in high-temperature-gradient environments, the dynamic thermal buck-
ling is very likely to occur. However, the studies on dynamic thermal buckling of functionally graded structures
are much fewer than those on static buckling. Mirzavand et al. [9] conducted an investigation on the dynamic
post-buckling characteristics of the piezoelectric FGM cylindrical shells under thermal load on the basis of
Budiansky’s stability criterion. Mirzavand et al. [10] also dealt with the research on dynamic post-buckling
and buckling temperatures of the FGM cylindrical shells based on the third-order shell theory. Additionally,
the two-dimensional solutions of FGM partial annular disks subjected to radial thermal shock were presented
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by Mehrian and Naei [11] based on the Lord–Shulman generalized thermoelastic theory with two relaxation
times and the hybrid Fourier–Laplace transformation. Shariyat [12] analyzed the nonlinear dynamic buckling
characteristics of the preloaded functionally graded cylindrical shells suffered from transient thermal. He also
examined the dynamic buckling behaviors of the FGM plates subjected to thermal, electric and mechanical
loads [13]. It should be noted that geometrical imperfections of structures were considered in the above two
investigations. Besides these, many investigations on dynamic buckling are limited to functionally graded
structures under mechanical loads. Such as Huang and Han [14] researched the buckling of the functionally
graded cylindrical shells with imperfection under axial compressed load according to Donnell’s shell theory.
Bich et al. [15] examined nonlinear buckling of the axial stiffened FGM cylindrical shells under different types
of loads, and the static buckling loads and post-buckling paths were obtained. The nonlinear dynamic buckling
of the FGM stiff and soft cylindrical shells was investigated by Gao et al. [16] using Galerkin method and
considering damping effect.

All of the above works have used traditional elasticity approaches, for example, finite element method,
difference method, Galerkin method, etc. Although the obtained results agree well with the static buckling
problems using these methods, it is difficult to solve complex partial differential equations for the dynamic
buckling problems. This is due to the complexity of the dynamic behaviors and variableness of space and
time. In contrast, based on the symplecticity method in the Hamilton system [17], the equations of structural
stability problems can be easily solved by separation of variables and symplectic eigenfunction expansion.
This is because solving partial differential equations can be avoided. Xu et al. [18,19] studied the buckling
and post-buckling characteristics of homogeneous cylindrical shells using the symplecticity method. Sun et al.
[20,21] examined the static buckling of FGM cylindrical shells subjected to combined thermal and compressed
loads using the symplecticity method. In the light of plenty of researches, of which we can easily get that this
method is very efficient and accurate in solving the problem of structural stability.

As far as the authors know, few research results have been published on the dynamic thermal buckling of
functionally graded structures using the symplecticity method. Therefore, the present paper examined dynamic
thermal buckling behaviors of the functionally graded material cylindrical shells under thermal shock based
on this method. In symplectic space, a canonical equation will be established in the Hamilton system, and
the buckling mode equations and bifurcation conditions will be solved by analytical methods. The buckling
thermal loads and buckling modes will be obtained by solving mode equations and bifurcation conditions.
Finally, the dynamic buckling temperatures of the FGM cylindrical shells are obtained via inverse solutions
of the buckling thermal membrane force.

2 Mathematical formulas of the problem

A coordinate system (x, θ, z) is adopted where the x-axis is in the generatrix direction of the mid-surface
of undeformed shell, metered from the left end. θ denotes the circumferential direction, and z denotes the
thickness direction metered from the mid-surface. Thermal shock loads are imposed on the inner surface of
the FGM shells and the outer surface exchanges heat with the ambient environment. No initial displacements
or velocities exist at any point. Figure 1 shows the sketch of the shell.

Fig. 1 The sketch of the thin FGM cylindrical shell subjected to thermal shock
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2.1 Material properties of FGM

Functionally graded materials are usually made of the metal and ceramic. Effective material properties are
often described on the basis of the linear rule of mixtures, which will be convenient to calculate transient
non-uniform temperature field and give analytical expressions of stiffness coefficients. Based on the linear rule
of mixtures, the material properties P(z) (including Young’s modulus E , mass density ρ, thermal expansion
coefficient α, thermal capacity C and thermal conductivity κ) of the FGM cylindrical shell are [22]:

P(z) = (Pe − Pi)Ve(z) + Pi (1)

in which Pi and Pe indicate the material properties of constituent materials, respectively. Volume fractions
Vi (z) and Ve (z) are assumed to be a power function in terms of the thickness coordinate z [22], expressed as

Ve(z) =
(
h + 2z

2h

)k

, Ve(z) = 1 − Vi (2)

in which power law index k is employed to measure gradient characteristics of FGM. Since Poisson’s ratio μ
has a minor variation for different materials, so μ(z) is usually chosen as a constant μ [22].

2.2 Fundamental equations

The thin FGM cylindrical shell subjected to uniform dynamic thermal loads on its inner surface is considered.
Displacement components u, v and w in the mid-surface are relevant to the x , θ and z directions, respectively.
According to the classical shell theory, the normal strains ε

(z)
xx , ε

(z)
θθ and shear strain ε

(z)
xθ at any point can be

given by

ε(z)
xx = εxx + zκxx , ε

(z)
θθ = εθθ + zκθθ , ε

(z)
xθ = εxθ + 2zκxθ (3a)

in which the strains εxx , εθθ and εxθ , curvatures κxx and κθθ , torsional curvature κxθ on the middle surface are

εxx = ∂u

∂x
, εθθ = 1

R

∂v

∂θ
− w

R
, εxθ = 1

R

∂u

∂θ
+ ∂v

∂x
, κxx = −∂2w

∂x2
, κθθ = − 1

R2

∂2w

∂θ2
,

κxθ = − 1

R

∂2w

∂x∂θ
(3b)

By taking into consideration of the linear thermoelastic deformation of the structure [23], the constitutive
equations of the shell under thermal shock can be written based on the linear thermoelastic theory as

{
σxx
σθθ

}
= E

1 − μ2

[
1 μ
μ 1

]{
ε
(z)
xx

ε
(z)
θθ

}
− E

1 − μ
αT (4a,b)

σxθ = E

2(1 + μ)
ε
(z)
xθ (4c)

in which T = T (z, t) is the rise in temperature compared with initial temperature T0. Substituting Eqs. (3)
into Eqs. (4), the constitutive equations respecting middle surface strains are expressed as

{
σxx
σθθ

}
= K

[
1 μ
μ 1

]{
εxx
εθθ

}
+ Kz

[
1 μ
μ 1

]{
κxx
κθθ

}
− (1 + μ)KαT (5a,b)

σxθ = 1 − μ

2
K (εxθ + 2zκxθ ) (5c)
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where K = E
1−μ2 . Themembrane forces andmoments can be obtained by integrating above stresses, described

as

{Nxx , Nθθ , Nxθ , Mxx , Mθθ , Mxθ }T =
h/2∫

−h/2

{σxx , σθθ , σxθ , zσxx , zσθθ , zσxθ }T dz (6)

Substituting Eqs. (5) into (6), the membrane forces and moments can be obtained as

{
Nxx
Nθθ

}
= A

[
1 μ
μ 1

]{
εxx
εθθ

}
+ B

[
1 μ
μ 1

]{
κxx
κθθ

}
− NT (7a,b)

Nxθ = 1 − μ

2
(Aεxθ + 2Bκxθ ) (7c)

{
Mxx
Mθθ

}
= B

[
1 μ
μ 1

]{
εxx
εθθ

}
+ C

[
1 μ
μ 1

]{
κxx
κθθ

}
− MT (8a,b)

Mxθ = 1 − μ

2
(Bεxθ + 2Cκxθ ) (8c)

where stiffness coefficients {A, B,C}T =
h/2∫

−h/2

E
1−μ2

{
1, z, z2

}T
dz are adopted. NT, MT are given by

{NT, MT}T =
h/2∫

−h/2

E

1 − μ
{1, z}T αT dz (9)

2.3 Canonical equations

The strain energy of the FGM cylindrical shell is

U = 1

2

∫
v

[
σxxε

(z)
xx +σθθε

(z)
θθ +σxθ ε

(z)
xθ

]
dV

= 1

2

2π∫
0

R∫
0

[
A(εxx + εθθ )

2 − 2(1 − μ)Aεxxεθθ + C(κxx + κθθ )
2 − 2(1 − μ)Cκxxκθθ + 2Bεxxκxx

+ 2Bεθθκθθ + 2μBεxxκθθ + 2μBεθθκxx + 1 − μ

2
(Aεxθ + BCκxθ )εxθ

+ 1 − μ

2
(Bεxθ + 2Cκxθ )2κxθ

]
Rdxdθ

Thus, the density of it is

U = 1

2
A(εxx + εθθ )

2 − (1 − μ)Aεxxεθθ + 1

2
C(κxx + κθθ )

2 − (1 − μ)Cκxxκθθ

+Bεxxκxx + Bεθθκθθ + μBεxxκθθ + μBεθθκxx + 1 − μ

4
(Aεxθ + 2Bκxθ )εxθ

+1 − μ

4
(Bεxθ + 2Cκxθ )2κxθ
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For the FGMcylindrical shell after buckling, though the stretching is also existing, the bending deformation
energy is far more than the corresponding energy of it [18,20]. So, only the bending deformation energy is
considered here. The Lagrange density function is expressed by displacements as

L̄ = 1

2
I0

(
∂w

∂t

)2

−U − 1

2
NT

(
∂w

∂x

)2

= 1

2
I0

(
∂w

∂t

)2

−
[
1

2
A
(w

R

)2 + 1

2
C

(
∂2w

∂x2
+ 1

R2

∂2w

∂θ2

)2

− (1 − μ)C
1

R2

∂2w

∂x2
∂2w

∂θ2
+ B

w

R3

∂2w

∂θ2

+ μB
w

R

∂2w

∂x2
+ 2(1 − μ)C

(
1

R

∂2w

∂x∂θ

)2
]

− 1

2
NT

(
∂w

∂x

)2

− 1

2
NT

(
1

R

∂w

∂θ

)2

where I0 =
h/2∫

−h/2
ρ(z)dz is the mass per unit area.

The radius R of the shell is defined as the characteristic length and the dimensionless variables X =
x
R , L = l

R , W = w
R , α = AR2

C , β = BR
C N = NTR2

C , I = I0R2

C are adopted. In order to introduce the equations

into the Hamiltonian system, operator symbols are defined as f
′ = ∂ f

∂X and ḟ = ∂ f
∂θ
. Define rotation angle

ψ = −Ẇ , a set of new variables q ={q1, q2}T = {W, ψ}T are also introduced. In the Hamiltonian system, the
corresponding dual variables are

p =
{
p1
p2

}
= ∂L

∂q̇
=
{

−...
q
1

− q̇ ′′
1

q ′′
1 − q̇2 + βq1

}
(10)

They represent the equivalent shear force and the equivalent bending moment, respectively. Thus, the Hamil-
tonian function can be expressed as

H = pq̇ − L = −p1q2 + 1

2

(−p2 + q ′′
1 + βq1

)2 + 1

2
αq21 + 1

2

(
q ′′
1

)2 + μβq1q
′′
1 + 1

2
N
(
q ′)2 (11)

Introducing a state vectorϕ = {q1, q2, p1, p2}T, the Hamiltonian canonical equations are derived by Legendre
transformation as

ϕ̇ =
{
q̇
ṗ

}
=
{

δH
δp
− δH

δq

}
(12)

The matrix form of Eq. (12) is

ϕ̇ =

⎧⎪⎨
⎪⎩

q̇1
q̇2
ṗ1
ṗ2

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

0 −1 0 0
−∂2x − β 0 0 1

−2∂4x − [2(1 + μ)β + N ]∂2x − β2 − α 0 0 ∂2x + β
0 0 1 0

⎤
⎥⎦
⎧⎪⎨
⎪⎩

q1
q2
p1
p2

⎫⎪⎬
⎪⎭ (13a)

Equation (13a) can also be written as
ϕ̇ = Hϕ (13b)

in which H is operator matrix, its specific expression is

H =
⎡
⎢⎣

0 −1 0 0
−∂2x − β 0 0 1

−2∂4x − [2(1 + μ)β + N ]∂2x − β2 − α 0 0 ∂2x + β
0 0 1 0

⎤
⎥⎦

The solutions of the Eqs. (13) can be written as the form of separate variables as follows

ϕ(X, θ) =
∑

bϕn(X)eλnθ (14)
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in which eigenvalue λn , eigenvectorϕn and constant coefficient matrix bmust satisfy the following eigenequa-
tion:

Hϕn = λnϕn (15)

According to the sealing condition of the cylindrical shell

ϕ(X, 0) = ϕn(X) = ϕ(X, 2π) = ϕn(X)e2λnπ

the eigenvalues can be calculated are
λn = in (16)

where i = √−1, n equals (0, ±1,±2, . . .). Substituting the eigenvalues into Eq. (15), obtains

⎡
⎢⎣

−in −1 0 0
−∂2x − β −in 0 1

−2∂4x − [2(1 + μ)β + N ]∂2x − β2 − α 0 −in ∂2x + β
0 0 1 −in

⎤
⎥⎦
⎧⎪⎨
⎪⎩

q1
q2
p1
p2

⎫⎪⎬
⎪⎭ = 0 (17)

Thus ϕn can be obtained as

ϕn = c1

⎡
⎢⎢⎣

eλ1X

−ineλ1X

inξeλ1X

ξ1eλ1X

⎤
⎥⎥⎦+ c2

⎡
⎢⎢⎣

eλ2X

−ineλ2X

inξeλ2X

ξ2eλ2X

⎤
⎥⎥⎦+ c3

⎡
⎢⎢⎣

eλ3X

−ineλ3X

inξeλ3X

ξ3eλ3X

⎤
⎥⎥⎦+ c4

⎡
⎢⎢⎣

eλ4X

−ineλ4X

inξeλ4X

ξ4eλ4X

⎤
⎥⎥⎦ (18)

where c1, c2, c3 and c4 are the undetermined constants, ξ = (1 + α − 2β), ξ j = λ2j + β + n2 (j = 1, 2, 3, 4).
λ j ( j = 1, 2, 3, 4) are the four solutions of eigen equation:

λ4 + (N − 2n2 + 2βμ)λ2 + α − n4 = 0 (19)

They are obtained by solving Eq. (19), as

λ j = ±1

2

√
4n2 − 2N − 4βμ ± 2

√
4β2μ2 − 8βn2μ + 4Nβμ − 4Nn2 + 8βn2 + N 2 − 4α

In particular, when n = 0, the eigenvector values are independent of the circumferential coordinate θ
corresponding to the axisymmetric buckling problem of the FGM cylindrical shell. Therefore, the canonical
equation also can be obtained by simplifying as

∂4q1
∂X4 + (η + N )

∂2q1
∂X2 + ξq1 = 0, (20)

where η = 2μ(β − 1). Solutions of Eq. (20) can be written as a simplified form of exponential function by

q1 = c1e
λ1x + c2e

λ2x + c3e
λ3x + c4e

λ4x . (21)

3 Bifurcation conditions

Consider the functionally graded material cylindrical shell fixed at both ends, that is x = 0 and l, w = 0,
∂w
∂x = 0. Substituting the boundary conditions of fixed supported q1 = 0, ∂q1

∂X = 0 (X = 0, X = L) into Eq.
(18) obtains ⎡

⎢⎣
1 1 1 1
λ1 λ2 λ3 λ4
eλ1L eλ2L eλ3L eλ4L

λ1eλ1L λ2eλ2L λ3eλ3L λ4eλ4L

⎤
⎥⎦
⎧⎪⎨
⎪⎩
c1
c2
c3
c4

⎫⎪⎬
⎪⎭ = 0 (22)
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If the Eq. (22) have only zero solutions, the FGM cylindrical shell will not occur buckling when subjected
to uniform compression. Conversely, the condition of buckling is that Eq. (22) have nonzero solutions. That
is, the determinant of the coefficient of Eq. (22) equals to zero.

∣∣∣∣∣∣∣

1 1 1 1
λ1 λ2 λ3 λ4
eλ1L eλ2L eλ3L eλ4L

λ1eλ1L λ2eλ2L λ3eλ3L λ4eλ4L

∣∣∣∣∣∣∣
= 0 (23)

Applying the bifurcation conditions Eq. (23), the buckling loads of the FGM cylindrical shell can be
calculated. Then, the relevant buckling modes can be solved by Eq. (18).

In theEqs. (18) and (22), there are the thermalmembrane forces relying on the temperature fields. Therefore,
the solutions of the temperature fields have to be first acquired to solve the canonical equations.

4 Transient temperature field

Suppose that the FGM cylindrical shells are under the initial steady-state heat balance and subjected to uniform
thermal shock loads on their inner surfaces z = − h

2 , while the outer surfaces z = h
2 exchange heat with external

environment. Consequently, the thermal conduction problem should be reduced to one-dimension inside the
inhomogeneousmaterial. ApplyingFourier thermoelasticity theory, the heat conduction equation can bewritten
as [22]

C (z) ρ (z)
∂T (z, t)

∂t
= ∂

∂z

[
κ (z)

∂T (z, t)

∂z

]
,

(
t > 0,−h

2
< z <

h

2

)
(24)

The dynamic heating loads are taken as an exponential function form, that is T̄ = �T (1 − e−at ) with an
amplitude of temperature rise �T on the inner surface, the parameters of the loads variation a. The heating
initial conditions, the boundary conditions of the outer and the inner surfaces are expressed as

T (z, 0) = 0, T

(
−h

2
, t

)
= �T (1 − e−at ), −κ (z)

∂T

∂z

∣∣∣∣
z=h/2

= hrT

(
h

2
, t

)
(25)

where hr indicates the heat exchange coefficient between the outer surface of the shell and surrounding
environment. Herein, Eqs. (24, 25) are solved through the Laplace transformation technique in combination
with the power series method for obtaining the transient temperature fields which contains the thermal load
amplitude parameter �T . The detailed solution process can be found in the Ref. [22]. And then, the thermal
membrane force NT with undetermined parameter �T can be obtained by integrating Eq. (9) in the thickness
direction. In this study, the buckling thermal membrane forces are firstly obtained according to the bifurcation
condition Eq. (23), and then the thermal buckling temperature amplitude �T is obtained from the known
thermal membrane force.

5 Numerical results

In this section, the FGM cylindrical shell made of ceramic SiC and metal Ni is taken into account. The outer
surface is the metal while the inner surface is the ceramic. The material properties of SiC and Ni can be found
in Table 1. Poisson’s ratio is μ = 0.3. The dynamic thermal buckling modes and buckling temperature rise of
axisymmetric buckling and non-axisymmetric buckling are calculated and discussed.

Table 1 Material properties of the ceramic and metal [22]

Material K [W/(m K)] C [J/(kg K)] E (GPa) α (1/K) ρ (kg/m3)

SiC 65 670 427 4.3E−6 3100
Ni 90.5 439.5 206 13.3E−6 8890
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5.1 Buckling modes

Based on the bifurcation condition Eq. (23), the buckling thermal loads of the FGM cylindrical shell can be
obtained by using Newton–Raphson method. Some comparison studies are carried out first so as to verify the
effectiveness and accuracy of above derivation and calculation on buckling analysis of the FGM cylindrical
shells under thermal shock. Setting k → ∞, functionally graded materials are reduced to the homogeneously
isotropic ones. Dynamic non-uniform temperatures are also reduced to static uniform ones whenwe neglect the
thermal conduct. Thus, the FGM cylindrical shell buckling problem is reduced to a homogeneous cylindrical
shell buckling. In particular, h = 0.05m, R = 1m andμ = 0.25 are chosen to be the same as the corresponding
ones by Xu et al. [18]. Comparisons of the buckling loads obtained in this study with the corresponding results
by Xu et al. [18] are listed in Table 2. Furthermore, given L = 1.5, Table 3 lists the comparison of the non-
axisymmetric buckling loads of the cylindrical shell under uniform temperature. It shows the buckling thermal
loads in this calculation are all highly consistent with the previous results by Xu et al. [18].

With confidence in the present derivations and calculations, the dimensionless buckling thermal loads of
the FGM cylindrical shell (k = 1) are calculated by using Newton–Raphson method based on the bifurcation
condition shown in the Eq. (23). Figure 2 plots the variations of the axisymmetric buckling thermal loads N
of the FGM cylindrical shell with length L , given different axial buckling waves m. For non-axisymmetric
buckling, Fig. 3 shows the variations of first- to sixth-order buckling thermal loads N with length, given the
axial buckling waves m = 1 and the different circumferential buckling waves n. These figures indicate the
thermal buckling loads decrease with the increase in the length of the cylindrical shell. This is due to the fact
that the bending stiffness decreases and the FGM cylindrical shell is prone to instability with the increase in
length. When the length is large, the change trend is slow, but when the length is small, the buckling loads

Table 2 Comparison of the axisymmetric buckling loads of the cylindrical shell under uniform temperature (m = 0)

Length (L) 1 1.5 2 2.5 3 3.5

Present 173.4 155.5 147.5 144.5 143.0 141.6
Ref. [18] 173.0 155.3 147.4 144.4 142.9 141.6

Table 3 Comparison of the non-axisymmetric buckling loads of the cylindrical shell under uniform temperature (m = 1)

n 1 2 3 4 5 6

Present 157.4 163.1 172.3 184.0 196.5 206.3
Ref. [18] 157.4 163.4 173.5 187.5 202.5 210.8

0 1 2 3 4 5
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m=4
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Fig. 2 The variation of the axisymmetric buckling thermal loads N with L (n = 0)
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Fig. 3 The variation of the non-axisymmetric buckling thermal loads N with L (m = 1)
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Fig. 4 a The axisymmetric buckling modes (n = 0). b The non-axisymmetric buckling modes (m = 1). c The non-axisymmetric
buckling modes (n = 2)

change sharply. At the same time, the larger the length, the closer the buckling loads are. And for the same
length, the larger the numbers of buckling waves, the higher the buckling thermal loads required.

Substituting the dimensionless buckling thermal loads into Eqs. (21) and (14), the axisymmetric and non-
axisymmetric buckling modes can be obtained. Obviously, different buckling thermal loads correspond to
different buckling modes. The first- to sixth-order buckling modes of the FGM cylindrical shell are demon-
strated in Fig. 4a–c. As shown in these figures, the dynamic thermal loads excite more buckling wave numbers,
and the number of waves and orders of the corresponding buckling modes increase with the increase in dimen-
sionless eigenvalues. When comparing these buckling modes with ones of a homogeneous cylindrical shell
shown by Xu et al. [18], it is found that they are almost the same. That is to say, the variations of the materials
properties have no effect on the buckling mode shapes.
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5.2 Dynamic thermal buckling temperatures

In this section, the thermal shock buckling temperatures are presented and discussed. And the influence of the
material gradient, parameters of structural geometry and thermal loadings on the critical buckling temperatures
are also studied. In the following calculation, if not specified, the geometric sizes of the FGM cylindrical shells
are h = 0.01 m, R = 1 m and l = 4 m. The thermal shock loads with an exponential function are adopted.
The parameter of the load is specified as a = 20, the dynamic thermal loading time is �t = 5 s and the heat
exchange coefficient is hr = 50.

Tables 4 and 5 list the first- to sixth-order axisymmetric and non-axisymmetric buckling temperatures of
the FGM cylindrical shells for different power law index k, separately. As shown in the tables, the buckling
temperatures increase with the increasing circumferential buckling waves n and axial buckling waves m. The
critical buckling temperatures, that is, theminimumbuckling temperatures are those eigenvalues corresponding
to the axisymmetric buckling modes, when n = 0 and m = 1. As we expect, in the situation of this study, the
instability of the FGM cylindrical shell is axisymmetric, and it is due to the fact that the shell is subjected to
uniformly distributed thermal shock load.

In the following, the dynamic critical buckling temperatures will be concerned mainly. The variation of
the critical buckling temperature with the power law index k representing some specified values of the radius-
thickness ratio λ is presented in Table 6 and Fig. 5. It shows that the amount of increase in the critical buckling
temperature of the shells subjected to dynamic thermal loads drops significantly as the radius-thickness ratio
increases. This is because the bending stiffness of the FGM shells decreases as radius-thickness radio increases.
When k = 0, the FGMcylindrical shells reduce to homogeneous ceramics ones.When k → ∞, the FGMshells
reduce to metal. According to Fig. 5 and Table 6, the critical buckling temperatures drop when k increases. It

Table 4 The axisymmetric buckling temperatures �T (unit: K) (n = 0)

m 1 2 3 4 5 6

SiC 1511.072 1511.267 1526.829 1527.611 1553.562 1554.648
k = 0.5 879.804 879.921 889.440 889.596 905.573 905.717
k = 1 741.257 741.382 749.494 749.948 783.191 783.429
k = 2 650.437 650.570 657.819 658.395 670.362 671.411
k = 5 585.028 585.084 591.820 592.101 603.047 603.982
k = 10 555.181 555.233 561.498 561.811 571.904 572.861
k = 100 511.483 511.483 516.748 517.051 527.637 528.597
Ni 504.297 504.370 509.563 509.912 520.519 521.486

Table 5 The non-axisymmetric buckling temperatures �T (unit: K) (m = 1)

n 1 2 3 4 5 6

SiC 1515.385 1528.329 1549.650 1578.991 1615.776 1659.408
k = 0.5 882.030 888.668 899.572 914.517 933.174 955.100
k = 1 743.061 748.450 757.266 769.349 784.325 801.945
k = 2 652.037 656.791 664.579 675.215 688.407 703.809
k = 5 586.562 591.137 598.638 608.894 621.608 636.478
k = 10 555.834 561.246 568.719 578.943 591.703 606.664
Ni 520.656 525.100 532.429 543.022 555.632 570.593

Table 6 The critical buckling temperatures �Tcr for some specified values of λ

λ 80 100 120 140 160

SiC 1890.470 1511.072 1258.547 1078.284 943.214
k = 0.5 1100.678 879.804 732.723 628.315 549.129
k = 1 927.419 741.257 617.369 528.933 462.664
k = 2 813.904 650.437 541.678 464.090 405.952
k = 5 731.940 585.028 487.187 417.397 365.100
k = 10 694.596 555.181 462.339 396.109 346.486
k = 100 639.844 511.483 425.930 364.930 319.205
Ni 630.925 504.297 420.027 359.866 314.788
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Fig. 5 The variations of the critical buckling temperatures with k for some specified values λ

Table 7 The critical buckling temperatures �Tcr for some specified values of hr

hr 10 30 50 70

SiC 1508.109 1509.581 1511.072 1512.517
k = 0.5 878.490 879.147 879.804 880.459
k = 1 740.216 740.737 741.257 741.777
k = 2 649.564 650.001 650.437 650.872
k = 5 584.278 584.654 585.028 585.403
k = 10 554.471 554.826 555.181 555.535
k = 100 510.530 510.958 511.483 511.814
Ni 503.123 503.711 504.297 504.882
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Fig. 6 The variations of the critical buckling temperatures with k for different a

means, with the increase in k, the ability of the shell to withstand dynamic thermal loads is decreased. If k < 2,
the magnitude of the dropping buckling temperature rise is larger. But if k > 2, the curve is levels off. This
is because the constituents of the ceramics drop when k increases, the Young’s modulus and bending stiffness
decrease.

Table 7 shows the variations between the increases in the critical buckling temperature of the FGM cylin-
drical shells and the heat exchange coefficients hr. As Table 7 shows, the amount of increase in critical buckling
temperature changes only slightly with the increasing coefficients of heat transfer. That means, the heat transfer
coefficients have insignificant influence on critical buckling temperatures.
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Table 8 The critical buckling temperatures �Tcr for different loading time �t (n = 0, m = 1)

�t 1 2 5 10 100

SiC 2426.839 1807.698 1511.072 1485.235 1484.699
k = 0.5 1409.531 1056.305 879.804 863.154 862.759
k = 1 1223.960 903.396 741.257 724.840 724.393
k = 2 1113.933 808.787 650.437 632.656 632.066
k = 5 1035.325 743.870 585.028 564.535 563.654
k = 10 993.453 713.351 555.181 533.050 531.947
Ni 906.965 653.126 504.297 481.814 480.531

The variations in the critical buckling temperatures �Tcr are shown in Fig. 6 under given some specified
values of a. As indicated that the �Tcr drop as the a increases. Furthermore, variations in parameter of the
loads have only slight effect on the �Tcr with respect to a < 5; similarly, there is also almost no effect on
�Tcr when a > 5.

Finally, Table 8 shows that the critical buckling temperatures vary with different loading times of thermal
shock. According to Table 8, the critical temperatures declinewith the increase in loading time.When�t < 5 s,
the critical temperatures drastically drop as the loading time is lengthened. But it hardly varies and tends to
remain constant with the increase in time when �t > 5 s. The reason is that the longer the process takes, the
temperature distributions inside the shell are more uniform, and the influence on buckling critical temperature
gradually disappears as the loading time is lengthened.

6 Conclusions

The dynamic thermal buckling of the ceramic–metal FGM cylindrical shell under the thermal shock is investi-
gated. The Hamiltonian system and the symplectic method are introduced into this problem, which is reduced
to the zero eigenvalue in Hamiltonian system. The canonical equations are established in the symplectic space
firstly. Bymeans of the characteristics and completeness of the Hamiltonian system, a complete bucklingmode
space is given. The relationships between the critical loads as well as the buckling modes and the symplectic
eigenvalues and the eigen solutions are revealed. It shows that the dynamic thermal buckling of the FGM
structures can be effectively investigated applying the symplectic method in Hamiltonian system. It is found
that the gradient properties of the functionally graded materials have great effects on the critical buckling
temperatures. The buckling temperatures of the metal/ceramic FGM shells decrease monotonously with the
increasing of gradient parameter. The critical buckling temperature of the FGM structures can be changed by
adjusting the volume fractions of the constituent materials. The ratio of the radius to the thickness and the time
of the dynamic loading have great influences on the critical temperatures, but the coefficients of heat transfer
and the load parameters have slight influences.
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