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Abstract The effective or homogenized properties of particle-reinforced composites, which characterize their
macroscopic behavior, do not contain any information about location of individual particles, thus limiting the
possibilities of studying the influence of specific distributions of particles on the composites behavior. As a
consequence, determination of optimal (in an appropriate sense) configuration of reinforcing particles is also
restricted. This problem is addressed in this paper by deriving a mesoscopic model for particle-reinforced
composites from the microscopic model of a continuum reinforced by a set of spherical inclusions. As a
result, at the mesoscale, the composite is represented as a continuum with point inhomogeneities. At this,
characteristics and location of each individual particle enter into the material properties of the composite
explicitly. Theoretical derivations are supported by a numerical example of a Mindlin–Reissner thick plate
reinforced over its mid-plane by a set of inclusions and subjected to a vertical load distributed over its upper
surface.

Keywords Particle-reinforced materials · Mesoscopic model · Theory of distributions · Mindlin–Reissner
plate theory

1 Introduction

Compositematerials havewidespread applications in such areas as civil and aerospace engineering, machinery,
robotics, etc. In order towiden the range of their practical use, compositematerials with improved structures are
designed continuously. These improvements, however, require consistent theoretical developments based on
mathematical modeling and since composite materials generally exhibit different features at different (length)
scales, multiscale modeling turns out to be the basic tool for that purpose [1,2]. The typical procedure of multi-
scale modeling of composites can be summarized as follows. Themicrostructure of the composite is accurately
modeled taking into account all its microscale features. Then, the corresponding macroscopic model is derived
by using diverse methods of homogenization [3], such as averaging [4], G-, H - or �-convergence [5]. As a
result, the behavior of microscopically inhomogeneous composites at the macroscale is described by equations
of fully homogeneous structures, the homogenized (more often referred to as effective) material properties
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of which are uniquely derived from the corresponding microscopic quantities. There exist multiple well-
developed methods for exact and approximate evaluation of homogenized properties of composites depending
on different features of microscale inhomogeneities such as shape, individual properties, distributions, etc.
[6,7]. Nonetheless, the location of each individual inhomogeneity is not always made explicit in the expres-
sions of effective properties. Taking into account the contemporary powerful means of material processing at
the microlevel, such as microadditive manufacturing [8], this becomes a serious limitation of possibilities for
optimal design of composites by means of appropriate choice of their microstructure. The missing link in this
chain which will allow to consider microstructure optimization of composites is the mesoscopic model [9].

The purpose of this paper is to fill this gap in the case of particle-reinforced composites by deriving their
mesoscopicmodel, thematerial properties ofwhich explicitly depend onmaterial properties and spatial location
of each individual particle. As other types of reinforced composites, these are regarded as microscopically
inhomogeneous reinforced by inclusions of different shapes such as ellipsoidal or spherical [10]. Even though
there exist several efficient models for identification and estimation of effective (homogenized) properties
of multi-phase particle-reinforced composites at the macroscale [11–19], there is nothing for their material
properties at the mesoscale where, according to their natural treatment, particles can be regarded as point
inhomogeneities. It is worth a separate mentioning contributions [20,21], where closed-form formulas for
effective properties of composites with spherical nanoinhomogeneities are derived using the complete Gurtin–
Murdoch model for the composite and reinforcing particles interface.

The microscopic model considered in this paper mainly lays on the following four assumptions concerning
the inclusions and bulk material: (i) both bulk and inclusions are free of any voids or defects, (ii) inclusions
are embedded into the bulk firmly and perfectly, i.e., there are no imperfections at the common interface,
(iii) all inclusions are (geometrically and physically) identical balls of finite diameter, (iv) inclusions do not
interact with each other during the deformation. The first two assumptions imply that the elastic properties of
the composite are piecewise constant functions and, therefore, they can be represented as functions of local
coordinates in terms of the indicator function of the bulk and inclusions. Note that the assumption (ii) has
been relaxed in a series of recent papers [16,22,23], where formulas for effective material characteristics of
particle-reinforced composites are derived using the deterministic and stochastic homogenization under the
assumption that there may exist defects on the interface of the bulk and particles. The assumption (iv) can be
relaxed using the model developed in [24].

Under these assumptions, accepting also linear constitutive law and linear kinematic relations, Navier–
Lamé equations are derived for microscopic displacements of the composite. Letting the diameter of inclusions
decrease to 0, the corresponding equations are derived for the mesoscopic displacements of the composite and
convergence between the microscopic and mesoscopic displacements is established using the reduced basis
Bubnov–Galerkin procedure. The mesoscopic density and Young’s modulus are expressed in terms of Dirac
δ distribution concentrated at centers of the reinforcing inclusions corresponding to a continuum with point
inhomogeneities. As a particular case, a Mindlin–Reissner plate reinforced with a set of identical inclusions
over its mid-plane and subjected to a normal load distributed over its upper surface is considered. Numerical
analysis of the microscopic model for a decreasing sequence of the diameter and the mesomodel (diameter
tends to 0) reveals convergence of moment and shear resultants of the plate mid-plane as well.

2 Preliminaries

2.1 Notations

By a three-dimensional body B, a continuum material occupying a bounded open domain � ⊂ R
3 with a suf-

ficiently regular boundary ∂� is implied. As usual, material points are denoted by x = (x, x3) = (x1, x2, x3).

A set bd =
N⋃

n=1

bd
n ⊂ � of identical, homogeneous spherical inclusions bd

n = {
x ∈ �, 4 |x − x0n|2 ≤ d2

}

of arbitrary finite number N ∈ N is considered with constant volume fraction denoted by φincl. The bulk
counterpart of B is denoted by Bd

b = B\bd which is supposed to be homogeneous. Assume that both Bd
b and

bd
n are filled with material continuously, i.e., they are free of any defects. The inclusions do not overlap in both

undeformed and deformed configurations, i.e., bd
n ∩ bd

m = ∅ for n �= m, and inclusions do not intersect with
the boundary of B, i.e., bd ∩ ∂� = ∅.
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Fig. 1 Schematic representation of a continuum with firmly embedded spherical inclusions

Here, d is the diameter of inclusions, x0n is the center of the nth inclusion in a Cartesian coordinate system

attached toB, |·| denotes the Euclidean norm inR
3. The set of inclusions centers is denoted by b0 =

N⋃

n=1

{x0n}.
It is also assumed that d is small compared to the smallest characteristic measure of B. For instance, if B is a
beam, plate or shell of thickness h, then d � h. See, Fig. 1.

2.2 Some definitions

In order to characterize the material properties ofB, the following distributions are introduced defined with the
aim of compactly supported test functions ϕ ∈ C∞ (bd

n

)
, supp (ϕ) ⊆ bd

n , where supp (ϕ) = {x ∈ R3, ϕ �≡ 0
}

is the support of ϕ.
1. Distribution generated by the characteristic (indicator) function χbd

n
:

(
χbd

n
, ϕ
)

=
∫

R3
χbd

n
(x) ϕ (x) dx =

∫

bd
n

ϕ (x) dx.

2. Distribution generated by the Heaviside θ function

(θ, ϕ) =
∫

(R+)
3
ϕ (x) dx,

3. Distribution generated by the Dirac δ function

(δ, ϕ) = ϕ (0) . (1)

The connection between these distributions is as follows:

χbd
n
(x) = θ

(
1

4
d2 − |x − x0n|2

)
, (2)

and

δ (x) = θ ′ (x) .

The derivative is understood in the sense of distributions.

Definition 1 The sequence of functions f d is said to converge to distribution f 0 as d → 0 in the sense of
distributions, if

(
f d , ϕ

)
→ (

f 0, ϕ
)

as d → 0,

for every compactly supported test function ϕ.

Kronecker’s symbol is denoted by δ
j
i :

δ
j
i =

{
1, i = j,
0, i �= j.
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2.3 Volume, mass, density and Young’s modulus

Assume that inclusions are embedded into the bulk material firmly, i.e., there are no any defects or voids at the
common interface of Bd

b and any of bd
n . Denote by VBd

b
and Vbd

n
the volume of the bulk and a typical inclusion,

respectively. Then, the volume of B would be

VB = VBd
b
+

N∑

n=1

Vbd
n

= VBd
b

+ N
1

6
πd3 (3)

Denote by mbulk and mincl the mass of the bulk and a typical inclusion, respectively. Then, the mass ofBwould
be

m = mbulk + Nmincl.

Furthermore, the density ofB, denoted by ρd , characterizing its microstructure can be represented as a function
of x as follows:

ρd (x) = mbulk

VBd
b

χBd
b
(x) +

N∑

n=1

mincl

Vbd
n

χbd
n
(x) , x ∈ B. (4)

Similar to (4), Young’s modulus of B can be represented as a function of x with the aid of χBd
b
and χbd

n
,

Ed (x) = EbulkχBd
b
(x) + Eincl

N∑

n=1

χbd
n
(x) , x ∈ B, (5)

where Ebulk and Eincl are the constant Young’s moduli of the bulk material and inclusions, respectively.

2.4 Limit of the characteristic function in the sense of distributions

The aim is to establish amesoscopicmodel of deformation forB reinforcedwith spherical inclusionsbd
n as d →

0. In particular, it will allow to study the effects associated with the number, spatial distribution and individual
material properties of reinforcing particles, unlike fully macroscopic models relying on homogenization and
calculation of effective properties of composites [19]. To this aim, the following result is important.

Lemma 1 In the sense of distributions,

1

Vbd
n

χbd
n
(x) → δ (x − x0n) as d → 0. (6)

Proof According to the definition, as d → 0,

1

Vbd
n

(
χbd

n
, ϕ
)

= 1

Vbd
n

∫

bd
n

ϕ (x) dx → ϕ (x0n) .

On the other hand, according to the definition,

ϕ (x0n) =
∫

R3
δ (x − x0n) ϕ (x) dx.

This is equivalent to (6).
Note that (6) can also be proved with the aid of (2). Indeed, as d → 0,

θ

(
1

4
d2 − |x − x0n|2

)
→ θ

(− |x − x0n|2
)
,

which differs from zero only when x = x0n , straightforwardly leading to

1

Vbd
n

∫

B
θ

(
1

4
d2 − |x − x0n|2

)
ϕ (x) dx → ϕ (x0n) as d → 0,

which implies (6). 
�
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Corollary 1 In the sense of distributions,

1

VBd
b

χBd
b
(x) → 1

VB
as d → 0. (7)

Proof According to the definition,

1

VBd
b

(
χBd

b
, ϕ
)

= 1

VBd
b

∫

B
χBd

b
(x) ϕ (x) dx = 1

VBd
b

∫

Bd
b

ϕ (x) dx.

As d → 0, Vbd
n

→ VB for all n = 1, 2, . . . , N , and Bd
b → B0

b = B\b0. Therefore,
1

VBd
b

∫

Bd
b

ϕ (x) dx → 1

VB

∫

B0
b

ϕ (x) dx,

since b0 is a finite set of isolated points which does not alter the value of the integral. This is equivalent to (7).

�

Passing to the limit in (4) as d → 0 and making use of Lemma 1 and Corollary 1, it is straightforwardly
derived that in the sense of distributions,

ρd → ρ0 as d → 0

where

ρ0 (x) = ρ0
bulk + mincl

N∑

n=1

δ (x − x0n) , (8)

with

ρ0
bulk = mbulk

VB
. (9)

Apparently, (8) characterizes a continuumwith N concentratedmasses.Note that sinceχB0
b
is dimensionless

and the spatial Dirac δ has an SI unit of m−3, so that both sides of (8) have the same SI units. It is noteworthy
that (8) corresponds to the density of a continuum containing point inhomogeneities.

On the other hand, on the basis of Corollary 1 implying that, as d → 0,

χBd
b
(x) = (1 − φincl)

VB

VBd
b

χBd
b
(x) → 1 − φincl

in the sense of distributions, and on the basis of Lemma 1 which ensures that, as d → 0,

χbd
n
(x) = φinclVB

1

NVbd
n

χbd
n
(x) → φinclVB · 1

N
δ (x − x0n)

in the sense of distributions, for (5) it is derived that

Ed → E0 as d → 0,

in the sense of distributions, where

E0 (x) = (1 − φincl) Ebulk + φinclVBEincl · 1

N

N∑

n=1

δ (x − x0n) , x ∈ B. (10)

Note that both sides of (10) also have the same SI units.



1062 As. Zh. Khurshudyan

3 Reinforced isotropic linear elastic material

Let the material of B be isotropic and linear elastic. Then, with the aid of the Lamé coefficients λd = λd (x)
and μd = μd (x), the constitutive equations for B will have the following form:

σ d (x) = λd (x) tr εd (x) I + 2μd (x) εd (x) , x ∈ B. (11)

Here σ d is the Cauchy stress tensor and εd is the strain tensor of B, tr is the trace operator, I is the identity
tensor.

Remark 1 While the assumption that B is isotropic is far from being natural, it is merely to simplify the
governing system of partial differential equations. The more general assumption [25]

σ d (x) = Cd (x) : εd (x) , (12)

could be accepted, whereCd is the tensor of anisotropic coefficients, and the further analysis would be similar.
For efficient ways of numerical implementation of Cd , see also [26].

When B is in equilibrium, the Cauchy stress satisfies the equilibrium equations

∇ · σ d (x) + ρd (x) F (x) = 0, x ∈ B, (13)

where F is the density of body forces.
Limiting the consideration by linear kinematic assumptions, i.e.,

εd (x) = 1

2

[
∇ud (x) +

(
∇ud (x)

)T]
, (14)

where ud is the microscopic displacement vector of B, the superscript T denotes transposition, substituting
(14) into (11) and the resulting stresses into (13), the Navier–Lamé equations are derived,

∇ ·
(

λd (x) tr
[
∇ud (x)

]
I + μd (x)

[
∇ud (x) +

(
∇ud (x)

)T])+ ρd (x) F (x) = 0, x ∈ B. (15)

For the sake of simplicity, assume that the Poisson’s ratio of Bd
b and bd

n are equal: ν1 = ν2 := ν, so that

λd (x) = αEd (x) , μd (x) = 1

2
βEd (x) , α = ν

(1 + ν) (1 − 2ν)
, β = 1

1 + ν
,

where Ed is the Young’s modulus of B. This will reduce (15) to the following:

∇ ·
(

Ed (x)

[
α tr

[
∇ud (x)

]
I + β

[
∇ud (x) +

(
∇ud (x)

)T]])+ ρd (x) F (x) = 0, x ∈ B. (16)

The aim now is to show that

ud → u0 as d → 0 (17)

in the space of admissible displacements, where u0 is the mesoscopic displacement ofB satisfying the Navier–
Lamé equations

∇ ·
(

E0 (x)
[
α tr

[∇u0 (x)
]
I + β

[
∇u0 (x) + (∇u0 (x)

)T]])+ ρ0 (x) F (x) = 0, x ∈ B. (18)

Here, ρ0 and E0 are given by (8), (9), and (10), respectively.
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3.1 The Bubnov–Galerkin procedure

In this section, it is shown that (17) holds, i.e., the general solution of (16) converges to the general solution
of (18) as d → 0. Various types of convergence between differential operators have been applied in diverse
problems of elasticity theory and of mechanics in general [5]. The type of convergence mostly depends on
the space where the corresponding coefficients of the operators converge. Specifically, if the coefficients
converge in L∞, then the convergence of differential operators is referred to as G- (symmetric operators) or
H -convergence (nonsymmetric operators) [3]. However, in this case, Ed → E0 and ρd → ρ0 as d → 0 in the
sense of distributions. Therefore, the convergence between (16) and (18) is not referred to as H -convergence
here.

In order to show that (17) holds, taking into account that the coefficients of (16) and (18) are distributions,
their reduced basis solutions obtained by the Bubnov–Galerkinmethod [27] are used. For the sake of simplicity,
(16) is written component-wise making use of Einstein’s summation rule:

∂

∂x j

(
Ed (x)

[
α

∂ud
l

∂xl
δ

j
i + β

(
∂ud

i

∂x j
+ ∂ud

j

∂xi

)])
+ ρd (x) Fi = 0, i = 1, 2, 3. (19)

Following to the standard steps of the Bubnov–Galerkin procedure, let {ϕk (x)}K
k=1 be a family of functions

orthogonal in � satisfying given boundary conditions on ∂�, and seek the reduced basis solution of (19) as
follows

ud
i (x) ≈

K∑

k=1

cd
ikϕk (x) = cd

i · ϕ (x) . (20)

Then, the Bubnov–Galerkin orthogonality conditions results in the following linear algebraic equations for the
expansion coefficients cd

i [27]:
∫

B

∂

∂x j

(
Ed (x)

[
αcd

l · ∂ϕ

∂xl
δ

j
i + β

(
cd

i · ∂ϕ

∂x j
+ cd

j · ∂ϕ

∂xi

)])
ϕk′ (x) dx + f d

ik′ = 0, k′ = 1, . . . , K ,

(21)

where

f d
ik′ =

∫

B
ρd (x) Fi (x) ϕk′ (x) dx.

Assuming that ud = 0 on ∂� which implies ϕ = 0 on ∂� as well, and performing in (21) integration by parts,
it is reduced to

[
Ebulk

∫

Bd
b

+Eincl

N∑

n=1

∫

bd
n

]
�ik′

(
x; cd

1 , c
d
2 , c

d
3

)
dx − f d

ik′ = 0, (22)

where

�ik′
(
x; cd

1 , c
d
2 , c

d
3

)
=
[
αcd

l · ∂ϕ

∂xl
+ β

(
cd

i · ∂ϕ

∂x j
+ cd

j · ∂ϕ

∂xi

)]
∂ϕk′

∂x j
.

Now let d → 0 and denote by ĉ0i the limiting solution of (22). Then, in view of linearity of �ik′ in cd
1 , c

d
2 , and

cd
3 , it is obtained that ĉ

0
i satisfy

(1 − φincl) Ebulk

∫

B0
b

�ik′
(
x; ĉ01, ĉ02, ĉ03

)
dx + φinclVBEincl · 1

N

N∑

n=1

�ik′
(
xn
0; ĉ01, ĉ02, ĉ03

)
− f 0ik′ = 0, (23)

with

f 0ik′ =
∫

B
ρ0 (x) Fi (x) ϕk′ (x) dx.
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Denoting by c0i the expansion coefficients of the solution of (18), i.e.,

u0
i (x) ≈ c0i · ϕ (x) , (24)

and substituting this approximate solution into (18), using the Bubnov–Galerkin orthogonality conditions and
the definition of the Dirac distribution (1), the following system of linear algebraic equations is obtained for
the expansion coefficients c0i :

(1 − φincl) Ebulk

∫

B0
b

�ik′
(
x; c01, c02, c03

)
dx + φinclVBEincl · 1

N

N∑

n=1

�ik′
(
xn
0; c01, c02, c03

)− f 0ik′ = 0. (25)

Evidently, (23) and (25) are the same systems meaning that ĉ0i = c0i .
The well-known fact that, as K → ∞, (20) and (24) converge to corresponding exact solutions in the space

of admissible displacements [28], leads to the following assertion.

Theorem 1 In the space of admissible displacements, (17) holds for the general solutions of (16) with (4), (5)
and of (18) with (8), (10).

4 Reinforced Mindlin–Reissner plate

Consider a particular case when � = {x ∈ R
3, 0 ≤ x1 ≤ l1, 0 ≤ x2 ≤ l2, − h ≤ x3 ≤ h

}
corresponding to

the case when B is a plate of constant thickness 2h. Assume that d � h.
Accepting theMindlin–Reissner assumptions, themicroscopic displacement field of the plate is represented

as [5]

ud (x) =
(

ud
1 (x) − x3φ

d
1 (x) , ud

2 (x) − x3φ
d
2 (x) , ud

3 (x)
)T

.

Here, ud
1 , ud

2 are the in-plane, and ud
3 is the out-of-plane displacements of the mid-surface x3 = 0, denoted by

�0, φd
1 and φd

2 are the angles formed by the normal to the mid-surface with x3.
The strain–displacement relations within Mindlin–Reissner theory are given according to (14),

εd
i j (x) = 1

2

[
∂

∂x j

(
ud

i (x) − x3φ
d
i (x)

)
+ ∂

∂xi

(
ud

j (x) − x3φ
d
j (x)

)]
,

εd
i3 (x) = κ

2

[
∂ud

3

∂xi
− φd

i (x)

]
,

εd
33 (x) ≡ 0.

i, j = 1, 2, (26)

where κ = const is a (dimensionless) shear correction factor.
The stress–strain relation is given by the Hooke’s law

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ d
11 (x)

σ d
22 (x)

σ d
12 (x)

σ d
13 (x)

σ d
23 (x)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Ed (x)

1 − ν2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 ν 0 0 0

ν 1 0 0 0

0 0 1 − ν 0 0

0 0 0 1 − ν 0

0 0 0 0 1 − ν

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

εd
11 (x)

εd
22 (x)

εd
12 (x)

εd
13 (x)

εd
23 (x)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

σ d
33 (x) ≡ 0.

The equilibrium equations are written for the stress, moment and shear resultants

N d
i j (x) =

∫ h

−h
σ d

i j (x) dx3, Md
i j (x) =

∫ h

−h
x3σ

d
i j (x) dx3, Qd

i (x) = κ

∫ h

−h
σ d
3i (x) dx3, i, j = 1, 2,

(27)
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as follows (recall that the Einstein’s summation rule is accepted):

∂ N d
i j

∂x j
= 0,

∂ Md
i j

∂x j
− Qd

i = 0, i = 1, 2,

∂ Qd
j

∂x j
+ F = 0.

Here, F is an out-of-plane load applied to the plate. Substituting the above strain–displacement relations into
the stress–strain relations, from the equilibrium equations, the following system of linear equations for ud

i and
φd

j will be derived:

∂

∂x1

[
Ad
0 (x)

(
∂ud

1

∂x1
+ ν

∂ud
2

∂x2

)
− Ad

1 (x)

(
∂φd

1

∂x1
+ ν

∂φd
2

∂x2

)]

+ 1 − ν

2

∂

∂x2

[
Ad
0 (x)

(
∂ud

1

∂x2
+ ∂ud

2

∂x1

)
− Ad

1 (x)

(
∂φd

1

∂x2
+ ∂φd

2

∂x1

)]
= 0,

1 − ν

2

∂

∂x1

[
Ad
0 (x)

(
∂ud

1

∂x2
+ ∂ud

2

∂x1

)
− Ad

1 (x)

(
∂φd

1

∂x2
+ ∂φd

2

∂x1

)]

+ ∂

∂x2

[
Ad
0 (x)

(
ν
∂ud

1

∂x1
+ ∂ud

2

∂x2

)
− Ad

1 (x)

(
ν
∂φd

1

∂x1
+ ∂φd

2

∂x2

)]
= 0,

∂

∂x1

[
Ad
1 (x)

(
∂ud

1

∂x1
+ ν

∂ud
2

∂x2

)
− Ad

2 (x)

(
∂φd

1

∂x1
+ ν

∂φd
2

∂x2

)]

+ 1 − ν

2

∂

∂x2

[
Ad
1 (x)

(
∂ud

1

∂x2
+ ∂ud

2

∂x1

)
− Ad

2 (x)

(
∂φd

1

∂x2
+ ∂φd

2

∂x1

)]

= κ
1 − ν

2
Ad
0 (x)

(
∂ud

3

∂x1
− φd

1 (x)

)
,

1 − ν

2

∂

∂x1

[
Ad
1 (x)

(
∂ud

1

∂x2
+ ∂ud

2

∂x1

)
− Ad

2 (x)

(
∂φd

1

∂x2
+ ∂φd

2

∂x1

)]

+ ∂

∂x2

[
Ad
1 (x)

(
ν
∂ud

1

∂x1
+ ∂ud

2

∂x2

)
− Ad

2 (x)

(
ν
∂φd

1

∂x1
+ ∂φd

2

∂x2

)]

= κ
1 − ν

2
Ad
0 (x)

(
∂ud

3

∂x2
− φd

2 (x)

)
,

∂

∂x1

[
Ad
0 (x)

(
∂ud

3

∂x1
− φd

1 (x)

)]
+ ∂

∂x2

[
Ad
0 (x)

(
∂ud

3

∂x2
− φd

2 (x)

)]
= − 2

κ (1 − ν)
F (x) ,

(28)

where

Ad
p (x) =

∫ h

−h

Ed (x)

1 − ν2
x p
3 dx3, p = 0, 1, 2,

Ad
1 and Ad

2 are the so-called extensional and bending stiffnesses.
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Note that (28) is a system of five linear differential equations with respect to five unknown functions: ud
i ,

i = 1, 2, 3, and φd
j , j = 1, 2. Similar to Theorem 1 it is shown that as d → 0,

ud
i → u0

i , φd
j → φ0

j , i = 1, 2, 3, j = 1, 2,

where u0
i , i = 1, 2, 3, and φ0

j , j = 1, 2, are determined from the corresponding system of differential equations

with Ed
(

Ad
p

)
substituted by E0 (resp. A0

p).

Taking into account that for −h < x03n < h, n = 1, 2, . . . , N ,
∫ h

−h
x p
3 δ (x − x0n) dx3 = x p

03nδ (x − x0n) , p = 0, 1, 2,

for the mesoscopic coefficients it is derived

A0
p (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

1 − ν2

[
h p+1

p + 1
(1 − φincl) Ebulk + φinclVBEincl · 1

N

N∑

n=1

x p
03nδ (x − x0n)

]
, p = 0, 2,

1

1 − ν2
φinclVBEincl · 1

N

N∑

n=1

x03nδ (x − x0n) , p = 1.

(29)

4.1 Numerical verification

In this section, the mesoscopic model of particle-reinforced Mindlin–Reissner plate is studied numerically.
For the sake of simplicity, neglect the in-plane extension of the plate. Then, the moment and shear resultants
are determined as follows:

Md
11 (x) = −Ad

2 (x)

(
∂φd

1

∂x1
+ ν

∂φd
2

∂x2

)
, Md

12 (x) = −1 − ν

2
Ad
2 (x)

(
∂φd

1

∂x2
+ ∂φd

2

∂x1

)
,

Md
22 (x) = Ad

2 (x)

(
ν
∂φd

1

∂x1
+ ∂φd

2

∂x2

)
,

Qd
1 (x) = κ

1 − ν

2
Ad
0 (x)

(
∂ud

3

∂x1
− φd

1 (x)

)
, Qd

2 (x) = κ
1 − ν

2
Ad
0 (x)

(
∂ud

3

∂x2
− φd

2 (x)

)
.

(30)

Equilibrium equations (28) take the following form:

∂

∂x1

[
Ad
2 (x)

(
∂φd

1

∂x1
+ ν

∂φd
2

∂x2

)]
+ 1 − ν

2

∂

∂x2

[
Ad
2 (x)

(
∂φd

1

∂x2
+ ∂φd

2

∂x1

)]

+κ
1 − ν

2
Ad
0 (x)

(
∂ud

3

∂x1
− φd

1 (x)

)
= 0,

1 − ν

2

∂

∂x1

[
Ad
2 (x)

(
∂φd

1

∂x2
+ ∂φd

2

∂x1

)]
+ ∂

∂x2

[
Ad
2 (x)

(
ν
∂φd

1

∂x1
+ ∂φd

2

∂x2

)]

+κ
1 − ν

2
Ad
0 (x)

(
∂ud

3

∂x2
− φd

2 (x)

)
= 0,

∂

∂x1

[
Ad
0 (x)

(
∂ud

3

∂x1
− φd

1 (x)

)]
+ ∂

∂x2

[
Ad
0 (x)

(
∂ud

3

∂x2
− φd

2 (x)

)]
+ 2

κ (1 − ν)
F (x) = 0. (31)

Let the plate be clamped at the boundary implying

ud
3 = φd

1 = φd
2 = 0, x ∈ ∂�0.
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Fig. 2 A thick Mindlin–Reissner plate with N = 100 spherical inclusions

Also let l1 = l2 = l and rescale x by h, Ed by Ebulk, Ad
k by hk+1Ebulk, k = 0, 2, and F by Ebulk. Since as

a result of rescaling, system (31) refrains its form, new functions and variables are not introduced. Then, the
general solution of (31) can be represented as follows:

ud
3 (x) =

K∑

k=1

cd
u3kϕk (x) , φd

1 (x) =
K∑

k=1

cd
φ1kϕk (x) , φd

2 (x) =
K∑

k=1

cd
φ2kϕk (x) , (32)

with

ϕk (x) = sin (λk x1) sin (λk x2) , λk = πk

lh
, lh = l

h
.

Using the Bubnov–Galerkin procedure, the following system of linear algebraic equations for cd
u3k , cd

φ1k , and

cd
φ2k is eventually derived:

⎡

⎣
Bu3,d Bφ1,d Bφ2,d

Cu3,d Cφ1,d Cφ2,d

Du3,d Dφ1,d Dφ2,d

⎤

⎦

⎡

⎣
cd

u3
cd
φ1

cd
φ2

⎤

⎦ =
⎡

⎣
0
0
F

⎤

⎦ , (33)

where

Bu3,d
k,k′ = κ

1 − ν

2

∫ lh

0

∫ lh

0
Ad
0 (x)

∂ϕk

∂x1
ϕk′ (x) dx,

Bφ1,d
k,k′ = −

∫ lh

0

∫ lh

0

[
Ad
2 (x)

(
∂ϕk

∂x1

∂ϕk′

∂x1
+ 1 − ν

2

∂ϕk

∂x2

∂ϕk′

∂x2

)
+ κ

1 − ν

2
Ad
0 (x) ϕk (x) ϕk′ (x)

]
dx,

Bφ2,d
k,k′ = −

∫ lh

0

∫ lh

0
Ad
2 (x)

(
ν
∂ϕk

∂x2

∂ϕk′

∂x1
+ 1 − ν

2

∂ϕk

∂x1

∂ϕk′

∂x2

)
dx,

Cu3,d
k,k′ = κ

1 − ν

2

∫ lh

0

∫ lh

0
Ad
0 (x)

∂ϕk

∂x2
ϕk′ (x) dx,

Cφ1,d
k,k′ = −

∫ lh

0

∫ lh

0
Ad
2 (x)

(
ν
∂ϕk

∂x1

∂ϕk′

∂x2
+ 1 − ν

2

∂ϕk

∂x2

∂ϕk′

∂x1

)
dx,

Cφ2,d
k,k′ = −

∫ lh

0

∫ lh

0

[
Ad
2 (x)

(
1 − ν

2

∂ϕk

∂x1

∂ϕk′

∂x1
+ ∂ϕk

∂x2

∂ϕk′

∂x2

)
+ κ

1 − ν

2
Ad
0 (x) ϕk (x) ϕk′ (x)

]
dx,

Du3,d
k,k′ =

∫ lh

0

∫ lh

0
Ad
0 (x)

(
∂ϕk

∂x1

∂ϕk′

∂x1
+ ∂ϕk

∂x2

∂ϕk′

∂x2

)
dx,

Dφ1,d
k,k′ =

∫ lh

0

∫ lh

0
Ad
0 (x) ϕk (x)

∂ϕk′

∂x1
dx,
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Fig. 3 Generalized displacements of the plate mid-plane: a ud
3 , d/h = 0.25 (left) and u0

3 (right); b φd
1 , d/h = 0.25 (left), φ0

1
(right) c φd

2 , d/h = 0.25 (left), φ0
2 (right)

Dφ2,d
k,k′ =

∫ lh

0

∫ lh

0
Ad
0 (x) ϕk (x)

∂ϕk′

∂x2
dx,

Fk′ = − 2

κ (1 − ν)

∫ lh

0

∫ lh

0
F (x) ϕk′ (x) dx .

Due to linearity of (33), themesoscopicmodel for a particle-reinforcedMindlin–Reissner plate is described
by its limit as d → 0, i.e., by (31) with Ad

k substituted by A0
k (29), k = 0, 2.

For computations let lh = 5, N = 100, K = 100, ν = 0.3, κ = 5/6, Eincl/Ebulk = 3, F (x) =
10−3χ[0.5,1.5]×[3.5,4.5] (x). Let x01n = x02n = 2nd/h, x03n ≡ 0.5, n = 1, 2, . . . , 10, i.e., the inclusions are
distributed uniformly over the plate mid-plane �0 (see Fig. 2).

Themain aim of this section is to numerically show that as d → 0, generalized displacements and quantities
(30) converge to corresponding quantities with superscript 0. To this aim, prescribe positive values to d/h and
compare the corresponding quantities with the case when d → 0 (mesoscopic model). The components of the
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Fig. 4 Moment resultants: a d/h = 0.25; b d → 0

Fig. 5 Shear resultants: a Qd
1 , d/h = 0.25 (left), Q0

1 (right); b Qd
2 , d/h = 0.25 (left), Q0

2 (right)
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Table 1 Maximal absolute values of plate mid-plane vertical displacements, moment and shear resultants for different values of
d/h

d/h max
x∈�0

|ud
3 | max

x∈�0
|φd

1 | max
x∈�0

|φd
2 | max

x∈�0
|Md

11| max
x∈�0

|Md
12| max

x∈�0
|Md

22| max
x∈�0

|Qd
1 | max

x∈�0
|Qd

2 |

1/4 4.15 × 10−4 1.05 × 10−4 1.05 × 10−4 1.87 × 105 4.98 × 104 2.43 × 105 1.74 × 107 1.9 × 107

1/8 4.23 × 10−4 1.12 × 10−4 1.06 × 10−4 1.25 × 105 3.6 × 104 2.04 × 105 1.77 × 107 1.94 × 107

1/16 4.24 × 10−4 1.13 × 10−4 1.06 × 10−4 7.14 × 104 2.48 × 104 7.95 × 104 1.8 × 107 2 × 107

→ 0 4.25 × 10−4 1.14 × 10−4 1.06 × 10−4 3.7 × 104 1.39 × 104 3.96 × 104 1.84 × 107 2.07 × 107

generalized displacement, the moment resultants and shear resultants of the plate mid-plane �0 are plotted in
Figs. 3, 4 and 5. Based on the results of plots and numerical evaluation of the representative quantities (30),
presented in Table 1, it becomes evident that as d/h → 0, ud

3 ↗ u0
3, φ

d
i ↗ φ0

i , Md
i j ↘ M0

i j , and Qd
i ↗ Q0

i ,
i, j = 1, 2.

5 Conclusions and future work

Multiscale modeling of composites is one of the most efficient ways of accurate measuring of the effect that
different types of microstructural peculiarities have on the macroscopic performance of the composite. This
is equally important for evaluating the efficiency of practical use of composites with given microstructure
and for estimating the opportunities of specific microstructural design of composites promising an improved
performance for themat themacroscale.Being a powerful tool for deriving thematerial parameters of reinforced
composites at the macroscale for a given microstructure, homogenization not always allows to include all the
microscopic features into the final expressions for the effective or homogenized parameters explicitly. An
example of such a feature is the location of individual particles in the case of particle-reinforced composites.

This study is an attempt to fill this gap by suggesting a model for particle-reinforced composites allowing
to express their material properties in terms of all features of individual particles, such as Young’s modulus
and spatial location. Starting from the microscopic model where the composite is represented as a continuum
reinforced with identical spherical inclusions and letting the diameter of the inclusions decrease to 0, the
mesoscopic model is derived where particles are represented as point inhomogeneities characterized by Dirac
distribution concentrated at the centers of the inclusions.

Future developments toward extension of the model derived in this paper are designed in the following
directions:

1. Instead of unnatural assumption about isotropic structure of B, a general anisotropy given by (12) will be
considered.

2. While the geometrically nonlinear case with εd (x) = 1

2

[
∇ud (x) +

(
∇ud (x)

)T]
used instead of (14),

seems to be quite similar to the case considered in this paper due to linearity of Navier–Lamé equations
with respect to Ed and ρd , the case of physical nonlinearity, i.e., when the constitutive law is nonlinear
in λd and μd , unlike (11), remains quite challenging. This is, first of all, conditioned by the fact that the
material parameters in the mesoscopic model are, in general, distributions, and the theory of nonlinear
distributions must be involved for a proper model analysis.

3. Relax the strict assumptions on the bulk andparticles, e.g., incorporate the interface defectsmodel developed
in [23] into the current mesoscopic model, allow inclusions to interact with each other during deformation
[24], etc.

4. Motivated by studies similar to [29] in which a nonpiezoelectric matrix is reinforced by piezoelectric
particles to make the composite reacting to external electrical fields, the case of multi-phase particles will
also be a part of future work.
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