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Abstract In this paper, the thermodynamic configurational force associated with a moving interface is used
to derive the conditions for phase growth and nucleation in bodies with multiple diffusing species and arbi-
trary surface stress at the phase interface. First, the mass, momentum and energy balances are derived on the
evolving phase interface. The thermodynamic conditions that result from free energy inequality at the inter-
face are derived leading to the analytical form of the configurational force for bodies subject to mechanical
loads, heat and multiple diffusing species. The derived second law condition naturally extends the Eshelby
energy–momentum tensor to include species diffusion terms. The above second law restriction is then used
to derive the condition for the growth of new phases in a body undergoing finite deformation subject to inho-
mogeneous as well as anisotropic interface stress, and multiple diffusing species. The growth conditions are
derived in both current and reference configurations. The statistical temperature-dependent growth velocity is
next derived using the Boltzmann distribution. The derived finite deformation form of growth requirement is
simplified to obtain the small deformation diffusive void growth condition. Next, a general, finite deformation,
arbitrary surface stress form of phase nucleation condition is derived by considering uncertainty in growth of
a small nucleus. The probability of nucleation is shown to naturally depend on a theoretical estimate of critical
volumetric energy density, which is directly related to the surface stress. The classical nucleation theory is
shown to result from a simplified special case of the general criterion. As an application of the developed
theory, the classical Blech electromigration experiment is simulated to estimate the critical energy density
corresponding to the onset of electromigration voids at Al–TiN interface.

Keywords Interface balance laws · Multispecies diffusion · Inhomogeneous surface stress · Second law
conditions · Configurational force · Phase growth condition · Phase nucleation condition · Electromigration
void

1 Introduction

Diffusion-driven phase nucleation and growth under mechanical, thermal or electrical fields represents an
important class of problems. Void nucleation and growth under the influence of an electrical current (elec-
tromigration) is an example of this class of problems. Other examples of such phenomena include crack
propagation due to creep [1], dendritic growth in Li-ion batteries [2,3], growth of brittle intermetallic com-
pounds in solder joints [4,5], tissue growth [6] and growth of compounds under chemical vapor deposition
[7]. The interplay between stress and diffusion can change the morphology of the phase interface from being
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crack-like to spheroidal [8]. The growth of such heterogeneities can have significant physical as well as phys-
iological effect. For example, growth of cracks at high temperatures due to creep decides the life of pipes,
turbines, engines in power plants and aircrafts, and moderating the growth of malignant tissues can aid in
recovery of diseased individuals.

The growth of a void is typically attributed to the coalescence of vacancies, which is dependent on the
magnitude of the bulk diffusion flux of the vacancies [9]. For instance, computational studies of void growth due
to electromigration often rely on the flux of vacancies to predict the growth rate [10,11]. A competing model
for void growth is to use the bulk entropy of the system to develop a measure of damage [12]. In these models,
a constitutive relation is assumed between the bulk diffusion flux and the various driving forces such as the
gradients of chemical potential, hydrostatic stress, temperature or electric potential. This constitutive relation is,
however, not derived using established principles of rational mechanics at a phase interface. In other words, the
constitutive relation is empirical and does not directly follow from balance laws governing a moving interface.
Abeyaratne and Knowles [13] are among the few that use interface balance laws to derive a thermodynamic
force driving the evolution of a phase interface. The thermodynamic force, or the configurational force [14,15],
determines the energy per unit area of the interface consumed as the phase evolves.

In general, the motion of the interface is influenced by the interfacial stress, which may be anisotropic and
inhomogeneous. For instance, electromigration experiments have shown a strong relation between void growth
rate and surface energy at the interface [16]. The generalization of the configurational force associated with
a moving interface, accounting for arbitrary interfacial stress, appears to be largely missing in the literature.
The existing models for interfacial growth, while they assume a constitutive relation between the bulk flux and
fields, often do not obey interfacial balance laws or incorporate surface stress in their formulation. Gurtin [15]
derives the configurational force for a system with homogeneous, isotropic surface stress. However, to the best
of the authors’ knowledge, this has not been extended to a general system with anisotropic, inhomogeneous
surface stress.

In the context of phase nucleation, transformed fraction models based on the Kolmogorov–Johnson–
Mehl–Avrami theory and its extensions [17,18] have been used to estimate the nucleation rate. Although
the nucleation process has its roots in statistical mechanics, the classical nucleation criterion is developed
using continuum theory [19,20]. Specifically in electromigration, a critical vacancy concentration condition
[21,22] is often used to describe the onset of void nucleation [10,23]. Among the other criteria that are used
to describe electromigration, Tu et al. proposed that the region of “maximum current crowding” or the region
with the highest current density is most susceptible to void nucleation [24,25]. Alternatively, stress-based
conditions have also been suggested for nucleation [26–28]. A normal stress condition was used in finite
element simulations in [29], while a cohesive zone model was used in [30–32]. Finally, [33,34] have used
an entropy-based damage criterion to predict void nucleation in finite element simulations. In general, the
above models, similar to the growth criteria, do not follow the principles of rational mechanics to derive the
nucleation condition from thermodynamic balance laws and further do not consider the influence of surface
stress. Nucleation conditions based on the presence of flaws in free surfaces under homogeneous, isotropic
surface stress have been proposed [26,35]. Nevertheless, these models have not been extended to general
systems with anisotropic, inhomogeneous surface stress.

In summary, to develop generalized conditions for growth or nucleation of a phase under the influence
of mechanical and non-mechanical fields as well as arbitrary surface stress, there is a need to derive the
configurational force associated with a moving interface in a body with multiple diffusing species and arbitrary
surface stress. This is the first goal of the present paper. The second goal of the paper is to apply the general
thermodynamic principles governing the motion of an interface to derive conditions for growth of a phase as
well as the nucleation of a new phase. The last goal is to demonstrate the derived theory on a practical problem
to deduce a critical material parameter governing the nucleation of electromigration voids.

Specifically, in Sect. 2,wefirst recapitulate the balance laws in the bulk. Then inSect. 3,we derive a transport
theorem for the interface, motivated by the pioneering work of Truesdell and Toupin [36], which is then used to
derive the thermodynamic restrictions at the moving interface. The derived driving force on the phase interface
is similar to that in references [14,37], but permits inhomogeneous and anisotropic surface stress. The second
law conditions are used to derive a general, finite deformation condition for the growth of a phase in both
current and reference configurations in Sect. 4. The mean interface velocity under uncertainty in atomistic
phenomena described by the Boltzmann distribution is next derived. We then apply the derived general growth
condition by reducing it to the special case of diffusive void growth. Next, in Sect. 5, we derive a general, finite
deformation nucleation condition taking into account multiple diffusing species and inhomogeneous surface
stress by assuming that statistical uncertainty in the length scale associated with the consumed energy of the
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moving interface. We show that the classical nucleation theory is a special case of the derived general criterion.
The void nucleation probability is shown to naturally depend on a critical value of an energy density, which
in turn is shown to depend strongly on the interface surface energy coefficient. The developed ideas are then
applied, in Sect. 7 to estimate the critical energy density associated with electromigration in Al–TiN interface.

2 Review of balance laws in the bulk

We follow the procedure described in [14,38] in developing the bulk relations for a multispecies (atoms or
molecules) solid. Consider a region Ω of the body B at an instant in time convecting with the body. ρ(x, t)
is the instantaneous mass density at any point in the region. Since the region Ω convects with the body,
d
dt

∫
Ω

ρ dΩ = 0. Let the convecting region contain N species labeled α = 1, 2, . . . , N , and let να(x, t) denote
the instantaneousmass fraction of species α (ratio of species mass density to ρ). The body is assumed to consist
entirely of diffusing species such that

∑
α να = 1, and ρα = ρνα represents the mass density of species α.

Changes inΩ are brought about by the diffusion of species α across the boundary ∂Ω as well as instantaneous
species supply rα measured in mass per unit volume per unit time. The mass flux jα(x, t) is measured in mass
per unit area, per unit time, and assumed positive in the outward normal direction of the surface across which
the species is transported. Letting n denote the outward unit normal to the boundary, the mass balance for the
species is,

d

dt

∫

Ω

ρνα dΩ = −
∫

∂Ω

jα · n dΓs +
∫

Ω

rα dΩ (1)

which yields, after the application of the divergence theorem as well as the Reynolds transport theorem [38],
the following local mass balance for any species α,

ρν̇α = −∇ · jα + rα (2)

Since the mass fractions sum to unity at all times, the above expression also implies
∑

α

ρν̇α =
∑

α

(−∇ · jα + rα
) = 0 (3)

The tractions acting on the surface of the body cause stress σ within the body at any instant. σn represents the
surface traction exerted on Ω across the boundary ∂Ω . The balance of linear and angular momentum requires,

d

dt

∫

Ω

ρv dΩ =
∫

∂Ω

σn dΓs +
∫

Ω

ρb dΩ

d

dt

∫

Ω

x × ρv dΩ =
∫

∂Ω

x × (σn) dΓs +
∫

Ω

x × ρb dΩ
(4)

where v is the velocity and b is the body force per unit mass. These yield the local force and moment balances,

ρa = ∇ · σT + ρb

σ = σT
(5)

with a being the acceleration.
The accumulation of the specific internal energy e and the kinetic energy within the body is:

d

dt

∫

Ω

(

ρe + 1

2
ρv · v

)

dΩ =
∫

∂Ω

(σn) · v dΓs +
∫

Ω

ρb · v dΩ

−
∫

∂Ω

jq · n dΓs +
∫

Ω

rq dΩ

−
N∑

α=1

(∫

∂Ω

μα jα · n dΓs −
∫

Ω

μαrα dΩ

)
(6)
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where jq is the heat flux assumed positive in the outward normal direction of the surface, rq is the rate of heat
supply, and μα is the chemical potential of species α measured in units of energy per unit mass. As before,
applying the Reynolds transport theorem, using the divergence theorem on the integral over ∂Ω , and utilizing
the mass balance relation Eq. (3), one obtains the local rate of change of internal energy as

ρė = σ : D − ∇ · jq + rq −
N∑

α=1

(
jα · ∇μα − ρμαν̇α

)
(7)

where D is the symmetric part of the velocity gradient tensor ∇vT. The local form of entropy imbalance is
defined as:

ρη̇ ≥ −∇ ·
(

jq

T

)

+ rq

T
(8)

where η is the specific internal entropy and T is the absolute temperature. Defining the free energy as ψ =
e − ηT , using the local form of entropy imbalance Eq. (8), finally the local form of the free energy imbalance
is obtained as:

ρ(ψ̇ + ηṪ ) ≤ σ : D − 1

T
jq · ∇T −

N∑

α=1

(
jα · ∇μα − ρμαν̇α

)
(9)

Thus, all thermodynamically permissible processes in the bulkmust are consistent with Eq. (9). The free energy
ψ is a function of the deformation, the species concentration, and the temperature ψ ≡ ψ (F, να, T ), where
F is the deformation gradient. Using the chain rule to compute ψ̇ and writing σ : D = σ : ∇vT = σ : ḞF−1

gives,

(

ρ
∂ψ

∂F
− σF−T

)

: Ḟ +
N∑

α=1

(
∂ψ

∂να
− μα

)

ρν̇α +
(

∂ψ

∂T
+ η

)

ρṪ

+
N∑

α=1

jα · ∇μα + 1

T
jq · ∇T ≤ 0 (10)

Since this inequality has to hold for arbitrary values of Ḟ, ν̇α and Ṫ we get the constitutive equations,

σ = ρ
∂ψ

∂F
FT (11)

μα = ∂ψ

∂να
∀α (12)

η = −∂ψ

∂T
(13)

The terms within the parentheses hence vanish. Finally, since temperature is always positive, the free energy
inequality is satisfied by constitutive relations of form,

jα = −Mα∇μα ∀α (14)

jq = −k∇T (15)

where Mα is a positive definite mobility tensor for species α and k is a positive definite thermal conductivity
tensor. Equation (14) describes Fick’s first law of diffusion for each species α, while Eq. (15) is the Fourier
law of heat conduction.
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Fig. 1 Control volume (interface “pillbox”) with generalized field and fluxes

3 Derivation of balance laws at the interface

The development in this section is motivated by the pioneering work of Truesdell and Toupin [36]. The
approach followed is to make a systematic analogy to the bulk balance laws described in Sect. 2, including in
the explicit use of an entropic inequality condition on the interface. Additionally, analogous to bulk derivation,
surface quantities corresponding to mass, momentum, internal energy, entropy and free energy are introduced
as variables and resolved through the derived thermodynamic restrictions. The resulting form of the driving
force on the phase interface is similar to that derived in [14,37], but the derivation here allows inhomogeneous
and anisotropic surface stress.

3.1 Interface transport theorem

Prior to deriving the balance laws at the interface, we first derive the interface transport theorem for a scalar field
on the interface that then serves to provide the basis for derivation of mass, momentum and energy balances
at the interface. The interface is modeled to convect with the body in the present work. To connect the bulk
fields with the interface, an interface “pillbox” (Fig. 1) is typically used to derive local balance relations at
interfaces.

Consider the domain Ω = Ω− ∪ Ω+ divided by the interface Γ shown in Fig. 1 with the subregion Γs
within the control volume. Ω− and Ω+ are bounded otherwise by Γ − and Γ +. An arbitrary field φ(x, t) is
considered, with the values in each of the phases specified by φ−(x, t) and φ+(x, t). The balance law for the
domain of each phase can now be written as,

d

dt

(∫

Ω i
φi dΩ

)

= −
∫

Γ i
j i · ni dΓs −

∫

Γs

j i · ni dΓs +
∫

Ω i
r i dΩ i = −,+ (16)

where j refers to the flux of the field φ, while r denotes volumetric generation. The interface is now considered
as a separate domain, bounded by the curve ∂Γs (Fig. 1). The superficial field on the interface φs is changed
by inflows due to a flux h on the boundary ∂Γs of the interface, the flux exchanges j i with the bulk domains
on either side, and the spontaneous generation rate rs. The normal to the curve ∂Γs in the tangent plane of Γ
is denoted m (see Fig. 2). The balance law for the interface is now written as,

d

dt

∫

Γs

φs dΓs = −
∮

∂Γs

h.m dc +
∑

i=−,+

∫

Γs

j i · ni dΓs +
∫

Γs

rs dΓs (17)

To be able to define a transport theorem for the interface pillbox, Eqs. (16) and (17) need to be combined
together. Utilizing the expressions for the material derivatives on the left-hand sides of Eqs. (16) and (17)
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Fig. 2 Schematic showing the definition of the normals to the interface and to the boundary of the interface subregion Γs

(derived in Appendices B, and C on the basis of surface identities given in Appendix A), following [36], the
combined bulk and surface balances yield,

∑

i=−,+

(∫

Ω i

∂φi

∂t
dΩ +

∫

Γ i
φivin dΓs +

∫

Γs

φivisn dΓs

)

+
∫

Γs

(
φ̇s + φs∇s · vs

)
dΓs

=
∑

i=−,+

(

−
∫

Γ i
j i · ni dΓs +

∫

Ω i
r i dΩ

)

−
∮

∂Γs

h.m dc +
∫

Γs

rs dΓs (18)

where vin = vi · ni , visn = vis · ni . The following simplifications are made to Eq. (18).

1. The outer control surfaces Γ −, Γ + are infinitesimally close to the inner control surface Γs. As Γ −, Γ + →
Γs, Ω → 0 and the bulk integral terms drop out.

2. n− is set equal to n on Γs. This implies that n+ = −n on Γs. Thus, as Ω → 0, n− = −n on Γ −, and
n+ = n on Γ +.

These simplifications along with the use of the surface divergence theorem of Eq. (96) reduce Eq. (18) to,

∫

Γs

(− �
φ

(
vsn − vn

)� + φ̇s + φs∇s · vs
)
dΓs

=
∫

Γs

(
−

�
jφ

�
· n − ∇s · hφ

t + rφ
s

)
dΓs

(19)

where the jump terms are defined as �·� = (·+ − ·−)
and

(
vsn − vn

) = (vs − v) ·n; hφ
t = Phφ is the tangential

component of the flux hφ with P being the surface projection tensor defined in Eq. (88). The superscript φ
serves to remind the quantity whose flux is on the right-hand side. Since Eq. (19) must be valid on every
arbitrary subregion Γs of Γ , we arrive at the local form of the interface transport theorem:

− �
φ

(
vsn − vn

)� + φ̇s + φs∇s · vs = −
�
jφ

�
· n − ∇s · hφ

t + rφ
s on Γ (20)

where the left-hand side of the above expression represents the accumulation of bulk and interface fields due
to bulk normal fluxes and the interface flux.
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3.2 Balance laws at the interface

The general interface transport theorem of Eq. (20) can be applied to various conserved quantities such as
species mass, momentum and energy, by replacing φ with the appropriate conserved quantity to obtain the
balance law. The species mass balance at the interface is obtained by replacing the bulk field φ by ρνα , the
mass flux jφ of the diffusing species α by jα , and the tangential interface flux hφ

t by the surface mass flux
hα

t . Also, the interface is considered massless, and therefore, surface mass excess, φs, is ignored. The rate of
spontaneous generation of species α at the surface (as due to a chemical reaction) is denoted rα

s . Substituting
in Eq. (20), we obtain the species balance as,

− �
ρνα

(
vsn − vn

)� = − � jα� · n − ∇s · hα
t + rα

s (21)

The momentum balance at the interface is obtained by considering momentum in an arbitrary, but fixed
direction n̂. By analogy to the bulk relation Eq. (4), we choose the field φ to be the momentum in the direction
n̂, that is, φ = ρv · n̂. Since the negative of the normal component of the bulk flux enters the domain, by
analogy of Eq. (4), − j i · ni = n̂ · σni , and the flux is defined as jv = −σ n̂ so that the normal component of
this quantity defines the traction component in the direction n̂. Similarly, since the component of the surface
flux normal to the boundary ∂Γs enters the surface, the surface flux is defined as hv = −σsn̂ with a symmetric
surface stress σs such that traction component hv · m acts on the boundary ∂Γs tangent to the plane of the
interface. Now, assuming that the interface is massless, and that the spontaneous generation of momentum is
negligible, i.e., φs and rs are zero, substituting in Eq. (20), we obtain the momentum balance as:

− �
ρv

(
vsn − vn

)� · n̂ = �σ n̂� · n − ∇s · hv
t (22)

Furthermore, hv
t = Phv = −Pσsn̂. Since n̂ is arbitrary, constant and nonzero, Eq. (22) yields:

− �
ρv

(
vsn − vn

)� = �σ � n + ∇s · (Pσs) (23)

If the surface stress is homogeneous and isotropic, i.e., σs = γ I, bulk inertial effects are small, then the
momentum jump can be ignored, and using Eq. (93), we can obtain the Laplace–Young equation:

− n · �σ � n = γ κ (24)

where κ is the total curvature of the interface.
As with momentum balance, the interface energy balance is obtained by analogy of Eq. (6). Thus, the bulk

field is φ = ρe+ 1
2ρv ·v and bulk energy flux is je = −σv+ jq +∑N

α=1μ
α jα . The surface field φs is given by

the internal energy per unit area, es. By analogy to interface momentum balance, the tangential component of
the surface flux corresponding to internal energy accumulation is given by het = −Pσsvs + hq + ∑N

α=1μ
α
s h

α
t .

Thus, the interface energy balance relation is:

− �
φ

(
vsn − vn

)� + φ̇s + φs∇s · vs

= −
�

−σv + jq +
N∑

α=1

μα jα
	

· n − ∇s ·
(

−Pσsvs + hq +
N∑

α=1

μα
s h

α
t

)

+ rqs +
N∑

α=1

μα
s r

α
s

(25)

Using the interface species mass balance Eq. (21) and utilizing the surface identities in Appendix A, the above
equation simplifies to:

−

(

ρe + 1

2
ρv · v

)
(
vsn − vn

)
�

+ ės + es∇s · vs

= �σv� · n − � jq� · n − ∇s · hqt + rqs

−
N∑

α=1

(
μα
s

�
ρνα

(
vsn − vn

)� + hα
t · ∇s μα

s

)

+
N∑

α=1

(− �μα jα� + μα
s � jα�

) · n

+ ∇s · (Pσsvs)

(26)
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The interface entropy inequality can be obtained analogous to the bulk entropy inequality Eq. (8). Let η
denote the bulk specific internal entropy and ηs denote the entropy per unit area of the interface. The external
sources of entropy are the bulk heat flux jq , surface heat flux hq and the surface heat generation rqs . Following
the pillbox procedure in Sect. 3.1 gives the interface entropy imbalance inequality,

− �
ρη

(
vsn − vn

)� + η̇s + ηs∇s · vs ≥ −


jq

T

�
· n − ∇s · h

q
t

Ts
+ rqs

Ts
(27)

where Ts is the surface temperature.
Defining the specific free energy, ψ = e − ηT and its interface equivalent, the free energy per unit area

of the interface, ψs = es − ηsTs, the free energy inequality is obtained by using the first and second laws of
thermodynamics [Eqs. (26) and (27)], assuming continuity of chemical potential across the interface, i.e.,

�μα� = 0, μα
s = μα (28)

and under the assumption of continuity of temperature, i.e.,

�T � = 0, Ts = T (29)

we get:

−

(

ρψ + 1

2
ρv · v

)
(
vsn − vn

)
�

+ ψ̇s + ηsṪs

+ ψs∇s · vs + 1

Ts
hqt · ∇s Ts

≤ − �
ρvs · v

(
vsn − vn

)� − �σ (vs − v)� · n − [∇s · (Pσs)] · vs

−
N∑

α=1

(�
ρμανα

(
vsn − vn

)� + hα
t · ∇s μα

s

)

+ ∇s · (Pσsvs)

(30)

where we have substituted for �σv� ·n from the expression derived in Eq. (121) of Appendix E. The right-hand
side indicates the work that is being done on the control volume due to surface tractions and diffusion. The
free energy increase in the system is given to be less than or equal to the right-hand side by the second law.
Substituting ∇s · (Pσsvs) = [∇s · (Pσs)] · vs + Pσs : ∇s vs, and keeping in mind that σs and P are symmetric,
we get,

−
�
ρ

(v
2

− vs
)

· v
(
vsn − vn

)� + ψ̇s + ηsṪs

+ ψs∇s · vs − σsP : (∇s vs)T

−
�

(vs − v) ·
(

ρψI − σ − ρ

N∑

α=1

μαναI

)

n

	

+
N∑

α=1

hα
t · ∇s μα

s + 1

Ts
hqt · ∇s Ts ≤ 0

(31)

Finally, we postulate that the surface free energy is a function of temperature and a scalar state variable ξs.
That is, ψs ≡ ψs(ξs, Ts). Thus, we can write,

ψ̇s(ξs, Ts) = ∂ψs

∂ξs
ξ̇s + ∂ψs

∂Ts
Ṫs (32)
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Ignoring inertial effects or the higher-order velocity terms, utilizing the derivations for (∇s vs)T and ∇s · vs
given in Appendix D, Eqs. (116) and (118), we can now rewrite Eq. (31) as

∂ψs

∂ξs
ξ̇s +

(
∂ψs

∂Ts
+ ηs

)

Ṫs

+ (ψsI − σs) P :
	
FG

−
�

(vs − v) ·
(

ρψI − σ − ρ

N∑

α=1

μαναI

)

n

	

+
N∑

α=1

hα
t · ∇s μα

s + 1

Ts
hqt · ∇s Ts ≤ 0

(33)

where
	
F is the convected time derivative of the deformation gradient defined in Eq. (117).

Since Eq. (33) has to be satisfied for arbitrary values of the rates ξ̇s,
	
F, Ṫs, the following conditions, which

are analogous to bulk definitions of Eqs. (11) and (13), have to hold:

∂ψs

∂ξs
= 0 (34)

(ψsI − σs) P = 0 (35)

ηs = −∂ψs

∂Ts
(36)

Furthermore, to satisfy Eq. (33), the following inequalities also have to hold on the interface,

−
�

(vs − v) ·
(

ρψI − σ − ρ

N∑

α=1

μαναI

)

n

	

≤ 0 (37)

hα
t · ∇s μα

s ≤ 0 ∀α (38)

hqt · ∇s Ts ≤ 0 (39)

Equation (35) implies that the rows of (ψsI − σs) are in the surface normal direction n. This in turn implies
that the quantity has unit rank with a single out-of-plane eigenvector. Thus, for arbitrary surface normal n and
hence arbitrary P, for condition Eq. (35) to hold

det (ψsI − σs) = 0 (40)

This condition is trivially achieved if the surface stress is homogeneous and isotropic, i.e., if σs = γ I. The
conditions in Eqs. (38) and (39) are satisfied by constitutive relations of the following form:

hα
t = −Mα

s ∇s μα
s (41)

hqt = −ks∇s Ts (42)

where Mα
s is a positive definite surface mobility tensor for the species α and ks is a positive definite heat

conductivity tensor on the surface. The above equations are the surface analogs of the bulk versions of Fick’s
law and Fourier’s law [Eqs. (14), (15)].

As derived in Appendix F, in the absence of inertial forces, Eq. (37) can be restated in the reference
configuration using Eq. (127),

VS · ��ν − σ I� N ≥ 0 on Γs0 (43)

where

�ν = �0 − ρ0

N∑

α=1

μα
0να

0 I (44)
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is an extension to the Eshelby energy–momentum tensor [39] �0 = (ρ0ψ0I − ∇0Uσ I), with σ I being the first
Piola–Kirchhoff stress tensor; U is the displacement in reference coordinates and Γs0 is the subsurface viewed
in the reference configuration. Eshelby also suggests �∗

0 = �0 − σ I as an energy–momentum tensor with
greater utility for estimating the force on a defect [39].

The jump ��ν − σ I� represents a conserved quantity that will integrate to zero within a homogeneous
domain. In this sense, it is an extension to the path-independent J-integral of fracture mechanics [40] to bodies
with multiple diffusing species. The conjugate to the reference interface velocity Vs, namely ��ν − σ I� N, is
the reference configurational force associated with the motion of the interface.

4 Conditions for phase growth

During the growth of the phases, Eq. (37) should be satisfied at each point on Γ and at all instants of time. It is
convenient, however, to derive the growth criterion in the reference configuration using Eq. (43), specifically
the alternative form of the equation as listed in Eq. (126). We begin by decomposing the surface velocity into
tangential and normal components in the reference configuration VS = VST + VSNN, where N is the surface
normal vector with the convention that N points from Phase − into Phase + (see Fig. 1). Thus, the left-hand
side of Eq. (43) can be written as

(
VST + VSNN

) · ��ν − σ I� N = VST ·
�

ρ0

(

ψ0 −
N∑

α=1

μα
0να

0

)

I − FTσ I

	

N

+VSNN · ��ν − σ I� N (45)

where F is the deformation gradient with the inverse F−1 = G. Simplifying, the second law condition of Eq.
(45) reduces to requiring:

− �FVST · σ IN� + VSNN · ��ν − σ I� N ≥ 0 on Γs0 (46)

In the above expression, it was possible to move VST and N inside the jump term since for a coherent interface
(see Appendix D), �N� = �VS� = 0 and hence �VSNN� = 0 leading to �VS� = �VSNN + VST� = �VST� = 0.

The relation between the normal in the reference configuration and in the current configuration is obtained
using the differential surface relation Eq. (123):

N = Js
J i

FiTn (47)

where i represents either + or − Phase and,

Js = dΓs
dΓs0

= J i
√

n · FiFiTn
(48)

We note that Js > 0, �Js� = 0 due to coherence of the interface. Also, FVST · n = 0 since by its definition

[see Eq. (47)] n = J i
Js

GiTN, and since VST · N = 0. Thus, the quantity FVST is tangential to the interface.
Therefore, using Eq. (109), we obtain

VSN = Js
J i

(vs − vi ) · n (49)

FiVST = P(vs − vi ) (50)

This last quantity P(vs − vi ) is the difference in velocity in the tangential direction between the interface and
the neighboringmaterial point. Using the definition of the first Piola–Kirchhoff stress [Eq. (124)] σ IN = Jsσn,
we can now write the first term in Eq. (46) as

FiVST · σ IN = JsP(vs − vi ) · σn (51)

The right-hand side is zero if there is no slip in the tangential direction between the surface and the adjacent
material point, that is, if P (vs − v) = 0.
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Now, treating the dissipation due to tangential slip independent of the normal velocity causing the growth,
the thermodynamic second law conditions for growth, Eq. (46), may be stated as:

VSNN · ��ν − σ I� N ≥ 0 on Γs0 (52)

−VST ·
�

FTσ I

�
N ≥ 0 on Γs0 (53)

with N · ��ν − σ I� N representing a jump in volumetric energy density. The second condition is trivially
satisfied in the absence of slip.

Recalling that the positive normal velocity points in the direction N of the interface, from the − Phase to
the + Phase in the reference configuration, we will assume a convention that Phase − is the growing phase
and therefore, VSN is positive during the growth. Although it is not necessary to choose a priori the observed
quantity, we choose the surface normal speed VSN as a macroscopic, positive observed quantity. Therefore, we
restate Eqs. (52) and (53) to require that:

N · ��ν − σ I� N ≥ 0 on Γs0 (54)

VSN = CVN N · ��ν − σ I� N on Γs0 (55)

VST = −CVT

�
FTσ I

�
N on Γs0 (56)

where CVN and CVT are arbitrary positive quantities.

4.1 Growth conditions in the current configuration

In this section, we derive an alternative form of Eq. (54) in the current configuration. Using Eq. (124) in the
interface momentum balance equation Eq. (23), ignoring inertial effects, one can write

�σ I� NdΓs0 = −∇s · (Pσs) dΓs
= − (κσsn + ∇s · σs) JsdΓs0

(57)

Substituting Eqs. (57) into (54), and utilizing Eqs. (47) and (48), we get

1

Js
N · ��ν� N + FTn√

n · FFTn
· (κσsn + ∇s · σs) ≥ 0 on Γs (58)

While the above equation is left inmixed form between current and reference configurations for ease of reading,
it is possible to express the first term in the current configuration using Eqs. (48) and (125):

1

Js
N · ��ν� N =

�√
n · FFTn

(

ρψ −
N∑

α=1

ρμανα

)

− n · F
(
FT − I

)
σn√

n · FFTn

	

(59)

Similar to the above derivation, we can derive the following condition using Eqs. (50) and (51):
�

FTσ I

�
N = Js

�
FTσ

�
n on Γs0 (60)

Thus, utilizing Eq. (50), we can write the second law condition of Eq. (53) in the current configuration as

− P(vs − vi ) · GiT
�

FTσ
�

n ≥ 0 on Γs (61)

Substituting Eq. (59) into the growth condition into Eq. (58), we get the current configuration forms of Eqs.
(54) and (55):
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gsn ≡
�√

n · FFTn

(

ρψ −
N∑

α=1

ρμανα

)

− n · F
(
FT − I

)
σn√

n · FFTn

	

+ FTn√
n · FFTn

· (κσsn + ∇s · σs) ≥ 0 on Γs (62)

(vs − vi ) · n = cvn J
i gsn on Γs (63)

P(vs − vi ) = −cvt G
iT

�
FTσ

�
n on Γs (64)

where we have used Eqs. (49) and (61) to arrive at the above conditions. cvn and cvt are arbitrary, positive
proportionality constants.

4.2 Statistical growth condition

In general, the atomistic phenomena that lead to phase nucleation and growth are statistical in nature. Thus, in
experimental observations, the growth condition of Eq. (54) requires a treatment keeping in mind the inherent
variability at microscopic length scales. Considering now Eq. (62), the alternative form of Eq. (54), we rewrite
the equation as

gsn ≡
(

H − G

l

)

≥ 0 on Γs0 (65)

where H and G are volumetric and surface energy densities, respectively, and l is a characteristic length scale
in the current configuration as explained below. The definitions of H and G follow from Eq. (62)

H
(
F, να, T

) =
�√

n · FFTn

(

ρψ −
N∑

α=1

ρμανα

)

− n · F
(
FT − I

)
σn√

n · FFTn

	

(66)

G (F, σs, T ) = −l
FTn√

n · FFTn
· (κσsn + ∇s · σs) (67)

The arguments in the above expressions explicitly indicate the independent physical variables that influence
the quantities. For ease of reading, henceforth, we will not explicitly include the arguments when referring to
these quantities. The explicit introduction of the length scale l in the definition of G nullifies the length scale
dependence inherent in the expression on the right in Eq. (62) due to the curvature and surface divergence
terms.

Since, for an applied configurational force, the observed velocity in general is influenced bymicrostructural
arrangement influenced by atomic scale uncertainty, we now consider a probabilistic treatment of the observed
velocity for a given (deterministic) configurational force. A natural choice for the probabilistic distribution
that captures the atomic uncertainty in

(
vsn − vn

)
is the Boltzmann distribution [41]. Therefore, we define the

probability density function for
(
vsn − vn

)
as

f (vsn − vn) ≡ f (cE) = f0 exp

[

−
(
cEgsnl3

kBT

)]

(68)

where kB is the Boltzmann constant, l is a characteristic length in the current configuration, and cE is a
positive non-dimensional measure that captures the uncertainty in the energy causing the interface motion.
The unknown f0 is evaluated by using the property of the probability density function

∫ ∞

0
f (cE) dcE = 1 → f0 = gsnl3

kBT
(69)

where we have used the physical requirement that gsn, l > 0. We now define a positive energy quantity E for
ease of recognition, which is dimensionally of the form:
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E = cEgsnl
3 (70)

Finally, assuming the existence of a critical value of the energy Ec, the expected surface velocity resulting
from the second law condition of Eq. (63) is:

〈
vsn − vin

〉
=

∫ ∞

Ec

(vsn − vin) f (E)dE

= cvn J
i gsn exp

[

−
(

Ec

kBT

)] (71)

with gsn as defined in Eqs. (62) and (65). The corresponding form in the reference configuration is

〈
VSN

〉 = CVN

(
N · ��ν − σ I� N

)
exp

[

−
(

Ec

kBT

)]

(72)

4.3 Application to small deformation diffusive void growth

Assuming small deformation from the definition of surface jacobian Eq. (48) we have,

J

Js
=

√
n · FFT n

=
√

n · (I + ∇uT )(I + ∇u)n

≈
√

n · (I + ∇uT + ∇u)n
J

Js
≈ √

1 + 2εnn

(73)

where ε = 1
2

(∇u + ∇uT
)
is the infinitesimal strain tensor, εnn = n · εn is the normal strain, and the

quadratic terms of ∇u are assumed to be negligible. We can now simplify Eq. (59) under assumptions of small
deformations:

1

Js
N · ��ν� N =

�√
n · FFTn

(

ρψ −
N∑

α=1

ρμανα

)

− n · F
(
FT − I

)
σn√

n · FFTn

	

≈
�

√
1 + 2εnn

(

ρψ −
N∑

α=1

ρμανα

)

− 1√
1 + 2εnn

n · ∇uσn

	

≈
�(

ρψ −
N∑

α=1

ρμανα

)

− n · ∇uσn

	

≈
�

n · �n −
N∑

α=1

ρμανα

	

(74)

where we have used the simplification F(FT − I) = FFT − F ≈ I + ∇uT + ∇u − (I + ∇uT ) = ∇u, and the
small strain assumption, εnn � 1. � is the Eshelby energy–momentum tensor defined as � = ρψI − ∇uσ .
This reduces the growth condition of Eq. (58) to,

�

n · �n −
N∑

α=1

ρμανα

	

≥ − FTn√
n · FFTn

· (κσsn + ∇s · σs)

≥ − 1√
1 + 2εnn

(I + ∇u)n · (κσsn + ∇s · σs)

(75)

Now, if the surface stress is homogeneous and isotropic (σs = γ I), and if strains are small εnn � 1, the above
equation simplifies to,
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�

n · �n −
N∑

α=1

ρμανα

	

+ κγ ≥ 0 on Γs (76)

Now, a growing phase is locally required to have negative curvature. Thus, we define a local radius of
curvature r = − 1

κ
> 0, and assuming Phase − to be void (values are zero inside the jump term), we get the

condition for diffusive void growth as

n · �n −
N∑

α=1

ρμανα − γ

r
≥ 0 on Γs (77)

Finally, applying the statistical arguments of Sect. 4.2, we arrive at the small deformation diffusive void
normal velocity as:

vsn = cvn

(

n · �n −
N∑

α=1

ρμανα − γ

r

)

exp

[

−
(

Ec

kBT

)]

. (78)

5 Criterion for phase nucleation

We model the nucleation of a new phase as the growth of an infinitesimally small embryo under the influence
of the various thermodynamic forces. The uncertainty, however, is presumed to occur in the length scale l
in Eq. (68). Consider an infinitesimal nucleus of Ωn = l3, with the bounding surface Γn . During nucleation,
for a supplied energy density, the resulting length scale l is presumed uncertain and thus, only some nuclei
will continue to grow into the second phase. That is, the configurational force gsn is deterministic, while the
characteristic volume is uncertain. Thus,

l ≥ lc (79)

with the critical length defined as lc = G
H ,G ≥ 0, H > 0. During nucleation, it is expected that the length

scale l � 1. Therefore, the length scale uncertainty that expresses through energy that varies as l2 dominates
over the energy that varies as l3. Thus, representing the energy that varies as l2 as cGGl2 (G > 0) with cG an
unknown positive constant, the uncertainty in l may be expressed using the Boltzmann distribution as

f (l) = f0 exp

[

−
(
cGGl2

kBT

)]

(80)

The required condition for nucleation is then written as the probability that the length l will exceed the
critical value lc:

P(l > lc) =
∫ ∞

lc
f (l)dl

= 1 − erf

⎡

⎣

√
cGG3

kBT

1

H

⎤

⎦

= 1 − erf

[
Ĥc

H

]

(81)

with the definition Ĥc =
√

cGG3

kBT
. Ĥc is a theoretical estimate of the characteristic value of H atwhich nucleation

will accelerate, with erf(x) being the error function. It is interesting to note the nonlinear dependence of the
characteristic value Ĥc on the surface stress on the interface. A plot of the probability of nucleation against
normalized H is shown in Fig. 3. It is clear from the figure that the probability of nucleation is practically zero
if H ≤ Hc. A one percent change in the probability value occurs when H ≈ 0.55Ĥc.

The existence of a critical value beyond which nucleation occurs rapidly is supported experimentally
[42,43]. While the value of Hc can be estimated theoretically as in the Ĥc value, in general, the theoretical
estimate may not correlate well with experimental observation due to errors in estimating the surface energy.
The surface energy of a highly curved interface will be different from the bulk surface energy calculated
for a flat surface. Thus, the value of Hc would in general be estimated experimentally. Finally, in the event
lc = G = 0, then, trivially, the probability P(l > lc) = 1.
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Fig. 3 Probability of nucleation versus H
Ĥc
. There is a sharp increase in the probability of nucleation beyond a characteristic value

H ≥ Hc. A one percent change in the probability value occurs when H ≈ 0.55Ĥc

5.1 Reduction to classical nucleation condition

In classical nucleation, the deformation and stress in the bulk are assumed negligible (pure diffusion) and that
surface stress is isotropic (σs = γ I), leading to G = −lκγ . A growing nucleus of Phase−will have a negative
total curvature; therefore, in Eq. (76), we consider rn = − 1

κ
as a characteristic radius of the growing nucleus

in the current configuration. This gives G = γ . For a viable nucleus, the right-hand side of Eq. (76) has to be
positive. Thus, Eq. (65) reduces to

rn ≥ γ

H
(82)

where

H =
�

ρψ −
N∑

α=1

ρμανα

	

(83)

H is the (deterministic) volumetric energy density for the growth of the nucleus. Specifically for a sphere, the
length scale is rn = R

2 , where R is the radius of the sphere. The above criterion describes the minimum radius
in the current configuration for viable nucleation in the presence of isotropic surface stress.

The classical nucleation theory [44,45] suggests that when embryos of the new phase are too small to
satisfy Eq. (82), they are unstable and collapse. Embryos above the critical size undergo stable growth to form
viable nuclei. Since the embryos are very small, the energy of formation is predominantly the surface energy,
varying as Gn ≈ cγ γ r2n , where cγ is a positive constant relating the defined length scale to the surface area.
For a sphere, cγ = 16π . Following the procedure of the previous section, the probability of nucleation then is

P
(
rn ≥ γ

H

)
= 1 − erf

(
Ĥc

H

)

(84)

where Ĥc =
√

cγ γ 3

kBT
. The classical nucleation theory is thus a special case of the general criterion of Eq. (81).

6 Electromigration-induced void nucleation and growth

In the context of entropic inequality, the applied electrical field provides an external power to each diffusing
species of the form jα · eα leading to modification of the constitutive equation for the bulk mass flux, Eq. (14),

jα = −Mα(∇μα + eα) ∀α (85)
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Since the free energy is a function of only the deformation gradient, temperature and concentration, it is
unaffected by the presence of the electromigration force. Similarly, the electrical field may be thought to add
an external surface power term hα

t · eα
s leading to the modification of the surface constitutive equation, Eq.

(41),

hα
t = −Mα

s (∇μα
s + eα

s ) ∀α (86)

Since electromigration force causes a contribution only to the external power, the criterion for nucleation, Eq.
(84), remains unchanged. However, since the interface is now between a void phase and a solid phase, the
nucleation criterion simplifies to:

ρψ −
N∑

α=1

ρμανα ≥ Hc (87)

where all the quantities are evaluated in the solid phase.
The experiments byLane et al. [16]maynowbe interpreted in light ofEq. (87) as follows. The dominant path

for the diffusion in copper is along the grain boundaries. Therefore, for a copper line subject to electromigration
force, the vacancy concentration at the cathode at a given time instant is independent of the adhesion energy
of the interface (between the metal and barrier layer) binding the line. As the vacancy concentration increases
at the cathode, the hydrostatic stress will also increase, and consequently, there is an increase in the chemical
potential and therefore H near the cathode.When H reaches a critical value, Hc, which depends on the adhesion
energy of the interface, a void will nucleate. Once a void nucleates, the growth of the void is governed by
the magnitude of the configurational force at the interface. Since κ is negative for a convex void, the force is
greater when the adhesion energy is smaller, and the void will grow at a faster rate at an interface with lower
adhesion energy compared to one with a stronger adhesion.

7 Application: critical energy density of Al–TiN interface

In this section, we simulate the famous Blech’s experiment [46] to estimate the critical value of (Hc) for
Al–TiN interface. Figure 4 shows a schematic of the geometry used in Blech’s experiment. The experiment
consisted of a current-carrying aluminum line deposited on a titanium nitride (TiN) layer. The ends of the
TiN layer were connected to the electrical leads. Thus, the current enters the geometry through the TiN layer,
passes through the Al line (due to the lower resistivity) and then exits once again through the TiN layer. From
a historical perspective, this experiment is important because it elucidates the mechanism behind electromi-
gration. Specifically, Blech identified a critical length of the interconnect line, for a given current density, now
called the Blech length, below which no electromigration was observed. Furthermore, he observed that the
product of the critical length and the current density was a constant. He then explained the observations by
developing a model for how the vacancy concentration gradient in the line setup by the initial electromigration
can balance the forced diffusion due to the electric current. When the vacancy concentration at the cathode is
below a critical limit, electromigration voids are not observed.

We show that using the notion of the Blech length, one can estimate the value of Hc. This then provides
an easy method to determine void nucleation criterion in metals. Figure 5 shows a portion of the geometry
that was used to simulate Blech’s experiment. The length of the Al line was chosen to be equal to 10µm. The
interface between Al and TiNwasmodeled as a distinct material with thickness equal to 0.1µm but with higher
diffusivity (see Table 1). It is known from Blech’s experiments that for Al tested in a geometry of this type, the
critical value of j L was equal to ( j L)c = 1260A/cm. In order to simulate electromigration, it is necessary

Fig. 4 Schematic of the Blech structure that was used in the simulation
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Fig. 5 Mesh of the Blech structure with the color representing the size of the elements

Table 1 Table of material properties

Material property Value

Aluminum diffusivity 1 × 10−14 m2/s
Interface diffusivity 1 × 10−6m2/s
Al Young’s modulus 70 × 109 Pa
TiN Young’s Modulus 500 × 109 Pa
Al electrical conductivity 3.774 × 107 S/m
TiN electrical conductivity 2.6 × 104 S/m

to simultaneously solve three sets of partial differential equations [10,12]: (1) the electrical charge continuity
equation, (2) the vacancy diffusion equation and (3) the stress–equilibrium equation and the coupling between
them. The stress problem was solved by modifying the elastic constitutive behavior of Al to account for the
dilational strain that is induced due to vacancy concentration variations. Electromigration was modeled by
solving an advection–diffusion equation over the Al and interface domains. Diffusion was not simulated in the
TiN region, as it is known to be resistant to electromigration.

The electrical boundary conditions in the simulations were as shown in Fig. 4. The electric potential was
applied at the ends of TiN layer corresponding to the critical current density, ( j L)c. All the boundaries were
made impervious to vacancy diffusion during the simulations. The initial vacancy concentration was assumed
to be 0.9 mol/m3 roughly corresponding to a concentration of 1 vacancy for every 106 atoms of copper. All the
boundaries were held fixed during the elastic stress analysis. The line was assumed to be initially stress-free.

Figure 6 shows the variation of H at the cathode end as a function of time. The onset of electromigration
equilibrium occurs when t ≈ 15,000 s. Figure 7 shows the spatial variation of several physical variables
in the Blech structure once vacancy concentration equilibrium was achieved. Figure 7a shows the electrical
current density, j = σ∇φ, where φ is the electrical potential and the σ is the electrical conductivity. Since the
conductivity is higher in Al compared to TiN, the current density is correspondingly higher. Figure 7b shows
the distribution of vacancy concentration. As might be expected, the vacancy concentration is higher at the

Fig. 6 Variation of H at the cathode as a function of time
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Fig. 7 Spatial variation of the various physical quantities at equilibrium

cathode than at the anode. Consequently, the hydrostatic stress is tensile at the cathode and compressive at
the anode. Due to the higher vacancy concentration and the tensile hydrostatic stress, H is also higher at the
cathode. Since it is known that it is at this value of H that voids begin to nucleate at the cathode, this H is
equal to Hc. Hence, the Blech experiment may be used to determine the value of Hc to predict void nucleation
in a material.

The simulations indicate that the value of Hc = 5.5 Joules/cm3 for the Al–TiN interface. The value of
Hc being an intrinsic property of the interface, it does not depend on the diffusivities of the materials in
the test structure. But, to accurately predict the time for void nucleation, the diffusivities through the bulk,
grain boundaries and through the metal–dielectric interfaces will need to be known. In general, as in fracture
mechanics, in a structure with multiple interfaces, the knowledge of H alone is insufficient to predict void
location since the critical value of Hc depends on the specific interface.

8 Concluding remarks

In this paper, we derived the balance laws at a moving interface, analogous to those in the bulk. The free energy
inequality on a moving interface naturally yields: (1) constitutive equations relating surface free energy to the
surface stress, (2) surface entropy to the surface free energy, (3) constitutive equation relating surface species
mass flux to the gradient of surface chemical potential and (4) surface heat flux to the gradient of surface
temperature, respectively. The derived interface second law condition was shown to lead to a configurational
force associated with the interface evolution that naturally extends the Eshelby energy–momentum tensor to
problems with species diffusion. Also, the dependence on the jump in the free energy and the elastic misfit
energy are shown to emerge naturally from the thermodynamic restrictions at the interface. This configurational
force was then used to develop the criteria for growth and nucleation of a phase in a body with multiple
diffusing species undergoing finite deformation, and with arbitrary surface stress. The interface growth and
nucleation criteria developed in the present paper are thermodynamic restrictions and as such do not presuppose
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any constitutive relation for the bulk or surface diffusional flux. The phase growth condition is statistical to
account for the statistical nature of the atomistic phenomena that lead to phase growth. Conditions for small
deformation diffusive void growth as well as the classical nucleation theory are obtained as special cases of the
developed general criteria for growth and nucleation, respectively. It is shown that a critical material-dependent
energy density that must be overcome for nucleation (Hc) naturally arises as a consequence of the statistical
distribution of nucleus sizes, and the existence of a critical nucleus size. As an application, the developed theory
is used to study inherent material resistance to void nucleation at Al–TiN interface. Through a simulation of
Blech’s experiments, the critical energy density for the interface is estimated as Hc = 5.5 Joules/cm3.

Acknowledgements This studywas partially supported by Intel Corporation and the Semiconductor Research Corporation under
Task 1292.090.

A Surface identities

Following the definitions given in [37], the surface gradient is defined using the projection tensor:

P = I − n ⊗ n (88)

where I is the identity tensor and n is the normal to the surface at the point of interest. Referring to Fig. 2,
for a scalar field φs(xs) defined on the subregion Γs of Γ , the surface gradient operator is defined to relate the
gradient of the field in its extension into the body as

∇s φs = P∇φs (89)

where the quantity ∇s φs is defined on the tangent plane at the point of interest. Similarly, for a vector field
a(xs) defined on the surface Γs, the surface gradient operator and the surface divergence operators are defined
as

∇s a = P∇a, ∇s · a = tr (∇s a) = P : ∇a (90)

Finally, for a second-order tensor field A(xs) defined on Γs, the two surface operators are similarly defined as,

∇s A = P∇A, ∇s · A = tr (∇s A) = P : ∇A (91)

The curvature tensor at any point on the surface and the total curvature are defined using the surface gradient
as

L = −∇s n, κ = tr (L) = −∇s · n (92)

where κ is the total curvature, or twice the mean value. The curvature tensor is fully tangential and symmetric.
Further, from the above relationship, it is easy to show:

∇s · P = κn (93)

This gives a useful surface divergence product rule for any second-order tensor field A(xs),

∇s · (PA) = (∇s · P) · A + P : ∇A
= κn · A + ∇s · A

(94)

We list next an identity that is useful for simplifications carried out in this paper. For smooth scalar and vector
fields φ(xs) and a(xs), respectively,

∇s · φsg = φs∇s · g + g · ∇s φs (95)

The surface divergence theorem for a tangential vector field at(xs) defined on a subregion Γs is:
∫

Γs

∇s · at dΓs =
∮

∂Γs

m · at dc (96)
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where m is tangent to the surface, but normal to the bounding curve ∂Γs. For a superficial vector field with
both normal and tangential components of the form a = ann + at such that an = a · n, the above surface
divergence theorem can be generalized using Eqs. (95) and (92) as

∫

Γs

∇s · a dΓs = −
∫

Γs

κn · a dΓs +
∮

∂Γs

m · a dc (97)

Similarly for a superficial tensor field A(xs), the divergence theorem has the form,
∫

Γs

∇s · A dΓs = −
∫

Γs

κn · A dΓs +
∮

∂Γs

m · A dc (98)

B Material time derivative of a bulk field

Given a field φ(x, t), the material time derivative of the field is defined as [38]

φ̇ = ∂φ

∂t
+ v · ∇φ (99)

Thus,

d

dt

∫

Ω

φ dΩ =
∫

Ω

φ̇ dΩ +
∫

Ω

φ ˙dΩ

=
∫

Ω

(
∂φ

∂t
+ v · ∇φ

)

dΩ +
∫

Ω

φ∇ · v dΩ

=
∫

Ω

∂φ

∂t
dΩ +

∫

Ω

∇ · φv dΩ

=
∫

Ω

∂φ

∂t
dΩ +

∫

∂Ω

φv · n dΓs

(100)

C Surface transport theorem

The surface transport theorem then gives the rate of change of a superficial scalar field, φs(xs(t), t), defined on
the interface [47]. The surface transport theorem can be derived using the concept of material time derivative:

d

dt

∫

Γs

φs dΓs =
∫

Γs

φ̇s dΓs +
∫

Γs

φs
˙dΓs (101)

By definition of material time derivative:

φ̇s (xs (t) , t) = ∂φs

∂t
+ ∂φs

∂xs
· dxs
dt

(102)

= ∂φs

∂t
+ vs · ∇φs (103)

Now, the material time derivative of the differential surface element is [38]

˙dΓs = (∇ · vs − n · ∇vsn) dΓs = P : ∇vsdΓs = ∇s · vsdΓs (104)

Thus,

d

dt

∫

Γs

φs dΓs =
∫

Γs

(
φ̇s + φs∇s · vs

)
dΓs (105)
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D Kinematics of a coherent interface

We begin with the usual definition of the velocity of a particle at a spatial location x (X, t) obtained by holding
position in the reference configuration, X, fixed,

v = ∂

∂t
x (X, t) (106)

Now, we assume that the interface convects with the body and that different material particles come to occupy
the interface at different instants of time. Hence, the interface can be viewed as evolving with time in both the
reference and current configurations. Let XS (t) denote the reference coordinate of particles on the interface
at time t . Then, the interface velocity as viewed in the reference configuration is given by [37],

VS = d

dt
XS (t) (107)

Similarly, the velocity of the interface in the current configuration is,

vs = d

dt
xs (XS (t) , t)

= ∂xs
∂t

+ ∂xs
∂XS

· dXS

dt

(108)

The first term v = ∂xs
∂t represents the velocity of a material point currently at the interface, and F = ∂xs

∂XS
is the

instantaneous deformation gradient at the spatial location xs with its corresponding reference location XS. The
subscripts on xs and XS in the definition of F serve to remind the fact that these material points currently reside
on the interface, but are free to change in any direction. The second term represents the contribution due to
interfacial motion in the reference configuration, since by Eq. (107), VS = dXS

dt is the velocity of the interface
in the reference configuration. Thus, the difference between the velocity of the interface and the velocity of a
particle currently at the interface is,

vs − v = FVS (109)

The inverse relationship is thus,

VS = G (vs − v) (110)

where G = F−1 = ∂XS
∂xs

is the inverse of the deformation gradient at a point on the interface. Furthermore,
for a coherent interface, in both the reference and current configurations, at all times, the following conditions
must be satisfied

�vs� = 0

�VS� = 0
(111)

This gives a relation for the jump in the bulk velocity across the interface,

�v� = − �vs − v� = − �F� VS (112)

where we have used �VS� = 0. Although not done in the present paper, the above condition is sometimes
further reduced by assuming that the deformation gradient jump is nonzero only in the normal direction [13].
That is,

�v� = − �F� NVSN (113)

0 = − �F� VST (114)

where VSN is the normal component of the reference interface velocity, VSN = N ·VS, and VST is the tangential
component of the reference interface velocity.

The surface gradient and surface divergence of the interface velocity are next derived. Applying the surface
gradient operation on Eq. (109), we get

∇s vs = P∇v + PGT [∇0F VS + ∇0VS FT]
(115)
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Observing that ∂
∂XS

(
∂xs
∂t

)
= ∂

∂t

(
∂xs
∂XS

)
, the above expression can be rewritten as

(∇s vs)T =
	
FGP (116)

where
	
F is the convected time derivative of the deformation gradient

	
F = ∂F

∂t
+ (∇0F VS)

T + F (∇0VS)
T (117)

Finally, using the above derivation, it is easy to show that

(∇s · vs) =
	
FG : P (118)

E Derivation for the jump in stress–velocity term

Using Eq. (109), we write the stress–velocity jump term as

�σv� · n = �σvs − σ (vs − v)� · n (119)

Denoting the average 〈〈·〉〉 = 1
2 (·− +·+), the following product relationship may be derived: �ab� = �a� 〈〈b〉〉+

〈〈a〉〉 �b�. Thus,

�σvs� · n = (
�σ � 〈〈vs〉〉 + 〈〈σ 〉〉 �vs�

) · n

= �σn� · vs
= (− �

ρv
(
vsn − vn

)� − ∇s · (Pσs)
) · vs

(120)

where we have used Eqs. (23) and (111). Thus, using Eq. (93), and substituting Eqs. (120) into (119), we get:

�σv� · n = − �
ρvs · v

(
vsn − vn

)� − �σ (vs − v)� · n − (∇s · (Pσs)) · vs (121)

F Derivation of the second law condition in the reference configuration

Writing (vs − v) = FVS, the second law condition Eq. (37) can be rewritten as,

∫

Γs

VS ·
�

FT

(

ρψI − ρ

N∑

α=1

μαναI − σ

)	

n dΓs ≥ 0 (122)

Nanson’s formula [38] is now used to relate the differential surfaces in current and reference configurations,

n dΓs = JGTN dΓs0 (123)

where J = det (F) > 0 is the Jacobian or the determinant of the deformation gradient F, G = F−1 = ∂X
∂x is

the inverse of the deformation gradient, and N is the normal to the interface in the reference configuration. By
the definition of the first Piola–Kirchhoff stress tensor,

∫

Γs

�σ � n dΓs =
∫

Γs0

�σ I� N dΓs0 (124)

leading to the expression

σ I = JσGT (125)
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Thus, expressing the integral in Eq. (122) in the reference configuration, and using the fact that Γs0 is arbitrary,
we get the second law condition in reference configuration as

VS ·
�

ρ0

(

ψ0 −
N∑

α=1

μα
0να

0

)

I − FTσ I

	

N ≥ 0 on Γs0 (126)

Using the fact that the deformation gradient F = ∂x
∂X = I + ∇0UT we can express the above condition in the

following alternative form,

VS ·
�

�0 − ρ0

N∑

α=1

μα
0να

0 I − σ I

	

N ≥ 0 on Γs0 (127)

where we have used the fact that ρ0 = Jρ. �0 = ρ0ψ0I − ∇0Uσ I is the Eshelby energy–momentum tensor
[39] in the reference configuration.
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