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Abstract We study thermal processes in infinite harmonic crystals having a unit cell with an arbitrary number
of particles. Initially, particles have zero displacements and random velocities, corresponding to some initial
temperature profile. Our main goal is to calculate spatial distribution of kinetic temperatures, corresponding
to degrees of freedom of the unit cell, at any moment in time. An expression for the temperatures is derived
from solution of lattice dynamics equations. It is shown that the temperatures are represented as a sum of two
terms. The first term describes high-frequency oscillations of the temperatures caused by local transition to
thermal equilibrium at short times. The second term describes slow changes in the temperature profile caused
by ballistic heat transport. It is shown that during heat transport, local values of temperatures, corresponding
to degrees of freedom of the unit cell, are generally different. Analytical findings are supported by results of
numerical solution of lattice dynamics equations for diatomic chain and graphene lattice. Strong anisotropy
of ballistic heat transport in graphene is demonstrated. Presented theory may serve for description of unsteady
ballistic heat transport in real crystals with low concentration of defects. In particular, solution of the problem
with sinusoidal initial temperature profile can be used for proper interpretation of experimental data obtained
by the transient thermal grating technique.

Keywords Ballistic heat transport · Ballistic limit · Heat transfer · Thermal waves · Harmonic crystal ·
Harmonic approximation · Polyatomic crystal lattice · Complex lattice · Kinetic temperature · Transient
processes · Temperature matrix · Energy transport · Graphene · Anisotropy

1 Introduction

At macroscale, heat transport in solids is usually diffusive and well-described by the Fourier law. The law
states that heat flux is proportional to temperature gradient with proportionality coefficient referred to as
the thermal conductivity. Recent experiments for materials with low defect concentration have shown that at
micro- and nanoscale heat propagates ballistically [12,15,31,65]. In particular, it is demonstrated for many
materials including nanowires [3,31], nanotubes [14], graphene [6,60,76], silicon membranes [36], etc., that
thermal conductivity strongly depends on sample size and the Fourier law is violated. Therefore development
of theoretical models describing ballistic heat transport is required.
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In continuum mechanics, heat transfer equations are usually derived using phenomenological approach.
Development of phenomenological models for ballistic heat transport is limited by small amount of available
experimental data. In this case, various microscopic models can be used for derivation of constitutive laws
describing ballistic heat transport. One of microscopic approaches is based on Boltzmann transport equa-
tion (BTE), formulated for distribution function of phonons [47,61]. Given known the distribution function,
the temperature field can be calculated. The BTE is usually simplified using the relaxation time approximation
[9,39,47] for the collision term. It allows to solve the BTE numerically [32,56,68] and to derive heat con-
duction equations [13,44,59,75]. In both cases, additional approximations are introduced [70]. In particular,
contribution of optical vibrations to heat transport is often neglected. Comprehensive review on application
of the BTE to simulation of thermal transport can be found, e.g. in review papers [12,52,70]. In the present
paper, we use another approach for description of ballistic heat transport. Expressions describing evolution
of temperature profile are derived directly from equations of motion of a crystal in harmonic approximation.
This approach allows to investigate heat transport in ballistic limit taking into account all important features
of lattice dynamics.

Analysis of heat transport in lattices is usually carried out in the so-called nonequilibrium steady-state. In
this case, a material is kept between two thermostats with different temperatures. Given known the difference
of temperatures, distance between thermostats, and the heat flux, one can calculate the effective heat conduc-
tivity of a material. This statement of the problem is widely used in both analytical studies [7,53,66,71] and
computer simulations [18,37,52,74] of heat transport. Comprehensive reviews of results obtained in steady-
state formulation are given e.g. in papers [11,17,52]. Calculating heat conductivity as a function of a sample
length, allows to distinguish between ballistic and diffusive heat transport regimes. However, the steady-state
formulation does not address the issue of temperature field evolution. Additionally, results of steady-state
simulations significantly depend on the type of thermostat being used [29,37]. Therefore in the present paper
we consider unsteady heat transport.

One of the goals of unsteady heat transport simulations is to describe time evolution of initial tem-
perature profile. The initial profile can be prescribed by assigning random initial velocities to particles
[5,21,25,27,41,50,55,63,69]. Then no thermostat is needed. Heat transport simulations are usually carried
out numerically using, for example, molecular dynamics method [24,45,54,62,72]. The method allows to use
realistic interatomic potentials and to consider effect of nonlinearity (anharmonicity), defects, interfaces, and
other features of real systems, which are hard to describe analytically. Though numerical modeling is a pow-
erful tool for investigation of heat transport, many issues can not be addressed numerically. In particular, for
crystals with several branches of dispersion relation, in numerical simulations it is hard to distinguish between
contributions of acoustic and optical vibrations to the heat transport. Therefore analytical studies of unsteady
heat transport are of great importance.

A promising model for investigation of ballistic heat transport is a harmonic crystal, i.e. a set of material
points forming a perfect crystal lattice and interacting via linearized forces. In this model, harmonic waves do
not interact with each other and therefore the heat transport is purely ballistic. Unsteady ballistic heat transport
in harmonic crystals is investigated e.g. in papers [5,21,25,27,41,43,50,55,63,69]. In paper [41], an equation,
referred to as the ballistic heat equation, describing evolution of temperature field in a one-dimensional chain
with interactions of the nearest neighbors is derived. The equation is also valid [5] for one-dimensional chain
with harmonic on-site potential (elastic foundation). An expression for temperature field in scalar lattices
with one degree of freedom per unit cell is derived in paper [50]. Similar results are obtained by entirely
different means in papers [27,55]. In realistic crystals, each unit cell usually has several degrees of freedom.
To our knowledge, no closed-form expressions describing evolution of temperature field in crystals with several
degrees of freedom per unit cell are available in literature.

Themain goal of the present paper is to calculate spatial distribution of kinetic temperatures, corresponding
to degrees of freedom of the unit cell, at any moment in time. The paper is organized as follows. In Sect. 3,
equations of motion for harmonic crystals are represented in a general form valid for one-, two-, and three-
dimensional lattices with arbitrary number of particles per unit cell. In Sect. 4, random initial conditions
corresponding to an initial temperature profile are formulated. In Sect. 5, an exact solution of equations of
motion is derived. The solution is used for calculation of temperatures, corresponding to different degrees of
freedom, defined in Sect. 6. In Sect. 7, an exact expression describing temporal and spatial evolution of the
temperatures is obtained. In Sect. 8, simple approximate formula for the temperatures is derived. In Sect. 9,
analysis of specific initial temperature profiles is presented. In particular, decay of a spatially sinusoidal profile
of initial temperature is considered in Sect. 9.5. This problem is important, because it is closely related to
experimental technique referred to as the transient thermal grating (TTG) [33,36,67]. In the framework of the
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TTG, a sinusoidal initial temperature profile is generated using the interference of two laser pulses. Decay of
temperature profile yields information about thermal properties of a material. Results obtained in Sects. 5–9
are applicable to crystals with an arbitrary lattice. In Sects. 10, 11 the general theory is employed for analysis
of two particular cases, namely one-dimensional diatomic chain and graphene lattice. Analytical results are
compared with numerical solution of lattice dynamics equations.

2 Nomenclature

Here and below matrices are denoted by bold italic symbols, while invariant vectors, e.g. position vector, are
denoted by bold symbols. The following notation is used:

• N is a number of degrees of freedom per unit cell;
• x, y are position vectors of unit cells;
• aα is vector connecting unit cell with neighboring cell number α;
• d is space dimensionality;
• b j , j = 1, . . . , d are primitive vectors of the lattice;
• b̃ j , j = 1, . . . , d are vectors of the reciprocal basis;
• u(x), v(x) are columns of length N , consisting of components of displacements and velocities of particles
from unit cell x;

• u j , j = 1, . . . , N are components of column u;
• v0(x) is column of initial velocities of particles from unit cell x;
• Cα is a matrix describing interactions between a unit cell and neighboring cell number α;
• M is diagonal matrix composed of masses of particles from a unit cell;
• k is wave vector;
• ω j (k), v j

g(k) are j th branch of dispersion relation and corresponding group velocity;
• Ω(k) is dynamical matrix of the lattice;
• P(k) is polarization matrix, composed of normalized eigenvectors of dynamic matrix Ω(k);
• T (x) is kinetic temperature, proportional to mathematical expectation of kinetic energy of the unit cell;
• T (x) is N × N temperature matrix of unit cell x;
• T0(x) is initial temperature matrix of unit cell x;
• Ti j is element i, j of the temperature matrix;
• TF, TS are “fast” and “slow” parts of the temperature matrix;

•
〈
...
〉
stands for mathematical expectation;

• � is transpose sign;
• E is N × N identity matrix;
• δD(x − y) is equal to 1 for x = y and equal to zero otherwise;
• δi j is the Kronecker delta;
• δ(x) is Dirac delta function in d-dimensional space;
• H is Heaviside step function.

3 Equations of motion of a crystal

We consider infinite crystals in d-dimensional space, d = 1, 2, 3. Unit cell of a crystal contains an arbitrary
number of particles. In this section, we represent equations of motion of the unit cell in a matrix form [51],
convenient for analytical derivations.

Unit cells of the lattice are identified by their position vectors, x, in the undeformed state.1 Each unit cell
has N degrees of freedom ui (x), i = 1, . . . , N , corresponding to components of particle displacements.2 The
displacements form a column:

u(x) = [
u1 u2 ... uN

]�
, (1)

where � stands for the transpose sign.

1 For analytical derivations, position vectors are more convenient than indices, because number of indices depends on space
dimensionality.

2 N is equal to number of particles in the unit cell multiplied by number of degrees of freedom per particle.
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Fig. 1 Example of a two-dimensional lattice with three particles per unit cell (three sublattices). Particles forming sublattices
have different color and size (color figure online)

Particles from the cell x interact with each other and with particles from neighboring unit cells, numbered
by indexα. Vector connecting the cell xwith neighboring cell numberα is denoted aα . Vectors aα are numbered
such that the following identity is satisfied:

aα = −a−α. (2)

Here a0 = 0. Vectors aα for a sample lattice are shown in Fig. 1.
In the present paper, an infinite crystal is considered as a limiting case of a crystal under periodic boundary

conditions. A periodic cell contains nd unit cells (n cells in each direction). Displacements of particles satisfy
periodic boundary conditions:

u(x) = u

⎛
⎝x +

d∑
j=1

γ j nb j

⎞
⎠ , (3)

where b j are primitive vectors of the lattice; γ j are integers. Further analytical derivations are carried out
for n → ∞, while in computer simulations n is finite.

We represent equations of motion in a quite general form, applicable to one-, two-, and three-dimensional
lattices with an arbitrary number of degrees of freedom per unit cell. In harmonic crystals, the total force acting
on each particle is represented as a linear combination of displacements of all other particles. Using this fact,
we write equations of motion of the unit cell in the form [51,55]:

M v̇(x) =
∑
α

Cαu(x + aα), Cα = C�−α, (4)

where v = u̇; u(x + aα) is a column of displacements of particles from unit cell α; M is diagonal N × N
matrix composed of particles’ masses; coefficients of matrix Cα determine stiffnesses of springs connecting
particles from unit cell x with particles from neighboring cell α; matrix C0 describes interactions of particles
inside the unit cell x.3 In formula (4) summation is carried out with respect to all unit cells α, interacting with
unit cell x (including α = 0).

Remark 1 Relation Cα = C�−α guarantees that dynamical matrix (10) of the lattice is Hermitian (see Sect. 5
for more details).

Formula (4) describes motion of monoatomic and polyatomic crystals in one-, two- , and three-dimensional
cases. For N = 1 (one degree of freedomper unit cell), Eq. (4) governs dynamics of the so-called scalar lattices,4

considered, for example, in papers [27,50,52,55,57,58]. Monoatomic two- and three-dimensional lattices are
covered if we put N = d and Cα = C�

α in formula (4). In the present paper, for illustration we consider
crystals with two particles per unit cell, namely one-dimensional diatomic chain (Sect. 10) and out-of-plane
motions of graphene lattice (Sect. 11).

3 Additionally, matrix C0 may include stiffnesses of harmonic on-site potential.
4 In scalar lattices each particle has only one degree of freedom. This model is applicable to monoatomic one-dimensional

chains with interactions of arbitrary number of neighbors and to out-of-plane motions of monoatomic two-dimensional lattices.
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4 Initial conditions

In this section, we specify initial conditions for particles, corresponding to an initial temperature profile.
The following initial conditions, typical for molecular dynamics modeling of thermal processes [2,5,21,

25,41,50,63,69], are used:
u(x) = 0, v(x) = v0(x), (5)

Here v0(x) is a column of random initial velocities of particles from unit cell x such that
〈
v0(x)

〉
= 0,

〈
v0(x)v0(y)�

〉
= B(x)δD(x − y), (6)

where
〈
...
〉
stands for mathematical expectation;5 δD(0) = 1; δD(x − y) = 0 for x �= y. In other words,

components of v0(x) are random numbers with zero mean6 and generally different variances given by diag-
onal elements of matrix varvecB(x) = 〈v0(x)v0(x)�〉. Off-diagonal elements of matrix B(x) are equal to
covariances of initial velocities, corresponding to different degrees of freedom of unit cell, x. Initial velocities
of particles from different unit cells are statistically independent.

From macroscopic point of view, initial conditions (5), (6) specify some initial temperature profile [see
formulas (17), (18)] and zero initial heat fluxes.7 Examples of initial conditions (5), (6) are given by formu-
las (48), (62). Initial conditions (5), (6) can be considered as a result of heating of a crystal by an ultrashort
laser pulse [33,34,36,64,67].

In the following section, an exact solution of equations of motion (4) with initial conditions (5) is obtained.
The solution is employed for description of thermal processes, such as the ballistic heat transport.

5 Exact solution of equations of motion

In this section, we derive an exact solution of Eq. (4) with initial conditions (5), (6) using the discrete Fourier
transform with respect to components of position vector x.8

Position vector, x, of a unit cell is represented as

x =
d∑
j=1

z jb j , (7)

where b j , j = 1, . . . , d are primitive vectors of the lattice; z1, . . . , zd are integer indices of the unit cell; d is
space dimensionality. Direct and inverse discrete Fourier transforms with respect to variables z1, .., zd for an
infinite lattice are defined as

û(k) =
∑
x

u(x)e−ik·x, k =
d∑
j=1

p j b̃ j ,

u(x) =
∫

k
û(k)eik·xdk.

(8)

Here û(k) is Fourier image of u; i2 = −1; k is wave vector; p j ∈ [0; 2π]; b̃ j are vectors of the reciprocal
basis, i.e. bi · b̃ j = δi j , where δi j is the Kronecker delta. For brevity, the following notation is used:

∫

k
...dk def= 1

(2π)d

∫ 2π

0
..

∫ 2π

0
...dp1..dpd ,

∑
x

...
def=

+∞∑
z1=−∞

...

+∞∑
zd=−∞

... (9)

5 In computer simulations, mathematical expectation is approximated by average over realizations with different random initial
conditions.

6 In this case mathematical expectations of all velocities are equal to zero at any moment in time.
7 Heat flux in a lattice is proportional to covariance of force and velocity (see e.g. paper [41]). Since initial displacements are

equal to zero then forces and fluxes vanish.
8 In fact, while using the discrete Fourier transform, we assume periodic boundary conditions in all directions and consider

the limit of infinite size of the periodic cell.
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Applying the discrete Fourier transform (8) to formulas (4), (5), (6), yields equation

M
1
2 ¨̂u = −ΩM

1
2 û, Ω(k) = −

∑
α

M− 1
2CαM− 1

2 eik·aα , (10)

with initial conditions
û = 0, ˙̂u = v̂0 =

∑
x

v0(x)e−ik·x. (11)

Matrix Ω in formula (10) is the dynamical matrix of the lattice [19]. Here M
1
2 M

1
2 = M.

To simplify Eq. (10), we use the fact that dynamical matrix Ω is Hermitian, i.e. it is equal to its own
conjugate transpose.9 Then it can be represented as

Ω = PΛP∗�, �i j = ω2
jδi j , (12)

where ω2
j , j = 1, . . . , N are eigenvalues of matrix Ω and ω j (k) are branches of dispersion relation for the

lattice (below we consider only nonnegative frequencies, i.e. ω j (k) ≥ 0); ∗ stands for complex conjugate;
matrix P is composed of normalized eigenvectors of matrix Ω .10 The eigenvectors are referred to as the
polarization vectors [19].

Remark 2 We assume that branches of dispersion relation do not intersect with each other, i.e. all eigenvalues
of the dynamic matrix Ω are distinct. The case of intersecting branches should be considered separately.

We substitute formula (12) into Eq. (10), multiply both parts by P∗� and introduce new variable w =
P∗�M

1
2 û. Then we obtain a system of decoupled equations for elements w j of vector w:

ẅ = −Λw ⇔ ẅ j = −ω2
jw j . (13)

Solving these equations with initial conditions (11) we obtain the following expression for ẇ:

ẇ j = {P∗�M
1
2 v̂0} j cos

(
ω j t

) ⇔ ẇ = DP∗�M
1
2 v̂0, Di j (k, t) = cos

(
ω j (k)t

)
δi j . (14)

Here {...} j stands for j th element of a column. Then using definition of w, we represent Fourier-images of
velocities in the form

v̂ = M− 1
2 P DP∗�M

1
2 v̂0. (15)

Applying the inverse discrete Fourier transform to formula (15), yields the following expression for particle
velocities:

v(x) = M− 1
2

∫

k
P(k)D(k, t)P(k)∗�M

1
2 v̂0e

ik·xdk, (16)

where v̂0 is Fourier image of initial velocities [see formula (11)]; diagonal matrix D is defined by formula (14).
Thus formula (16) is an exact solution of Eq. (4) with initial conditions (5). In the following sections,

temperature profile is calculated using solution (16).

6 Kinetic temperature and temperature matrix

Since initial conditions (5), (6) are random then particle velocities given by formula (16) are also random.
Following [40–42] we consider an infinite number of realizations of initial conditions (5), (6). It allows to
introduce statistical characteristics such as kinetic temperature.

In harmonic crystals, kinetic temperatures, corresponding to degrees of freedom of the unit cell, are gen-
erally different (see, e.g., Figs. 4, 5, 6). Therefore in order to characterize thermal state of the unit cell, x, we
use N × N matrix, T (x), further referred to as the temperature matrix [51]:

kBT (x) = M
1
2

〈
v(x)v(x)�

〉
M

1
2 ⇔ kBTi j = √

MiMj

〈
viv j

〉
, (17)

9 It can be proven using identity (2) and the second formula from (4).
10 Matrix P is unitary, i.e. P P∗� = E, where E is identity matrix.



Unsteady ballistic heat transport in harmonic crystals 1579

where Mi is i-th element of matrix M, equal to a mass corresponding to i-th degree of freedom of the unit cell;

kB is the Boltzmann constant; brackets
〈
..
〉
stand for mathematical expectation. Diagonal element, Tii , of the

temperature matrix is referred to as kinetic temperature, corresponding to i-th degrees of freedom of the unit
cell. Off-diagonal elements, Ti j , characterize correlation between components, i, j , of velocity column, v(x).

We also use conventional kinetic temperature, T , proportional to the total kinetic energy of the unit cell:

T (x) = 1

N
trT (x) = 1

N

N∑
i=1

Tii (x), (18)

where N is a number of degrees of freedom per unit cell, tr(..) stands for trace (sum of diagonal elements). If
kinetic energy is uniformly distributed among degrees of freedom of the unit cell then kinetic temperatures,
corresponding to all degrees of freedom of the unit cell, are equal to T .

7 Exact formula for the temperature matrix

7.1 The general case

In this section, we derive an exact expression for the temperature matrix using the solution (16) of lattice
dynamics equation.

To calculate temperature matrix, we substitute solution (16) into definition (17):11

kBT (x) =
∫

k1

∫

k2
P1D1P∗�

1 M
1
2

〈
v̂0(k1)v̂0(k2)∗�〉M 1

2 P2D2P∗�
2 ei(k1−k2)·xdk1dk2. (19)

Here and below P j = P(k j ), D j = D(k j ), j = 1, 2.
Initial conditions (5), (6) are such that initial velocities of any pair of unit cells y1, y2 are uncorrelated.

Therefore the following identity is satisfied

〈
v0(y1)v0(y2)∗�〉 = M− 1

2 kBT0(y1)δD(y1 − y2)M− 1
2 . (20)

Here T0 is the initial temperature matrix, which is calculated by substituting initial velocities, v0(x), into
formula (17); δD is defined after formula (6). Using formula (20), we make the following transformations:

〈
v̂0(k1)v̂0(k2)∗�〉 =

∑
y1,y2

〈
v0(y1)v0(y2)∗�〉e−i(k1·y1−k2·y2)

= kB
∑
y

M− 1
2 T0(y)M− 1

2 e−i(k1−k2)·y.
(21)

Then substitution of formula (21) into (19), yields

T (x, t) =
∫

k1

∫

k2

∑
y

P1D1P∗�
1 T0(y)P2D2P∗�

2 ei(k1−k2)·(x−y)dk1dk2. (22)

Formula (22) is an exact expression for the temperature matrix.

Remark 3 Formula (22) for the temperature matrix is symmetric with respect to time, i.e. invariant with respect
to substitution t by −t . This fact follows from the same property of equations of motion (4).

11 Here the following identities were used:
∫
k F(k)dk

∫
k F∗�(k)dk = ∫

k1

∫
k2

F(k1)F∗�(k2)dk1dk2 and v = v∗.
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The temperature matrix can be exactly represented as a sum of “fast” and “slow” terms:

T = TF + TS, TF(x) =
∫

k1

∫

k2

∑
y

P1T ′
FP

∗�
2 ei(k1−k2)·(x−y)dk1dk2,

TS(x) =
∫

k1

∫

k2

∑
y

P1T ′
SP

∗�
2 ei(k1−k2)·(x−y)dk1dk2,

{T ′
F}i j = 1

2
{P∗�

1 T0(y)P2}i j
[
cos

(
(ωi (k1) + ω j (k2))t

) + (1 − δi j ) cos
(
(ωi (k1) − ω j (k2))t

)]
,

{T ′
S}i j = 1

2
{P∗�

1 T0(y)P2}i jδi j cos
(
(ω j (k1) − ω j (k2))t

)
.

(23)

Here {...}i j is element i, j of the matrix. The representation (23) is based on the observation that TF and
TS have different characteristic time scales. The difference of time scales is most clearly demonstrated by
example, considered in Sect. 9.5. Physical meaning of TF and TS is discussed in Sect. 8.

Exact formulas (22), (23) for the temperature matrix require intensive calculations (double integration with
respect to wave vectors k1,k2 and summation with respect to all unit cells). Therefore in Sect. 8 we present a
simple approximate formula for the temperature matrix.

7.2 Example: monoatomic one-dimensional chain

For illustration, consider a simple particular case, namely a one-dimensional chain consisting of identical
particles. Then unit cell of the lattice contains one particle with one degree of freedom (N = 1). In this
case, temperature matrix has only one element, equal to conventional kinetic temperature, T (x, t). Exact
formula (22) for the temperature takes form:

T (x, t) =
∑
y

T0(y)
∫

k1

∫

k2
cos

(
ω(k1)t

)
cos

(
ω(k2)t

)
cos

(
(k1 − k2) (x − y)

)
dk1dk2. (24)

According to formula (23), “fast” and “slow” parts of the temperature are defined as

TF(x, t) =
∑
y

T0(y)

2

∫

k1

∫

k2
cos ((ω(k1) + ω(k2)) t) cos ((k1 − k2) (x − y)) dk1dk2,

TS(x, t) =
∑
y

T0(y)

2

∫

k1

∫

k2
cos ((ω(k1) − ω(k2)) t) cos ((k1 − k2) (x − y)) dk1dk2.

(25)

Double integral in the right side is a contribution of particle y to temperature of particle x . It is represented
as a superposition of harmonic waves with wave vectors k1 − k2 and frequencies ω(k1) + ω(k2) (in the fast
term), ω(k1) − ω(k2) (in the slow term).

8 Approximate formula for the temperature matrix: fast and slow thermal processes

Themain result of the present paper is the following approximate formula for the temperaturematrix (derivation
is presented in “Appendix”):

T = TF + TS, TF ≈
∫

k
PT̃FP∗�dk, TS ≈

∫

k
PT̃SP∗�dk,

{T̃F}i j = 1

2
{P∗�T0(x)P}i j

[
cos

(
(ωi + ω j )t

) + (1 − δi j ) cos
(
(ωi − ω j )t

)]
,

{T̃S}i j = 1

4

{
P∗� (

T0(x + v j
gt) + T0(x − v j

gt)
)
P
}
j j

δi j .

(26)
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Here P = P(k); v j
g is the group velocity corresponding to j-th branch of dispersion relation, ω j :12

v j
g = dω j

dk
=

d∑
i=1

∂ω j

∂pi
bi , k =

d∑
i=1

pi b̃i . (27)

Since formula (26) contains only a single integral with respect to k, it is significantly more convenient for
analysis and calculations than exact expression (23).

Remark 4 Function T0 is originally defined on a discrete set of position vectors, x, of unit cells [see for-
mula (17)], while argument of this function x± v j

gt in formula (26) changes in space continuously. Therefore
further we assume that T0 can be defined for the whole space in such a way that at points x it coincides with
values given by formula (17) and slowly changes at distances of order of lattice constant.

The first term, TF, in formula (26) describes short time behavior of the temperature matrix (fast process
[40,50,51]). At short times, the temperature matrix oscillates. The oscillations are caused by redistribution of
energy among kinetic and potential forms and redistribution of energy among degrees of freedom of the unit
cell. These oscillations at different spatial points are independent. At large time scale TF tends to zero.

The second term, TS, in formula (26) describes large time behavior of the temperature matrix (slow process
[41,42,50]). At large time scale, changes in the temperature profile are caused by ballistic heat transport. The
temperature matrix is represented as a superposition of waves traveling with group velocities v j

g(k). Shapes
of the waves are determined by initial temperature profile T0. Note that according to formula (26), accurate
description of ballistic heat transport requires knowledge of the dispersion relation and corresponding group
velocities.

Remark 5 Approximate formula (26) for the temperature matrix have the same property as the exact for-
mula (22). It is symmetric with respect to time, i.e. substitution t by −t . At the same time, analysis of
formula (26) and results of numerical simulations suggest that thermal processes in infinite harmonic crystals
are irreversible.

Remark 6 According to formula (23), the temperature matrix of the unit cell x at any moment in time depends
on initial temperatures of all other unit cells. This fact is a consequence of infinite propagation speed of
disturbances in discrete systems described by equations of motion (4). In contrast, approximate formula (26)
does not contain this artifact. According to formula (26), temperature matrix of the unit cell x at time t depends

on initial temperature matrices of unit cells which are not farther from cell x than maxk, j

(
|v j

g|
)
t .

Remark 7 Comparison of formula (26) with results of paper [51] shows that TS(x) at t = 0 is equal to the equi-
librium value of the temperature matrix in the uniformly heated crystal with initial temperature matrix T0(x).
Therefore, at short times, each point of a crystal tends to local thermal equilibrium. However, at large times,
ballistic heat transport leads to substantial deviation from thermal equilibrium (see examples in Sects. 10.3,
10.4).

The majority of further results follows from the general formula (26).

9 Specific profiles of initial temperature

In this section, we apply general solution (26) to several particular initial temperature profiles. The results are
valid for a wide class of one-, two-, and three-dimensional crystals described by equations of motion (4).

9.1 Uniform initial temperature profile

In this subsection, we consider spatially uniform distribution of initial temperature (T0 is independent of x).
In this case changes in the temperature matrix are caused by two physical processes accompanying transi-
tion of the system to thermal equilibrium: redistribution of energy between kinetic and potential forms and

12 For each value of the wave vector, k, and for each branch, j , there are positive and negative frequencies (except ω j = 0). In
formula (27), positive frequencies ω j , j = 1, . . . , N are used.
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redistribution of energy between degrees of freedom. These processes are usually observed in the beginning
of molecular dynamics simulations [2]. Analytical description of these processes for several specific one-
and two-dimensional monoatomic lattices is presented in papers [4,40,48–50]. Generalization for the case of
polyatomic crystals is carried out in paper [51]. In these works, the approach, originally proposed in paper
[40] and based on analysis of velocity covariances, is used. Here we show that identical results follow from
formula (26) derived from solution of lattice dynamics equations.

In the case of spatially uniform distribution of temperature matrix (T0 = const), formula (26) reads

TF =
∫

k
PT̃FP∗�dk, TS =

∫

k
PT̃SP∗�dk,

{T̃F}i j = 1

2
{P∗�T0P}i j

[
cos

(
(ωi + ω j )t

) + (1 − δi j ) cos
(
(ωi − ω j

)
t)
]
.

{T̃S}i j = 1

2
{P∗�T0P} j jδi j .

(28)

Expressions (28) coincide with exact formulas for the temperature matrix, obtained in paper [51] by entirely
different means. In particular, the expression for TS coincides with equilibrium value of the temperature matrix
[51].

Therefore in the case of spatially uniform distribution of temperature, formula (26) is exact.

9.2 Initial equipartition

In this section, we consider the case, when initial kinetic temperatures, corresponding to all degrees of freedom
of the unit cell, are equal. Then initial temperature matrix is isotropic,13 i.e. T0 = T0(x)E, where E is the
identity matrix. Substitution of this expression into formula (26) yields:

TF =
∫

k
PT̃FP∗�dk, TS =

∫

k
PT̃SP∗�dk,

{T̃F}i j = 1

2
T0(x)δi j cos(2ω j t), {T̃S}i j = 1

4

(
T0(x + v j

gt) + T0(x − v j
gt)

)
δi j .

(29)

The kinetic temperature, proportional to trace of the temperature matrix (29), has form

T = TF + TS, TF = T0(x)
2N

N∑
j=1

∫

k
cos(2ω j t)dk,

TS = 1

4N

N∑
j=1

∫

k

(
T0
(
x + v j

gt
) + T0

(
x − v j

gt
))

dk.

(30)

Remark 8 For scalar lattices (N = 1), formula (30) coincides with the result obtained in paper [50]. In paper
[50] the expression for temperature is derived by approximate solution of equation for covariances of velocities,
while in the present paper it is derived from solution of lattice dynamics equations.

Remark 9 Expression for TS in formula (30) is also consistent with results obtained in paper [55] by entirely
different means. In paper [55], the expression for the total energy of the unit cell at large times is derived. At
large times, kinetic and potential energies equilibrate [40,51] and therefore behavior of the total energy and
kinetic temperature are similar.

Formula (29) shows that the temperature matrix for t > 0 is generally not isotropic, i.e. local values of
temperatures, corresponding to degrees of freedom of the unit cell, are different even though initially they are
equal. Further, this important fact is illustrated by Figs. 4, 5, 6.

13 Matrix is called isotropic if it is diagonal and all elements on the diagonal are equal.
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9.3 Fundamental solution, heat front, and the Huygens principle

In this subsection, we derive fundamental solution of ballistic heat transport problem and show how it can be
used for reconstruction of the heat front in the case of an arbitrary initial temperature profile.

The following spatial distribution of initial temperature matrix is considered

T0(x) = Aδ(x)E, (31)

where δ(x) is Dirac delta function; A is a constant. Distribution of kinetic temperature at large times is given
by formula (30):

T ≈ TS = A

4N

N∑
i=1

∫

k

(
δ(x + vigt) + δ(x − vigt)

)
dk. (32)

Nonzero contribution to integral (32) comes from values, k∗
i j , of wave vector such that argument of the delta

function vanishes:
vig(k

∗
i j ) = x

t
or vig(k

∗
i j ) = −x

t
. (33)

Here j = 1, . . . , ni , where ni is the number of real roots of Eq. (33) for i th branch of dispersion relation. Then
calculation of integrals in formula (32) yields

T = A

4N (2π)d td

N∑
i=1

ni∑
j=1

1

| det Gd
i (k

∗
i j )|

, (34)

where summation is carried out with respect to all real roots k∗
i j , i = 1, . . . , N , j = 1, . . . , ni of Eq. (33);14

det(...) stands for determinant of a matrix; Gd
i is the Jacobian matrix in d-dimensional case:

G1
i = ∂vig

∂p
, G2

i =
⎡
⎣

∂vigx
∂p1

∂vigx
∂p2

∂vigy
∂p1

∂vigy
∂p2

⎤
⎦ , G3

i =

⎡
⎢⎢⎢⎣

∂vigx
∂p1

∂vigx
∂p2

∂vigx
∂p3

∂vigy
∂p1

∂vigy
∂p2

∂vigy
∂p3

∂vigz
∂p1

∂vigz
∂p2

∂vigz
∂p3

⎤
⎥⎥⎥⎦ , (35)

where vigx , v
i
gy, v

i
gz are components of vector of group velocity vig(k).

Note that k∗
i j in formula (34) is a function of x/t , implicitly given by Eq. (33). Therefore the fundamental

solution multiplied by td is a self-similar function of x/t . This fact clearly shows the difference between
ballistic and diffusive heat transport regimes. In the latter case, fundamental solution depends on x/

√
t .

Remark 10 For one-dimensional and two-dimensional scalar lattices (N = 1) fundamental solutions are
obtained in papers [41,50]. These solutions coincide with particular cases of formula (34).

Remark 11 Fundamental solution (34) can be used for calculation of temperature field in a crystal subjected to
point heat supply of constant intensity. In papers [21,22] it is demonstrated that the temperature field is equal
to integral of the fundamental solution with respect to time.

Consider motion of the heat front, corresponding to the fundamental solution, i.e. a boundary of a region with
nonzero temperature. Since the group velocity is usually bounded then from formulas (33), (34), it follows
that the heat front, corresponding to fundamental solution, is a d-dimensional sphere given by

|x| = t max
k, j

|v j
g(k)|. (36)

In other words, in all lattices the heat front, corresponding to fundamental solution, propagates equally in all
directions with finite speed equal to the maximum group velocity (see, e.g., Fig. 9).

Formula (36) allows to use the Huygens principle for reconstruction of the heat front in the case of an
arbitrary initial temperature profile. Heat front at time t is a surface tangent to set of spheres with centers at
all points of initial front and radii being equal to t maxk, j |v j

g(k)|.
14 Components of k∗

i j belong to interval [0; 2π].
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9.4 Thermal contact of cold and hot half-spaces

Consider thermal contact of two half-spaces with initial temperatures Tb and Tb + 	T . This problem is
important, because it is closely related to classical definition of temperature [30]. By the definition, temperatures
of two bodies in thermodynamic equilibrium are equal. The problem considered below demonstrates the
transition to thermodynamic equilibrium.

The initial temperature distribution in direction, given by unit vector e, has form:

T0 = (
Tb + 	T H(x)

)
E, x = x · e, (37)

where H is the Heaviside function. Substituting formula (37) into (29), yields

{T̃F}i j = 1

2

(
Tb + 	T H(x)

)
δi j cos(2ω j t),

{T̃S}i j = Tb
2

δi j + 	T

4

(
H
(
x + v j

g · et
)

+ H
(
x − v j

g · et
))

δi j .

(38)

Computing kinetic temperature by formulas (29), (38) and using the property of Heaviside function H(ax) =
H(x), a > 0, yields

T = TF + TS, TF = 1

2N

(
Tb + 	T H(x)

) N∑
j=1

∫

k
cos(2ω j t)dk,

TS
( x
t

)
= Tb

2
+ 	T

4N

N∑
j=1

∫

k

(
H
( x
t

+ v j
g · e

)
+ H

( x
t

− v j
g · e

))
dk.

(39)

Formula (39) shows that slow part of the temperature matrix, TS, is a self-similar function of x/t . This fact is
used for comparison with results of numerical solution of equations of motion in Sects. 10.3, 11.4.

9.5 Sinusoidal initial temperature profile: application to the transient thermal grating

In this subsection, we consider spatially sinusoidal profile of initial temperature. This problem is closely related
to transient thermal grating technique [36,67]. In the framework of this experimental technique, the sinusoidal
profile is generated in a thin film or on a surface of a bulk material using the interference of two laser pulses.
Amplitude of the temperature profile decays in time due to heat transport. Measurement of the amplitude
yields information on thermal properties of a material. Here, we present an analytical solution of this problem,
corresponding to purely ballistic regime of heat transport.

The initial temperature profile in direction given by unit vector e has form:

T0(x) =
(
Tb + 	T sin

2πx

L

)
E, x = x · e, (40)

where Tb, 	T are constants; 	T < Tb; L is length of the periodic cell. Note that initial temperatures,
corresponding to all degrees of freedom of the unit cell, are equal.

Remark 12 Heat transport in several scalar lattices with initial temperature distribution (40) is considered in
papers [41,42,50]. In the present paper, we derive a general solution valid for any lattice described by equations
of motion (4).

The temperaturematrix at time t is calculated by formula (29). Substitution of initial temperature profile (40)
into (29) after some transformations yields

TF = 1

2

(
Tb + 	T sin

2πx

L

)
F(t), TS = Tb

2
E + 	T

2
S(t) sin

2πx

L
,

F =
∫

k
P F̃ P∗�dk, S =

∫

k
P S̃P∗�dk, F̃i j = cos(2ω j t)δi j , S̃i j = cos

2πv
j
g t

L
δi j .

(41)
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Here v
j
g = v j

g · e. Calculating trace in formula (41) we obtain simple expression for kinetic temperature:

T = TF + TS, TF = 1

2N

(
Tb + 	T sin

2πx

L

) N∑
j=1

∫

k
cos(2ω j t)dk,

TS = Tb
N

+ 	T

2N
sin

(
2πx

L

) N∑
j=1

∫

k
cos

2πv
j
g t

L
dk.

(42)

Formula (42) shows that temperature profile remains sinusoidal at any moment in time. Therefore we
compute amplitude of a sin as a function of time. In real experiment, the amplitude can be measured using the
transient thermal grating technique [36,67]. In one-dimensional case the amplitude is calculated as

A = 2

L

∫ L

0
T (x, t) sin

2πx

L
dx, A = 1

N
trA = 2

L

∫ L

0
T (x, t) sin

2πx

L
dx, (43)

To increase the accuracy, in two-, and three-dimensional cases, results are additionally integrated in directions,
orthogonal to e. Substituting expression for temperature (41) into formula (43), yields

A = 	T
(
F(t) + S(t)

)
, A = 	T

2N

N∑
j=1

∫

k

(
cos(2ω j t) + cos

2πv
j
g t

L

)
dk. (44)

Formula (44) shows that time evolution of amplitude A depends on direction, e, of initial thermal perturbation.
Therefore heat transport in two- and three-dimensional lattices is generally anisotropic (see, for example,
Fig. 12).

According to formula (41), TF and TS have different time scales, proportional to 1/ω j and L/v
j
g , respec-

tively. The first time scale is determined by frequencies of vibrations of individual atoms. The second time
scale is determined by a time required for a wave, traveling with group velocity, to pass distance L . The ratio
of these time scales is a large parameter. Therefore time scales of fast and slow thermal processes are well
separated.

From formula (44) and the stationary phase method [20] it follows that amplitude, A, of temperature profile

in ballistic regime decays according to power law 1/t
d
2 . Note that solution of analogous problem using Fourier

and hyperbolic (Maxwell–Cattaneo–Vernotte [16,73]) heat transfer equations yields exponential decay of the
amplitude.

Thus decay of amplitude of sinusoidal temperature profile in a purely ballistic regime is described by
formulas (44). Presented results may serve for interpretation of experimental data obtained by transient thermal
grating technique [36,67]. In particular, in a recent paper [33] it is shown experimentally that decay of a
sinusoidal profile in polycrystalline graphite at temperatures about 100K is nonmonotonic. Similar effect is
predicted by our formula (44) (see, e.g., Fig. 12). Formula (44) also shows that at time scale of real experiment,
amplitude, A, depends on time, t , and grating period, L , as A(t, L) = f (t/L). Therefore results for different
grating periods, L1, L2, at large times are related as A(t, L1) = A(t̃, L2), t̃ = t L2/L1. In particular,
characteristic frequency of temperature oscillations is inversely proportional to grating period L . This fact is
consistent with experimental observations [33].

10 Example: diatomic chain

In this section, ballistic heat transport in the simplest one-dimensional polyatomic lattice is analyzed. We
demonstrate that formulas (26) describe time evolution of a temperature profile with high accuracy. Also, we
show that during heat transport local values of temperatures, corresponding to two degrees of freedom of the
unit cell, are generally different even if their initial values are equal.15
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Fig. 2 Two unit cells of a diatomic chain with alternating masses and stiffnesses. Particles of different size and color form two
sublattices (color figure online)

10.1 Equations of motion and initial conditions

We consider a diatomic chain with alternating masses m1, m2 and stiffnesses c1, c2 (see Fig. 2). The chain
consists of two sublattices, one formed by particleswithmassm1 and another formed by particleswithmassm2.

We write equations of motion of the chain in matrix form (4). Unit cells, containing two particles each, are
numbered by index j . Position vector of the unit cell j has form

x j = x je, x j = a
(
j − nc

2

)
, (45)

where a is a distance between unit cells; e is a unit vector directed along the chain; nc is the total number of
unit cells in the periodic cell. Each particle has one degree of freedom. Displacements of particles, belonging
to the unit cell j , form a column

u j = u(x j ) = [
u1 j u2 j

]�
, (46)

where u1 j , u2 j are displacements of particles with masses m1 and m2, respectively. Then equations of motion
have form

Mü j = C1u j+1 + C0u j + C−1u j−1,

M =
[
m1 0
0 m2

]
, C0 =

[−c1 − c2 c1
c1 −c1 − c2

]
, C1 = C�−1 =

[
0 0
c2 0

]
.

(47)

Initially, particles have randomvelocities and zero displacements. In this sectionweconsider isotropic initial
temperature matrices, i.e. T0(x j ) = T0(x j )E. Then initial temperatures of the sublattices are equal (T 0

11 =
T 0
22 = T0). Corresponding initial conditions for the particles have form:

u1 j = u2 j = 0, u̇1 j = β j

√
kB
m1

T0(x j ), u̇2 j = γ j

√
kB
m2

T0(x j ), (48)

where β j , γ j are uncorrelated random values with zero mean and unit variance, i.e.
〈
β j

〉
=

〈
γ j

〉
= 0,〈

β2
j

〉
=
〈
γ 2
j

〉
= 1,

〈
βiγ j

〉
= 0 for all i, j .

10.2 Dispersion relation and group velocities

In this subsection, we calculate the dispersion relation, polarization matrix P , and group velocities. These
values are included in formulas (26) for the temperature matrix.

We calculate dynamical matrix, Ω , by formula (10). Substituting expressions (47) for matrixes M,Cα ,
α = 0,±1 into formula (10), we obtain:

Ω =
⎡
⎣

c1+c2
m1

− c1+c2e−ip√
m1m2

− c1+c2eip√
m1m2

c1+c2
m2

⎤
⎦ , k = pb̃, b̃ = e

a
, (49)

where k is the wave vector; p ∈ [0; 2π]. Calculation of eigenvalues of matrixΩ , yields the dispersion relation:

ω2
1,2(p) = ω2

max

2

⎛
⎝1 ±

√
1 − 16c1c2 sin2

p
2

m1m2ω4
max

⎞
⎠ , ω2

max = (c1 + c2)(m1 + m2)

m1m2
, (50)
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Fig. 3 Dispersion relation for a chain with alternating masses and equal stiffnesses (c1 = c2). Curves correspond to different
stiffness ratios: m1

m2
= 1 (solid line); 1

2 (dots); 1
4 (dashed line); 1

8 (dash-dotted line)

where index 1 corresponds to plus sign in the brackets. Functions ω1(p), ω2(p) are referred to as optical and
acoustic branches of the dispersion relation, respectively. Dispersion relations for different ratios of masses
and equal stiffnesses are shown in Fig. 3.

Group velocities are calculated by definition (27). Projections of group velocities on direction of the chain
for p ∈ (0; 2π) have form

v
j
g = a

dω j

dp
, v1g = c1c2a sin p

m1m2ω1(ω
2
1 − ω2

2)
, v2g = c1c2a sin p

m1m2ω2(ω
2
1 − ω2

2)
. (51)

Here ω j is a nonnegative frequency in formula (50). The maximum group velocity is as follows

v∗ = max
p, j

|v j
g(p)| = a

√
c1c2

(c1 + c2)(m1 + m2)
. (52)

Matrix P is calculated as follows. By the definition, columns of matrix P are equal to normalized eigen-
vectors of dynamical matrix Ω . Eigenvectors d1,2, corresponding to eigenvalues ω2

1, ω
2
2, have form:

d1,2 =
[
1 − m1

m2
±
√(

1 − m1
m2

)2 + 4|g|2 m1
m2

−2g
√

m1
m2

]�
, g = c1 + c2eip

c1 + c2
. (53)

Normalization of vectors d1,2 yields columns of matrix P .
In the following sections, formulas (29), (50), (51), (53) are employed for calculation of temperatures of

sublattices T11, T22.

10.3 Thermal contact of cold and hot parts of the chain

In this section, we consider thermal contact of cold and hot parts of the chain and show that temperatures of
sublattices in this problem are different even though their initial values are equal.

Initial spatial distribution of temperature matrix has form

T0(x) = T0(x)E, T0(x) = Tb + 	T H(x). (54)

According to formula (54) initial temperatures of sublattices at eachunit cell are equal. In our calculations	T =
Tb. Since the chain is harmonic, the value 	T/Tb does not change results qualitatively.16

Analytical solution of this problem is given by formulas (29), (38). Integrals in formulas (29), (38) are
evaluated numerically using Riemann sum approximation. Interval of integration is divided into 2 · 104 equal
segments.

15 Note that one-dimensional models with two temperatures are widely used in continuum mechanics [1,34,35].
16 Note that for anharmonic crystals 	T/Tb is an important parameter of the problem, which can change results significantly.
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Fig. 4 Thermal contact of hot and cold parts of the diatomic chain (m2 = 2m1, c1 = c2). Temperatures of sublattices T11 (solid
red line and squares) and T22 (dashed blue line and circles) at t = 500τmin are shown. Lines correspond to analytical solution (38).
Squares and triangles are results of numerical solution of equations of motion (color figure online)

To check formulas (29), (38), we compare them with results of numerical solution of equations of
motion (47) with initial conditions (48), (54). Numerical integration is carried out using symplectic leap-
frog integrator with time-step 5 · 10−3τmin. According to formulas (29), (38) temperature matrix at large times
is self-similar, i.e. it depends on x/t only. Therefore it is sufficient to compare numerical and analytical results
at a single moment in time. We compare results at t = 500τmin, where τmin = 2π/ωmax, ωmax is defined by
formula (50). The chain consists of 104 unit cells under periodic boundary conditions. During the simulation,
kinetic temperatures of sublattices T11, T22, at each unit cell, j , are calculated as

kBT11(x j ) = m
〈
u̇21 j

〉
r
, kBT22(x j ) = m

〈
u̇22 j

〉
r
, (55)

where
〈
...
〉
r
stands for averaging over realizations of random initial conditions. In the present example, number

of realizations is equal to 7 · 104. Resulting temperatures of sublattices T11, T22 at t = 500τmin for m2 =
2m1, c1 = c2 are shown in Fig. 4. The figure shows that numerical results are accurately described by our
approximate analytical formulas (29), (38).

It is seen that temperatures of sublattices in the central part of the plot are different even though initially
they are equal everywhere. This fact is predicted by formulas (29), (38).

Remark 13 Difference of temperatures of light and heavy particles of a diatomic chain has also been observed
in steady problems considered in papers [37,38]. Our results suggest that in unsteady problems light and heavy
particles also have generally different temperatures even if their initial values are equal.

10.4 Sinusoidal initial temperature profile

In the present section, we consider decay of sinusoidal temperature profile (40) in a diatomic chain and show
that, as in the previous example, temperatures of sublattices, T11, T22, at each unit cell are generally different.
Decay of amplitude of sin is nonmonotonic.

Initial spatial distribution of temperature matrix has form

T0(x) = T0(x)E, T0(x) = Tb + 	T sin
2πx

L
, (56)

where L is length of a periodic cell; in further calculations 	T = Tb/2. Note that according to formula (56)
initial temperatures of sublattices at each unit cell are equal. Analytical solution of this problem is given by
formula (41). The solution shows that temperature profile remains sinusoidal at any moment in time. Therefore
it is sufficient to compute matrix A, defined by formula (43). Elements A11, A22 of this matrix correspond to
amplitudes of temperatures T11, T22. Decay of these amplitudes is investigated.

Analytical expression for A is given by formula (44). Integrals in formula (44) are evaluated numerically
using Riemann sum approximation. Interval of integration is divided into 103 equal segments. Below we
compare predictions of this formula with results of numerical solution of equations of motion.
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Fig. 5 Amplitude, A11, of sinusoidal temperature profile in a diatomic chain (m2 = 2m1, c1 = c2) at short times (left) and large
times (right). Analytical solution (44) (line) and numerical solution of equations of motion (squares). Here v∗ is the maximum
group velocity (52)

Fig. 6 Amplitude, A22, of sinusoidal temperature profile in a diatomic chain (m2 = 2m1, c1 = c2) at short times (left) and large
times (right). Analytical solution (44) (line) and numerical solution of equations of motion (triangles). Here v∗ is the maximum
group velocity (52)

In computer simulations, the chain consists of 104 unit cells under periodic boundary conditions. Equations
of motion (47) are solved numerically with initial conditions (48), (56). During the simulation matrix A is
calculated by formula (43), where integral is replaced by summation with respect to all unit cells. Temperatures
of unit cells are calculated by formula (55). Resulting value of A is averaged over 102 realizations with random
initial conditions. Note that number of realizations is less than in the previous example, because formula (43)
involves additional spatial averaging, increasing the accuracy. Amplitudes A11, A22 of temperatures T11, T22
for m2 = 2m1, c1 = c2 are shown in Figs. 5, 6. Figures show that numerical results are accurately described
by our approximate analytical formula (44).

Thus, similarly to the previous example, temperatures of sublattices for t > 0 are different (T11(x) �=
T22(x)), while their initial values are equal. We also note that decay of amplitude of sinusoidal temperature
profile is nonmonotonic.

11 Example: graphene (out-of-plane motions)

In this section, we consider ballistic heat transport in a stretched graphene sheet [6,10,28] (see Fig. 7). Only out-
of-plane vibrations are considered. In-plane vibrations can be taken into account separately, since in harmonic
approximation in-plane and out-of-plane vibrations are decoupled. The main goal of this section is to show
that approximate formulas (26) describe behavior of temperature with high accuracy. Using these formulas
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Fig. 7 Numbering of unit cells in graphene lattice. Here b1, b2 are primitive vectors of the lattice. Particles move along the normal
to lattice plane. x , y axes correspond to zigzag and armchair directions, respectively

we demonstrate that ballistic heat transport in graphene is anisotropic. Additionally, we analyze individual
contributions of acoustic and optical vibrations to thermal transport.

11.1 Equations of motion and initial conditions

In this subsection, we represent equations of motion for the graphene lattice in matrix form (4).
The lattice is shown in Fig. 7. Unit cells, containing two particles each, are numbered by pair of indices i, j .

Primitive vectors b1,b2 for the lattice have form

b1 =
√
3a

2

(
i + √

3j
)

, b2 =
√
3a

2

(√
3j − i

)
, (57)

where i, j are Cartesian unit vectors directed along x and y axes, respectively; a is equilibrium distance between
the nearest particles. Vector b1 connects centers of cells i, j and i+1, j . Vector b2 connects centers of cells i, j
and i, j + 1. Position vector of cell i, j is represented in terms of the primitive vectors as

xi, j = ib1 + jb2. (58)

Each particle has one degree of freedom (displacement normal to lattice plane). Displacements of a unit
cell i, j form a column:

ui, j = u(xi, j ) =
[
u1i, j u

2
i, j

]�
, (59)

where u1i, j , u
2
i, j are displacements of two sublattices.

Consider equations of motion of unit cell i, j . Each particle is connected with three nearest neighbors
by linear springs (solid lines in Fig. 7). Equilibrium length of the spring is less than initial distance between
particles, i.e. the graphene sheet is uniformly stretched.17 Stiffness of the spring, determined by stretching
force, is denoted by c. Then equations of motion have form

Müi, j = C2ui, j+1 + C1ui+1, j + C0ui, j + C−1ui−1, j + C−2ui, j−1,

M = mE, C0 =
[−3c c

c −3c

]
, C1 = C2 =

[
0 0
c 0

]
.

(60)

Here C−1 = C�
1 , C−2 = C�

2 ; m is mass of a particle.
Initially, particles have random velocities and zero displacements. In this section we consider isotropic

initial temperature matrices:
T0(xi, j , yi, j ) = T0(xi, j , yi, j )E, (61)

17 In the absence of stretching, out-of-plane vibrations are essentially nonlinear. Nonlinear effects in unstrained graphene are
considered e.g. in paper [8].
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Fig. 8 Acoustic (ω2(p1, p2)/ω∗, left) and optical (ω1(p1, p2)/ω∗, right) dispersion surfaces (64) for out-of-plane vibrations of
graphene

where xi, j , yi, j are Cartesian coordinates of position vector xi, j . In this case initial temperatures of the sub-
lattices are equal (T 0

11 = T 0
22 = T0). Corresponding initial conditions for the particles have form:

u1i, j = u2i, j = 0, u̇1i, j = βi, j

√
kB
m

T0(xi, j , yi, j ), u̇2i, j = γi, j

√
kB
m

T0(xi, j , yi, j ), (62)

where βi, j , γi, j are uncorrelated random values with zero mean and unit variance, i.e.
〈
βi, j

〉
=

〈
γi, j

〉
= 0,〈

β2
i, j

〉
=
〈
γ 2
i, j

〉
= 1,

〈
βi, jγs,p

〉
= 0 for all i, j, s, p.

Further we consider time evolution of kinetic temperature T = 1
2 (T11 + T22).

11.2 Dispersion relation and group velocities

In this subsection,we calculate the dispersion relation,matrixmatrix P [see formula (12)], and group velocities.
We calculate dynamical matrix Ω using formula (10). Substituting expressions (60) for matrixes M,Cα ,

α = 0;±1;±2 into formula (10), yields

Ω = ω2∗
[

3 −1 − e−ip1 − e−ip2

−1 − eip1 − eip2 3

]
, p1 = k · b1, p2 = k · b2, (63)

where k is wave vector; ω2∗ = c
m ; p1, p2 ∈ [0; 2π] are dimensionless components of the wave vector.

Eigenvalues ω2
1, ω

2
2 of matrix Ω determine dispersion relation for the lattice. Solution of the eigenvalue

problem yields:

ω2
1,2 = ω2∗

(
3 ± R(p1, p2)

)
, R(p1, p2) = √

3 + 2 (cos p1 + cos p2 + cos (p1 − p2)), (64)

where index 1 corresponds to plus sign. Functionsω1(p1, p2),ω2(p1, p2) are referred to as optical and acoustic
dispersion surfaces, respectively (see Fig. 8). Eigenvectors of matrix Ω are columns of matrix P :

P = 1√|b|2 + b2

[ |b| |b|
−b b

]
, b = 1 + eip1 + eip2 . (65)
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Group velocities v1g, v
2
g for p1, p2 ∈ (0; 2π) are calculated by definition (27) as

v j
g = ∂ω j

∂k
= ∂ω j

∂p1
b1 + ∂ω j

∂p2
b2,

∂ω1

∂p1
= −ω2∗ (sin p1 + sin(p1 − p2))

2ω1R(p1, p2)
,

∂ω2

∂p1
= ω2∗ (sin p1 + sin(p1 − p2))

2ω2R(p1, p2)
,

∂ω1

∂p2
= −ω2∗ (sin p2 − sin(p1 − p2))

2ω1R(p1, p2)
,

∂ω2

∂p2
= ω2∗ (sin p2 − sin(p1 − p2))

2ω2R(p1, p2)
.

(66)

Here ω1 ≥ 0, ω2 ≥ 0; function R(p1, p2) is defined by formula (64); primitive vectors b1,b2 are given by
formula (57).

According to formulas (66), the maximum absolute values of group velocities corresponding to acoustic
and optical branches are as follows

max
p1,p2

|v1g| ≈ 0.448v∗, max
p1,p2

|v2g| ≈ 0.897v∗, v∗ = ω∗a. (67)

In the following sections, formulas (63), (64), (65), (66) are employed for description of ballistic heat
transport.

11.3 Circular initial temperature profile: anisotropy of heat transport

In this subsection, we show that ballistic heat transport in graphene is anisotropic. Also, we analyze contribu-
tions of acoustic and optical vibrations to heat transport.

Initially the temperature has constant value, T1, inside a circle of radius R and vanishes outside:

T0 = T0(x, y)E, T0(x, y) =
{
T1, x2 + y2 ≤ R2,

0, x2 + y2 > R2,
(68)

In our calculations R = 10a. Analytical solution of this problem is calculated using formula (30). Integrals
in formula (30) are evaluated numerically using Riemann sum approximation. Integration area is divided
into 300 × 300 equal square elements.

In computer simulations a square graphene sheet of length L = 300a is considered. Equations of lattice
dynamics (60) with initial conditions (62), (68) are solved numerically using leap-frog integrator with time-
step 5 · 10−3τ∗, τ∗ = 2π/ω∗. Kinetic temperatures of all unit cells T (xi, j , yi, j ) at t = 20τ∗ are calculated as

kBT (xi, j , yi, j ) = 1

2
m
〈(
u̇1i, j

)2 +
(
u̇2i, j

)2〉
r
, (69)

where averaging is carried out with respect to realizations of random initial conditions. The moment in
time is chosen such that fast relaxation process can be neglected. Resulting temperature fields averaged
over 10, 102, 103, 104 realizations are shown in Fig. 9. With increasing number of realizations, results of
numerical solution of equations of motion converges to analytical solution given by formula (30). For 104

realizations plots of analytical and numerical solutions are visually indistinguishable.
Figure 9 shows, in particular, that the heat front is a circle as predicted by formula (36) and the Huygens

principle. At the same time, the temperature field has a symmetry of the lattice, i.e. the heat transport is strongly
anisotropic.

According to formula (30), temperature field has contributions from acoustic and optical branches of
dispersion relation. The contributions are shown in Fig. 10. Acoustic waves have larger group velocities than
optical waves [see e.g. formula (67)]. Therefore temperature front on the left plot from Fig. 10 propagates
faster.

Thus formula (30) describes anisotropic ballistic heat transport in graphene with high accuracy. In contrast
to numerical results, formula (30) allows to analyze individual contributions of acoustic and optical vibrations
to the temperature profile.
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Fig. 9 Temperature profile in graphene at t = 20τ∗. Results of numerical solution of lattice dynamics equations averaged
over 10, 102, 103, 104 realizations are shown. Initial temperature is equal to T1 inside a circle with radius R = 10a and equal to
zero outside [see formula (68)]. Color bars show T/T1 (color figure online)

11.4 Thermal contact of cold and hot half-planes

In this subsection, we consider thermal contact of two half-planes with initial temperatures Tb and 2Tb [see
formula (37)]. Temperatures of sublattices are equal. Since thermal transport in graphene is anisotropic, we
consider two problems with temperature distributions in zigzag (x) and armchair (y) directions:

T0 = T0(x, y)E, T0(x, y) = Tb
(
1 + H(x)

)
or T0(x, y) = Tb

(
1 + H(y)

)
. (70)

Analytical solution of these problems is given by formula (39).
To check formula (39), we compare it with results of numerical solution of equations of motion. For-

mula (39) shows that at large times the solution is self-similar. Therefore it is sufficient to consider temperature
field at a single moment in time. In our calculations it is equal to t = 20τ∗. Nearly square graphene sheet
containing 301× 348 unit cells is considered. Particles have random initial velocities corresponding to initial
temperature distributions (70). Initial particle displacements are equal to zero. Periodic boundary conditions in
both directions are used. During the simulation, kinetic energy of each unit cell is calculated. In order to calcu-
late temperatures, results are averaged over 1.5 · 103 realizations with random initial conditions. Temperature
distributions in x and y directions are shown in Fig. 11.

Figure 11 shows that numerical results are accurately described by our approximate formulas (26).
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Fig. 10 Contributions of acoustic (left) and optical (right) vibrations to temperature profile in graphene at t = 20τ∗. Initial
temperature is equal to T1 inside a circle with radius R = 10a and equal to zero outside [see formula (68)]. Plus signs mean
that the resulting temperature profile is equal to a sum of acoustic and optical contributions. Color bars show T/T1 (color figure
online)

Fig. 11 Thermal contact of hot and cold parts of graphene. Solutions of two problems with temperature distributions in x (solid
red line) and y (dashed blue line) directions at t = 19.5τ∗ are shown. Analytical solution (39) (lines) and results of numerical
solution of equations of motion (squares and crosses). Here v∗ = ω∗a (color figure online)

11.5 Sinusoidal initial temperature profile

In the present section, we consider decay of spatially sinusoidal temperature profile (40) in graphene. We
investigate the influence of lattice anisotropy on heat transfer by comparing solutions of two problems with
temperature changing in zigzag (x) and armchair (y) directions:

T0 = T0(x, y)E, T0(x, y) = Tb + 	T sin
2πx

L
or T0(x, y) = Tb + 	T sin

2πy

L
, (71)

where L is length of a periodic cell. In our calculations 	T = Tb/2.
Analytical solution of this problem is given by formula (41). The solution shows that spatial distribution

remains sinusoidal at any moment in time. Therefore, we compute amplitude, A, of temperature profile [see
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Fig. 12 Amplitude, A, of sinusoidal temperature profile in graphene at short times (left) and large times (right). Solutions
of two problems with temperature distributions in zigzag (red line) and armchair (blue line) directions are shown. Analytical
solution (44) (lines) and numerical solution of equations of motion (squares and triangles). Here v∗ = ω∗a (color figure online)

formula (43)]. Analytical expression for A is given by the second formula from (44). Integrals in formula (44)
are evaluated numerically using Riemann sum approximation. Interval of integration is divided into 200×200
equal segments. Below we compare predictions of this formula with results of numerical solution of equations
of motion.

We check the accuracy of formula (44) using numerical solution of equations of motion. Particles have
random initial velocities corresponding to initial temperature distributions (71). Initial particle displacements
are equal to zero. Periodic boundary conditions in both directions are used. The periodic cell contains 200×232
unit cells. During simulation amplitude, A, is calculated using two-dimensional version of formula (43):

A = 2

L2

∫ L

0

∫ L

0
T (x, y) sin

2πx

L
dxdy or A = 2

L2

∫ L

0

∫ L

0
T (x, y) sin

2πy

L
dx . (72)

Integral in formula (72) is replaced by sum with respect to unit cells.
Dependence of dimensionless amplitude, A/	T , on dimensionless time, c∗t/L , is shown in Fig. 12. Every

circle on the plot corresponds to average over 100 realizations. Figure 12 shows that analytical solution (44)
practically coincides with results of numerical solution of lattice dynamics equations. Results for x and y
directions practically coincide for t ≤ L/v∗, while for t > L/v∗ they are significantly different.

Thus, our analytical solution (44) shows that decay of amplitude of the sinusoidal profiles in zigzag and arm-
chair directions is nonmonotonic. Similar nonmonotonic behavior has been recently observed experimentally
in polycrystalline graphite [33] at temperatures about Tb ∼ 100K and length scales L ∼ 1μm.

12 Conclusions

We have shown that time evolution of initial temperature profile in infinite harmonic crystals is described by
our formulas (26), (30) with high accuracy.

At short times, behavior of temperatures at different spatial points is approximately independent. At each
point, temperatures, corresponding to degrees of freedom of the unit cell, oscillate in time and tend to generally
different equilibrium values. The oscillations are caused by redistribution of energy between kinetic and
potential forms and redistribution of energy between degrees of freedom of the unit cell. In infinite crystals,18

the oscillations usually practically vanish at times of order of 100 periods of atomic vibrations.
Evolution of temperature profile at large times is caused by ballistic heat transport. At large times, the

temperature profile is represented as a superposition of waves having a shape of initial temperature distribution
and traveling with group velocities depending on the wave vector. Therefore formulas (26), (30) clearly
demonstrate wave nature of heat transfer in ballistic regime. Additionally, formulas (26), (30) show that
accurate description of ballistic heat transport requires knowledge of the complete dispersion relation and
corresponding group velocities.

18 In the case of finite crystals, the phenomenon of thermal echo introduced in paper [58] is observed.
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It is noteworthy that local values of temperatures, corresponding to degrees of freedom of the unit cell, at
large times are generally neither equal to each other nor equal to their equilibrium values. Therefore, thermal
state of unit cells reached by thermal waves is strongly nonequilibrium (see, e.g., Figs. 4, 5, 6).

Formula (26) for temperature has the same property as equations of lattice dynamics, it is invariant with
respect to change t by −t . At the same time, thermal processes in infinite harmonic crystals are irreversible.

Though formula (26) allows to calculate the temperature profile, it does not yield an equation describing
ballistic heat transport. So far the closed equation has been derived only for several particular lattices [5,41,42].
Derivation of the general equation valid for all harmonic crystalswould be an interesting extension of the present
work.

Presented theory may serve for proper statement and interpretation of experiments on unsteady ballistic
heat transport in crystals. Analytical solution of the problem with sinusoidal profile of initial temperature
can be used for interpretation of results obtained by the transient thermal grating technique [33,36,67]. In
particular, the solution predicts nonmonotonic decay of the temperature profile, which was recently observed
experimentally in graphite [33].

Thepresent paper is focusedonballistic heat transport in crystals at nanoscale.However, presented approach
can be extended for description of energy transport in macroscopic phononic crystals and acoustic metamate-
rials [23,26,46].
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D.A. Indeitsev, M.L. Kachanov, and A.A. Maznev. The work was financially supported by the Russian Science Foundation under
grant No. 18-11-00201.

A Approximate formula for the temperature matrix

In this “Appendix,” approximate formula (26) for the temperature matrix is derived. The derivation is based
on the assumption that the main contribution to integrals TF, TS comes from the points such that k1 ≈ k2.
This assumption is satisfied if function T0(x) slowly changes at distances of order of lattice constant.

The expression for TF in formula (26) is derived as follows. We introduce new variables in formula (23)
for TF:

p1 = k1, p2 = k1 − k2. (73)

Jacobian of this transformation is equal to unity. Using periodicity of the integrand in formula (23), it can be
shown that integration is carried out in the same domain as in formula (9).We assume that themain contribution
to the integral (26) comes form the points p2 ≈ 0 (k1 ≈ k2). Then integrand is expanded into series with
respect to p2. In particular, the following approximate formulas are used:

P(p1 − p2) ≈ P(p1), ω j (p1 − p2) ≈ ω j (p1). (74)

Then formula (23) for TF reads

TF ≈
∫

p1
P
∫

p2

∑
y

T̃F(y,p1)eip2·(x−y)dp2P∗�dp1, P = P(p1),

{T̃F}i j = 1

2
{P∗�T0(y)P}i j

[
cos

(
(ωi (p1) + ω j (p1))t

) + (1 − δi j ) cos
(
(ωi (p1) − ω j (p1))t

)]
.

(75)

According to the definition of the discrete Fourier transform the following identity is satisfied:
∫

p2

∑
y

T̃F(y,p1)eip2·(x−y)dp2 = T̃F(x,p1). (76)

Substituting this identity into formula (75) yields the expression for TF in formula (26).
To derive approximate expression for TS in formula (26), we introduce new variables (73) in formula (23).

The integrand in formula (23) is expanded into serieswith respect top2. In particular, the following approximate
formulas are used:

P(p1 − p2) ≈ P(p1), ω j (p1) − ω j (p1 − p2) ≈ p2 · v j
g(p1), (77)
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where v j
g is the group velocity, defined by formula (26). Then formula (23) for TS reads

TS ≈
∫

p1

∫

p2

∑
y

PT̃S(y)P∗�eip2·(x−y)dp2dp1, P = P(p1),

{T̃S}i j ≈ 1

2
{P∗�T0(y)P}i jδi j cos

(
p2 · v j

g(p1)t
)
.

(78)

Using identity 2 cos(p2 · v j
gt) = eip2·v

j
g t + e−ip2·v j

g t and properties of the discrete Fourier transform, we show
that ∫

p2

∑
y

{P∗�T0(y)P} j j cos
(
p2 · v j

gt
)
eip2·(x−y)dp2

= 1

2

{
P∗� (

T0(x + v j
gt) + T0(x − v j

gt)
)
P
}
j j

.

(79)

Substituting formula (79) into formula (78), yields the expression (26) for TS.
More rigorous derivation of formula (26) is beyond the scope of the present paper. In the present paper,

we show that formula (26) has high accuracy by comparison of analytical solutions of several problems with
corresponding results of numerical simulations (see Sects. 10, 11).
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