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Abstract The interaction between magnetic field and thermal field in an elastic half-space, homogeneous
and isotropic under two temperature and initial stress are investigated using a normal mode method in the
framework of the Lord–Şhulman theory, with thermal shock and rotation. The medium rotates with a uniform
angular velocity, and it is considered to be permeated by a uniformmagnetic field and hydrostatic initial stress.
The general solution we obtain is finally applied to a specific problem. The variations in temperature, the
dynamical temperature, the stress and the strain distributions through the horizontal distance are calculated by
an appropriate numerical example and graphically illustrated.

Keywords Generalized thermoelasticity · Thermal shock · Two-temperature problem · Lord–Şhulman
theory

List of symbols

δi j Kronecker delta function
αt Coefficient of linear thermal expansion
T Absolute temperature

T0 Reference temperature chosen so that
∣
∣
∣
T−T0
T0

∣
∣
∣ < 1

φ = φ0 − T Conductive temperature
η Hydrostatic initial stress
λ,μ Lame’s constants
μ0 Magnetic permeability
θ = T − T0 Thermodynamical temperature
ρ Density of the medium
σi j Components of the stress tensor
τ0 Thermal relaxation time
a Two-temperature parameter
CE Specific heat at constant strain
e Cubical dilatation

Communicated by Francesco dell’Isola.

S. M. Abo-Dahab (B)
Mathematics Department, Faculty of Science, Taif University, Taif 888, Saudi Arabia
E-mail: sdahb@yahoo.com

S. M. Abo-Dahab
Mathematics Department, Faculty of Science, South Valley University, Qena 83523, Egypt

http://crossmark.crossref.org/dialog/?doi=10.1007/s00161-019-00765-3&domain=pdf


884 S. M. Abo-Dahab

ei j Components of the strain tensor
Fi Lorentz force
K Thermal conductivity
P Initial pressure
ui Components of the displacement vector
Fi Lorentz body force

1 Introduction

Recently, the linear theory of micropolar elasticity has become of primary importance in many fields. Concern
the ultrasonic waves that its elastic vibrations have small wavelengths and high frequencies, the presence of
the microstructure is fundamental. Its influence on the propagation of waves results in the development of
new type of waves, which are not described in the framework of the classical theory of elasticity. Metals,
polymers, composites, solids, rocks, concrete are typical media with microstructures. The thermoelasticity
theory which the strain rate term introduction and formed in the Fourier heat conduction equation which leads
to a parabolic heat conduction equation type, is called the diffusion equation and the theory called classical
dynamical coupled theory derived by Biot [1]. This theory predicts a finite speed for elastic waves propagation
and an infinite speed for a thermal wave propagation, this make a conflict meaning with the practical theory
measures in labs. Lord and S, hulman [2], and Green and Lindsay [3] proposed new models of thermoelasticity
in generalized forms solved the paradox of the difference between the theoretical and experimental results and
advocating the existence of finite thermal wave speed for propagation in solids.

The two generalized theories proposed one or two relaxation times in the thermoelastic interaction that
modified Fourier′s heat conduction equation to measure a finite speed for a thermal wave propagation, on the
other hand modified by correcting Neumann–Duhamel relation and the energy equation. For the modifications
made in the generalized two theories, the heat propagation displayed as a wave phenomenon rather than a
diffusion one, which usually referred to the effect of second sound. The features of these two theories are the
different of their structures from one another, so, cannot obtained as a special case of one to another. Many
researchers applied these two generalized thermoelastic theories and pointed out new works revealed and
interesting thermoelastic phenomena with new external parameters. In Refs. [4,5], the researches made a new
brief reviews considering this topic and detail the generalization of these theories. The interaction between
Maxwell electromagnetic field and the deformable solids of motion considered by many researchers trying for
possibility application related to geology and geophysical problems and certain topics in acoustics, sound, and
optics.Moreover, the nature of the earth material may be conducting or semiconducting electrically and subject
to its own magnetic field, so, the earth’s material may affect the propagation of waves. The propagation of
waves in solids considering the electromagnetic field and thermal field has been investigated and interested to
many authors. Plane waves in thermoelasticity and magneto-thermoelasticity are discussed in [6]. In the field
of generalized magneto-thermoelastic equations, in [7] a study of the propagation of plane waves in a solid
under the influence of an electromagnetic field is presented, obtaining the governing equations in the general
case and the solution for some particular cases. These results have been extended to rotating media in [8].
Refs. [9,10] investigated the effect of thermal shock parameter on the generalizedmagneto-thermoelasticwaves
phenomenon under assumption a perfectly conducting half-space. In most problems, we deal the classical or
generalized thermoelastic phenomena under the displacement potential function approach defined Lame’s
potential must considered. However, in [11,12] several disadvantages of the potential function approach are
discussed.

Secondly, more assumptions that are stringent must be made on the behavior of potential functions than
on the actual physical quantities. Finally, it was concluded that many integral representations of physical
quantities are convergent in the classical sense while their potential function representations only converge in
the mean. In [13–15], a generalized thermoelasticity problem for an infinitely long cylinder in two dimensions
is investigated.

The development of initial stresses in the medium can be due to many reasons, for example, resulting from
variation in temperature, a process of quenching, overburden layer, and slow process of creep, gravitation,
weight, largeness, and so forth. It is of great interest to study the influence of these stresses on the propagation
of stresswaves. Itwas the achievement ofBiot [16] to show that acoustic propagationunder initial stresseswould
be fundamentally different from that under stress-free state and could not be represented merely by introducing
stress-dependent elastic coefficients in the classical theory. He has obtained the velocities of longitudinal and
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transverse waves propagating along the coordinate axes only. Reflection and refraction phenomena of plane
waves in an unbounded isotropic medium in linear thermoelasticity under initial stresses in the context of
different theories of generalized thermoelasticity are studied in [17–24].

Some further problems in thermoelastic rotating media considering different thermoelasticity theories are
investigated in [25–34]. In the field of generalized materials, as the ones studied in [35–39], described by
higher gradient models [40–44], propagation of waves has been investigated both numerically [45–47] and
experimentally [48,49]. Interesting effects of the methods introduced in this article can be emerge when
considering their applications in the field of the so-called metamaterials [50–52].

The presentwork investigates the effect of hydrostatic initial stress, rotation, initial stress, thermal shock and
magnetic field on a thermoelastic medium with two temperatures in the context of the normal mode analysis.
Numerical results have been calculated considering a copper as a thermoelastic example, and displaying
graphically the variations of the displacements, temperature, strain, conductive temperature, and stresses with
respect to horizontal axis under thermal shock and two temperatures.

2 Formulation of the problem

Following, we consider the medium is a perfect electric conductor, the Maxwell equations, taking into account
absence of the displacement current (SI) [31] take the form:

curl�h = �J
curl �E = −μe

∂ �h
∂t

div�h = 0, div �E = 0

where �h = curl(�u × �H0), �H = �H0 + �h(x, y, t) (1)

The heat conduction equation takes the form [22]

Kϕ,i i =
(

∂

∂t
+ τ0

∂2

∂t2

)

(ρCET + γ T0ui, j ) (2)

The stress strain relation as follows:

σi j = λeδi j + 2μei j − γ T δi j − P(δi j + ωi j ) (3)

where ei j = 1
2 (ui, j + u j,i ), ωi j = 1

2 (u j,i − ui, j )
Since the medium is rotating uniformly with an angular velocity � = �n, where n is a unit vector

representing the direction of the axis of rotation, the displacement equation of motion in the rotating frame of
reference has two additional terms, centripetal acceleration �× (�×u), due to time-varying motion only and
the Coriolis acceleration 2� × u̇, where u is the dynamic displacement vector.

The equation of motion takes the form

ρ[üi + {� × (� × u)}i + (2� × u̇)i ] = σi j, j + Fi (4)

where �F = �J × �B, �B = μe �H0
The equation relates between the dynamical heat and heat conduction written as:

ϕ − T = aϕ,i i , (5)

where a > 0 two-temperature parameter, as in [22].
Assumption an elastic homogenous half-space x ≥ 0 rotates uniformly with angular velocity �, in the

presence of constant magnetic field �H0 directed along the z-axis and of an initial compression P obeying to
Eqs. (1)–(4). The displacement components for the 2D medium have the form

ux = u(x, y, t), uy = v(x, y, t), uz = 0. (6)

The heat conduction equation takes the form

K

(
∂2ϕ

∂x2
+ ∂2ϕ

∂y2

)

=
(

∂

∂t
+ τ0

∂2

∂t2

)

ρCET + γ T0

(
∂

∂t
+ τ0

∂2

∂t2

) (
∂u

∂x
+ ∂v

∂y

)

. (7)
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The constitutive equations can be rewritten as

σ xx = (2μ + λ)
∂u

∂x
+ λ

∂v

∂y
− γ T − P, (8)

σ yy = (2μ + λ)
∂v

∂y
+ λ

∂u

∂x
− γ T − P, (9)

σ xy =
(

μ + 1

2
P

)
∂u

∂y
+

(

μ − 1

2
P

)
∂v

∂x
, σ yx =

(

μ + 1

2
P

)
∂v

∂x
+

(

μ − 1

2
P

)
∂u

∂y
. (10)

The Maxwell’s equations take the form

τi j = μe[Hih j + Hjhi − Hk .hkδi j ] (11)

The equation of motion can eventually be written as

ρ

(
∂2u

∂t2
− �2u − 2�

∂v

∂t

)

= (λ + 2μ + μeH
2
0 )

∂2u

∂x2
+

(

λ + μ + 1

2
P + μeH

2
0

)
∂2v

∂x∂y

+
(

μ − 1

2
P

)
∂2u

∂y2
− γ T0

∂T

∂x
(12)

ρ

(
∂2v

∂t2
− �2v + 2�

∂u

∂t

)

= (λ + 2μ + μeH
2
0 )

∂2v

∂y2
+

(

λ + μ + 1

2
P + μeH

2
0

)
∂2u

∂x∂y

+
(

μ − 1

2
P

)
∂2v

∂x2
− γ T0

∂T

∂y
(13)

The equation relates between the dynamical heat and heat conduction rewritten as:

ϕ − T = a

(
∂2ϕ

∂x2
+ ∂2ϕ

∂y2

)

(14)

For simplicity, we will use the non-dimensional variables (A.1)–(A.8) reported in Appendix. Hence, we have
(dropping the dashed for convenience)

∇2ϕ −
(

1 + τ 0
∂

∂t

)
∂θ

∂t
− ε

(

1 + τ0
∂

∂t

)
∂e

∂t
= 0 (15)

ϕ − θ = β

(
∂2ϕ

∂x2
+ ∂2ϕ

∂y2

)

, (16)

where ε = γ
ρCE

and β = aη2c20. The equation of motion (12) and (13) takes the form

∂2u

∂t2
− �2u − 2�

∂v

∂t
= (λ + 2μ + μeH2

0 )

ρC2
0

∂2u

∂x2
+ (λ + μ + 1

2 P + μeH2
0 )

ρC2
0

∂2v

∂x ∂y

+
(

μ − 1
2 P

)

ρC2
0

∂2u

∂y2
− γ

ρC2
0

∂θ

∂x
(17)

∂2v

∂t2
− �2v + 2�

∂u

∂t
= (λ + 2μ + μeH2

0 )

ρC2
0

∂2v

∂y2
+ (λ + μ + 1

2 P + μeH2
0 )

ρC2
0

∂2u

∂x ∂y

+
(

μ − 1
2 P

)

ρC2
0

∂2v

∂x2
− γ

ρC2
0

∂θ

∂y
(18)

Let consider now the scalar potential functions �(x, y, t) and ψ(x, y, t) defined by the relations in the non-
dimensional form

u = ∂�

∂x
+ ∂ψ

∂y
, v = ∂�

∂y
− ∂ψ

∂x
(19)
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Substitute from equations (19) and (15) in Eqs. (12) and (13), it follows that

[

∇2 − 1

a2

∂2

∂t2
+ �2

a2

]

� − 2�

a2

∂ψ

∂t
− a∗θ = 0 (20)

(

∇2 − 1

a1

∂2

∂t2
+ �2

a1

)

ψ + 2�

a1

∂�

∂t
= 0 (21)

where the ai parameters are given in Appendix (A.9)–(A.13). Moreover, Eq. (15) takes the form

∇2ϕ −
(

1 + τ 0
∂

∂t

)
∂θ

∂t
− ε

(

1 + τ0
∂

∂t

)
∂

∂t
(∇2�) = 0 (22)

To get the solution of these equations, it is useful to adopt the following decomposition in terms of normal
modes

[�, ψ, ϕ, θ, σi j ](x, y, t) = [u∗(x), ϕ∗(x), θ∗(x), σ ∗
i j (x)] exp(ωt + iby). (23)

where ω is the (complex) time constant, i = √−1, b a wave number and u∗(x), ϕ∗(x), θ∗(x) and σ ∗
i j (x) the

amplitudes of the field quantities. By manipulation of Eqs. (20)–(23) and (18), one finally obtains

[D2 − A1]�∗ + A0ψ
∗ − A2θ

∗ = 0, (24)

[D2 − b2]ϕ∗ − Aθ∗ + B[D2 − b2]�∗ = 0, (25)

[D2 − A3]ϕ∗ = −β∗θ∗, (26)

[D2 − m2]ψ∗ + A4�
∗ = 0, (27)

where all the parameters’ definitions are listed in Appendix (A.14)–(A.22).
EliminatingΠ∗(x),ψ∗(x) and ϕ∗(x) in Eqs. (24)–(27), we obtain the partial differential equation satisfied

by θ∗(x)
[D6 − ED4 + FD2 − G]θ∗(x) = 0 (28)

where the constants E, F and G are reported in Appendix (A.23)–(A.25). In a similar manner, we get

[D6 − ED4 + FD2 − G](�∗, ϕ∗)(x) = 0. (29)

The above equation can be factorized as

(

D2 − k21
) (

D2 − k22
)

(D2 − k23)θ
∗(x) = 0 (30)

where k2n(n = 1, 2, 3) are the roots of the following characteristic equation

k6 − Ek4 + Fk2 − G = 0. (31)

The solution of Eq. (31) is

k21 = 2
4
3 R1 + R3(2

2
3 R3 + 2E)

6R3

k22 = 2
4
3 R1(−1 + i

√
3) + R3(4E − 2

2
3 R3(1 + i

√
3))

12R3

k23 = 2
4
3 R1(−1 − i

√
3) + R3(4E − 2

2
3 R3(1 − i

√
3))

12R3
(32)

with

R1 = E2 − 3F, R2 = 2E3 − 9EF + 27, R3 =
(

R2 +
√

−4R3
1 + R2

2

) 1
3
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Solution of Eq. (30) which is bounded as x → ∞ is given by

θ∗(x) =
3

∑

n=1

Mn(b, β, ω) exp(−knx) (33)

Similarly,

ϕ∗(x) =
3

∑

n=1

M ′
n(b, β, ω) exp(−knx) (34)

�∗(x) =
3

∑

n=1

M ′′
n (b, β, ω) exp(−knx) (35)

ψ∗(x) =
3

∑

n=1

M ′′′
n (b, β, ω) exp(−knx), (36)

since

u∗(x) = D�∗ + ibψ∗, (37)

v∗(x) = ib�∗ − Dψ∗, (38)

e∗(x) = Du∗ + ibv∗. (39)

To determine the amplitude of the horizontal and vertical displacements u and v, which are bounded as x → ∞,
then substitute from Eqs. (34) and (35), into Eqs. (37) and (38), one get

u∗(x) =
3

∑

n=1

[−knM
′′
n (b, β, ω) + ibM ′′′

n (b, β, ω)]e−knx , (40)

v∗(x) =
3

∑

n=1

[ibM ′′
n (b, β, ω) + knM

′′′
n (b, β, ω)]e−knx . (41)

where Mn, M ′
n , M

′′
n and M ′′′

n are some parameters depending on β, b and ω.
Substituting from Eqs. (33)–(36) into Eqs. (24)–(27), we have

M ′
n(b, β, ω) = H1nMn(b, β, ω), n = 1, 2, 3 (42)

M ′′
n (b, β, ω) = H2nMn(b, β, ω), n = 1, 2, 3 (43)

M ′′′
n (b, β, ω) = H3nMn(b, β, ω), n = 1, 2, 3 (44)

where the Hin factors are reported in Appendix (A.26)–(A.28).
Thus, we have

ϕ∗(x) =
3

∑

n=1

H1nMn(b, β, ω) exp(−knx) (45)

�∗(x) =
3

∑

n=1

H2nMn(b, β, ω) exp(−knx) (46)

ψ∗(x) =
3

∑

n=1

H3nMn(b, β, ω) exp(−knx) (47)

Substitution of Eqs. (40) and (41) into Eqs. (8)–(10), we get



A two-temperature generalized magneto-thermoelastic formulation 889

σ ∗
xx =

3
∑

n=1

hnMn(b, β, ω) exp(−knx) − P, (48)

σ ∗
yy =

3
∑

n=1

h′
nMn(b, β, ω) exp(−knx) − P (49)

σ ∗
xy =

3
∑

n=1

h′′
nMn(b, β, ω) exp(−knx) (50)

τ ∗
xx =

3
∑

n=1

gnMn(b, β, ω) exp(−knx), τ ∗
yy =

3
∑

n=1

gnMn(b, β, ω) exp(−knx) (51)

where hn, h′
n, h

′′
n and gn are defined in Appendix (A.29)–(A.32).

The normal mode analysis consists, in fact, looking for the solution in the Fourier transformed domain,
considering all the field quantities are sufficiently smooth on the real line such that normal mode analysis of
these functions exists.

3 Application: the thermal shock problem

In this application, we will calculate Mn(n = 1, 2, 3). Physically, the positive exponentials at infinity are
vanish. So, the parameters M1, M2 and M3 determined such the boundary conditions on the surface at given
as follows:

(i) Thermal field on the surface of the half-space subjected under thermal shock as the form

θ(0, y, t) = f (0, y, t) (52)

(ii) Sum of normal stresses including mechanical and Maxwell stresses on the surface of the half-space equal
the compression stress applied

σxx (0, y, t) + τxx (0, y, t) = −P (53)

(iii) Sum of shear stresses including mechanical and Maxwell stresses on the surface of the half-space is
traction free

σxy(0, y, t) + τxy(0, y, t) = 0. (54)

By using the expressions calculated in the previous sections on the above boundary conditions, we can obtain
three algebraic Eqs. as follows

3
∑

n=1

Mn(b, β, ω) = f ∗(y, t) (55)

3
∑

n=1

(hn + gn)Mn(b, β, ω) = 0 (56)

3
∑

n=1

h′′
nMn(b, β, ω) = 0 (57)

Invoking the boundary conditions (55)–(57) at the surface x = 0 of the plate, we obtain a system of three
equations. After applying the inverse matrix method, we get the values of the three constants Mj , j = 1, 2, 3.
Hence, we obtain the expressions of displacements, temperature distribution and another physical quantity of
the plate.
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4 Numerical results

With a view to illustrate the analytical procedure presented earlier, we now consider physical quantities for
thermoelastic material. The results depict the variation of temperature, displacement components, and stress
considering Lord-Shulman theory. The physical constants for the copper material, used in the numerical
example, are reported in Table 1.

The computations were carried out for the constant values t = 0.1,� = 107, β = 0.1, H = 105, P =
1010, b = 0.25. The numerical technique is run for the distribution of the real part of φ and the thermal temper-
ature θ , the displacement u, v, strain e the stresses (σxx , σxy, σyy) and Maxwell’s stress τxx . All components
depend on space x and time t , thermal relaxation time τ , magnetic field, rotation, initial stress, also, b and β
parameters.

Figures 1 and 2 display the variation in φ and θ with respect to the axis x for different values of t , b, β,
τ , H , P and �. It can be observed that all the parameters have the same effect on φ and θ except P; it has
to be remarked that φ and θ start from a maximum value at the wall (x = 0) and decrease to zero as x tends
to infinity. It is clear that φ and θ increase with an increasing of t , β and τ , but decrease with the increasing
values of H and �; also, it is obvious that φ decreases with increasing of P , but increases with θ .

Figure 3 plots the variation in the displacement u with respect to axis x for different values of t , b, β,
τ , H and P . It is clear from the plots that the displacement u starts from a minimum value increasing to its
maximum, and after it goes to zero as x tends to infinity. Moreover, it can be observed that u decreases and
then increases nearly to x = 0.8 with the variation in t and β. Instead, u does not affect by variation in P when
one observes its behavior for different values of b, τ and H .

In Fig. 4, the variation in vertical velocity v with respect to x axis, for different values of t , b, β, τ , H and
P , is shown. One can observe that v starts from zero at x = 0 (center of the medium)—this means that the
vertical velocity vanishes at the center of the medium—decreasing to its minimum value tending to zero as x
tends to infinity. It has to be remarked that v decreases with the increasing values of t , b and β, but increases
with an increasing of τ and H ; also, it is clear that v is not affected by variation in P .

Figure 5 clears the variation in the strain e with respect to x-axis taking into account different values of t ,
b, β, τ , H and P . It can be observed that e starts from its maximum value at x = 0 decreasing to its minimum
tending to zero as x tends to infinity. Moreover, e increases with increasing values of t and β, but decreases
with an increasing of b, τ and H . Finally, it illustrates that v is not affected by variation in P .

Figure 6 represents the variation in the axial stress σxx axis with respect to the x for different values of t ,
b, β, τ , H and P . One can observe that σxx has a maximum value at x = 0, decreases to its minimum and
increases again tending to zero as x tends to infinity. It appears that σxx decreases with the increasing values
of t , b, β, H and P but increases with an increasing of τ .

In Fig. 7, it is displayed the variation in shear stress σxy with respect to x-axis taking into account the
variation in t , b, β, τ , H and P . One can observe that σxy starts from zero at x = 0 (center of the medium)
decreasing to its maximum and finally tending to zero as x tends to infinity. It is seen that σxy decreases with
the increasing values of t , b and β, but increases with an increasing of H and P . It has to be remarked that σxy
increases with an increasing of τ near the medium center but decreases for large values of x .

Figure 8 displays the variation in the stress σyy with respect to x-axis with variation in t , b, β, τ , H and P .
It is clear from the figures that σyy starts from its minimum value at x = 0 (center of the medium), increasing
to its maximum and finally tending to zero as x tends to infinity. It has to be remarked that σyy decreases with

Table 1 Constants used for the numerical implementation

λ 7.59 × 109 N/m2 ρ 7800 kg/m2

μ 3.86 × 1010 kg/ms2 K 386N/Ks

CE 383.1 J/(kgk) τ0 0.02

α −1.28 × 109 N/m2 f ∗ 1

a 1 T0 293K

at 1.78 × 10−5 N/m2 ω ω0 + iξ

ω0 2 ξ 1

η 8886.73m/s2 ε 0.0168
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P=1010,5.1010,1011,1012

H=105, 5.105, 106,3.106

τ = 0.1, 0.2, 0.5, 0.7

Ω = (1,.2,3,4) 107

t  = 0.1 ,0.2, 0.3, 0.4
b = 0.25, 0.5, 0.7, 0.9

β = 0.1, 0.3, 0.4, 0.5

φ φ φ

φ φ φ

xx

x

x x x

x

φ

Fig. 1 Distribution of the conductive temperature φ with different values at y = −1

the increasing values of t , b, β and P , but increases with an increase in τ ; also, it shows that σyy affects slightly
with an increasing of H .

Finally, Fig. 9 displays the variation in the Maxwell’s stress τxx with respect to x , t , b, β, τ , H and P .
It can be observed that τxx starts from its maximum value at x = 0, decreasing to its minimum and finally
tending to zero as x tends to infinity. It is shown that τxx increases with increasing values of t , H and β, but
decreases with an increasing of b and τ ; also, it seems that τxx is not affected by variation in P .
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P=1010,5.1010,1011,1012

H=105, 5.105,106,3.106
τ = 0.1, 0.2, 0.5, 0.7

Ω = (1,.2,3,4) 107

x

xxx

θ θ θ

θ

β = 0.1, 0.3, 0.4, 0.5
b = 0.25, 0.5, 0.7, 0.9

t  = 0.1 ,0.2, 0.3, 0.4

x

x
x

θ
θ

θ

Fig. 2 Distribution of the thermodynamical temperature θ with different values at y = −1
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xx
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Fig. 3 Distribution of the displacement u with different values at y = −1

β = 0.1, 0.3, 0.4, 0.5

b = 0.25, 0.5, 0.7, 0.9t  = 0.1 ,0.2, 0.3, 0.4

v v v

xxx

P=(1,5,10,102) 1010

105 ,5.105,106,106 

= 0.1,0.2,0.5,0.7

v v v

x xx

Fig. 4 Distribution of displacement v with different values at y = −1
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Fig. 5 Distribution of the strain e with different values at y = −1
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Fig. 7 Distribution of the stress σxy with different values at y = −1
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Fig. 9 Distribution of the Maxwell stress τxx with different values at y = −1

5 Conclusion

In this article, we have studied the magneto-thermoelastic interactions in an initially stressed isotropic homo-
geneous elastic half-space with two temperatures, in the framework of the Lord–Şhulman (LS) theory, with
thermal shock and rotation. The general solution we have obtained has been finally applied to a specific prob-
lem: the variations in temperature, the dynamical temperature, the stress and the strain distributions through
the horizontal distance have been calculated by an appropriate numerical example and graphically illustrated.
We can therefore conclude that: (1) the value of many physical quantities converges to zero with an increasing
in the distance x ; (2) the relaxation time, initial stress, rotation, magnetic field, thermal shock and two tem-
peratures have a significant role on the physical meaning of the phenomena; (3) the vertical velocity v starts
from zero at x = 0 and this fact indicates that it vanishes at the center of the medium; (4) the components of
u, v, e and τxx are not affected by the initial stress P .

Generalized thermoelastic theories can be useful when investigating the properties of generalizedmaterials,
as the ones studied in [53–62]. A further development is represented by the study of the arising and evolution
of damage in these materials. Useful preliminary results in this field can be found in [63–67]. The problem
treated in this paper can in perspective be applied to the study of plates and shells [68–73]. A further case
which could be investigated by using the same methods is represented by composite materials, as the ones
studied in [74–76].
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Appendix

The non-dimensional variables are

(x ′, y′, u′, v′) = c0η(x, y, u, v), (A.1)

(t ′, τ ′
0) = c20η(t, τ0), (A.2)

(θ ′, ϕ′) = (T, ϕ) − T0
T0

, (A.3)

σ ′
i j = σi j

2μ + λ
, (A.4)

h′ = h

2μ + λ
, (A.5)

P ′ = P

2μ + λ
, (A.6)

τ ′ = τ

2μ + λ
, (A.7)

�′ = �

c20η
(A.8)

where η = ρCE
K , C2

2 = μ
ρ
and c20 = 2μ+λ

ρ
.

Definition of the parameters ai

a0 = γ T0
ρC2

0

, (A.9)

a2 = 1 + R2
h, (A.10)

R2
h = μeH2

0

ρC2
0

, (A.11)

a∗ = a0
a2

, (A.12)

a1 = μ − 1
2 P

ρC2
0

(A.13)

and R2
h is called Alfven speed.

The parameters Ai are defined as

A = ω (1 + ωτ0) , (A.14)

A1 = b2 + ω2

a2
− Ω2

a2
, (A.15)

A2 = a∗, (A.16)

A3 = (

βb2 + 1
)

/β, B = −εA, (A.17)

β∗ = 1

β
, (A.18)

m2 = b2 + ω2

a1
− Ω2

a1
, (A.19)

A0 = −2�ω

a2
, (A.20)

A4 = 2�ω

a1
(A.21)

D = d

dx
(A.22)
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The constants E, F and G

E = b2 + βAA3 + (m2 + A1)(1 + βA) − βBA2(A3 + m2 + b2)

1 + βA − βBA2
, (A.23)

F = (m2 + A1)(b2 + βAA3) + (A1m2 − A0A4)(1 + βA) − βBA2(m2A3 + b2A3 + b2m2)

1 + βA − βBA2
, (A.24)

G = (A1m2 − A0A4)(b2 + βAA3) − βBA2b2m2A3

1 + βA − βBA2
, (A.25)

The Hin factors are

H1n =
(

β∗

A3 − k2n

)

, n = 1, 2, 3 (A.26)

H2n = A + (b2 − k2n)H1n

B(k2n − b2)
, n = 1, 2, 3 (A.27)

H3n = A4H2n

m2 − k2n
, n = 1, 2, 3 (A.28)

hn = −
(

ibknH3n − H2nk
2
n − λ

2μ + λ
(ibknH3n − b2H2n) + γ T0

2μ + λ

)

(A.29)

h′
n =

(

ibknH3n − b2H2n − λ

2μ + λ
(−k2n H2n + ibknH3n) − γ T0

2μ + λ

)

(A.30)

h′′
n = μ + (1/2)(λ + 2μ)P

2μ + λ
(ib)(−knH2n + ibH3n)

−μ − (1/2)(λ + 2μ)P

2μ + λ
(kn)(ibH2n + knH3n) (A.31)

gn = μeH2
0

2μ + λ
(k2n − b2)H2n (A.32)
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