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Abstract Gradient plasticity theories are of utmost importance for accounting for size effects in metals,
especially on the grain scale. Today, there are several methods used to derive the governing equations for
the additional degrees of freedom in gradient plasticity theories. Here, the equivalence between an extended
principle of virtual power and an extended energy balance is shown. The energy balance of a Boltzmann
continuum is supplemented by contributions based on a scalar-valued degree of freedom. It is considered to
be invariant with respect to a change of observer. This yields unambiguously the existence of a corresponding
micro-stress vector, which is presumed from the outset in the context of an extended principle of virtual
power. A thermodynamically consistent nonlocal evolution equation for the additional, scalar-valued degree
of freedom is obtained by evaluation of the dissipation inequality in terms of the Clausius–Duhem inequality.
Partitioning the nonlocal flow rule yields a partial differential equation, often referred to asmicro-force balance.
The approach presented is applied to derive a slip gradient crystal plasticity theory regarding single slip. Finally,
the distribution of the plastic slip is exemplified with respect to a laminate material consisting of an elastic and
an elastoplastic phase.

Keywords Extended energy balance · Green–Naghdi–Rivlin theorem · Additional field equations ·
Micro-stress · Conservation of micro-inertia

1 Introduction

Classical continuum mechanics considers a body as a set of undeformable material points. Each material
point of such a Boltzmann continuum exhibits three degrees of freedom (DOFs), describing its displacement,
cf. Hellinger [37, p. 606] and Eugster and dell’Isola [21–23]. The Boltzmann continuum, cf. Vardoulakis [71,
p. 1], is also referred to as Cauchy continuum as described in Maugin [46, p. 3], cf. also [14,31,60]. Extended
continuummodels account for the underlyingmicrostructure of the material by introducing additional, internal
DOFs.One of the first suggested extended continuummodels is the so-calledCosserat continuum [13]. It allows
for the orientation of a material point. Thus, each material point is supplemented by three rotational DOFs in
addition. Many authors addressed this topic in the mid of the twentieth century focusing on generalizations or
extensions to the Cosserat continuum [17–19,30,33,47]. Especially the micromorphic continuum according
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to Eringen and Suhubi [20] can be considered as a direct generalization of the Cosserat continuum. It treats
each material point as a micro-continuum. Consequently, a micro-deformation tensor associated with each
material point is introduced in [20]. Conceptually similar is the consideration of a micro-medium as discussed
byMindlin [47]. Continua that account for couple stresses are discussed by Toupin [67,68]. Velocity gradients
of higher order or multipolar displacements are introduced in the context of extended continua by Green and
Rivlin [33,35]. An extensive overview of generalized continua is given in [8] and [50]. Further applications of
extended continua are to be found in the context of liquid crystals [17,41], continuum theory of dislocations
[27,28], nonlocal plasticity [53,54], nonlocal damage [29,55,57,58] and nonlocal diffusion [70].

Additional DOFs are associated with corresponding equations of motion, relating the kinematic of the
DOFs to the underlying forces, cf. remark in Maugin [45]. Consequently, the total energy describing the
system is supplemented by contributions related to the additionally introduced DOFs. The comparison of a
mathematical pendulum with a double pendulum serves as an illustrative example with respect to discrete
systems [40]. In the continuum mechanical context, several approaches exist to derive or motivate additional
balance equations associated with additional DOFs. An overview is given in the review paper of Mariano
[42] or others, e.g., [48,56]. In a nondissipative context, Hamilton’s principle of least action is a suitable
method for the derivation of associated field equations [37]. It can be considered as the predecessor of many
other variational principles. An application to continua with a microstructure based on elastic micro-trusses is
given by [61]. However, this is getting more involved for dissipative systems, cf. Planck [59, p. 81]. Closely
related to variational principles is the principle of virtual power. Its classical formulation can be supplemented
by additional work terms accounting for the virtual power of additional DOFs [24]. According to Mariano
[42], a drawback of an extended principle of virtual power is that quantities, such as the stress and micro-
stress tensor, are presumed. Another approach is to consider the invariance properties of an extended energy
balance with respect to a superimposed rigid-body motion. Additionally, the ‘tetrahedron’ argument [15] is
applied to prove the existence of, e.g., the stress and micro-stress tensor. This approach is often referred to as
Green–Naghdi–Rivlin (GNR) theorem [43,44]. Its first application can be found in [34]. With this method,
however, it is difficult to obtain additional field equations, as already noted by Planck [59]. In Germain [30,
p. 574] it is stated that invariance considerations of an extended energy balance do not lead to the same field
equations as obtained by an extended principle of virtual power. Maugin [44] confirms this issue, referring to
the seven parameter invariance, that is commonly applied to the energy balance in this context. The number
of field equations obtained by the energy balance is less compared to the number obtained by Hamilton’s
principle [59], or the principle of virtual power, Maugin [44, p. 63]. This topic is recaptured by Yavari and
Marsden [74, p. 10]. They show that an extended energy balance only leads to modifications of the common
balance equations if the ambient space is chosen Euclidean rather than a Riemannian manifold. However,
it is not possible to obtain additional field equations. In Yavari and Marsden [74], the extensions to the
energy balance, which is discussed in the context of the GNR-theorem, are due to additional vectorial DOFs.
As discussed in Svendsen [65, footnote 2], it is regardless whether the invariance of the energy balance is
considered with respect to a superimposed rigid-body motion or a change of observer. Both approaches yield
the same balance equations.1 In fact, some authors state the invariance of an extended energy balance with
respect to a change of observer [9]. Moreover, the covariance of an extended energy balance with respect to
a spatial and a microstructural diffeomorphism is considered in Yavari and Marsden [74]. This procedure is
applied to a classical Boltzmann continuum inMarsden andHughes [43, pp. 165-167]. However, they explicitly
emphasize that the stress vector transforms objectively, irrespective of the underlying material behavior, if the
considered spatial diffeomorphism describes a rigid deformation. Regarding a generic spatial diffeomorphism,
an objective transformation of the stress vector is postulated only in the purely elastic case, cf. Marsden and
Hughes [43, p. 163]. Consequently, the consideration of dissipative processes by means of this framework
is quite involved. This limitation to purely elastic material behavior can be seen as the most critical point
of this approach. Following Truesdell and Toupin [69, p. 529], a clear separation between balance equations
and constitutive equations has to be drawn. This arises from the demand that balance equations should be
of generic nature, valid for all materials. Hence, as stated in [69], constitutive laws cannot be obtained from
balance equations. Contrarily, the approach of Marsden and Hughes [43] and Yavari and Marsden [74] yields
a constitutive equation for the stress tensor, denoted as Doyle-Ericksen formula.

In this work, the invariance of an extended energy balance is considered with respect to a change of
observer. The supplementary contributions are based on an additional, scalar-valued DOF related to the under-

1 In the context of material theory, invariance considerations with respect to a change of observer or a superimposed rigid-body
motion are denoted as PMO or PISM, respectively. In contrast to the PMO, the PISM is not always valid, cf. Krawietz [38, p. 161]
and [65,66].
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lyingmicrostructure. A contribution of kinetic energy associated with the additional DOF is taken into account.
In this context, it is not possible to obtain a corresponding conservation ofmicro-inertia. However, the existence
of a vectorial micro-stress associated with a scalar-valued additional DOF can be shown unambiguously. This
is of special interest, as a corresponding extended principle of virtual power does presume the unambiguous
existence of a micro-stress vector from the outset. Exploitation of the dissipation inequality leads to a ther-
modynamically consistent, nonlocal evolution equation associated with the additional DOF. Partitioning the
evolution equation yields the so-calledmicro-force balance. In this context, it is shown that the enhanced energy
balance is equivalent to an extended principle of virtual power if the effects of micro-inertia and micro-body
forces are neglected. Finally, a slip gradient crystal plasticity theory regarding small deformations is discussed
as application of the approach presented. In this context, the additional scalar-valued DOF is considered as
plastic slip within a slip system. For brevity, considerations are limited to single slip. An analytic solution for
the plastic slip and the displacement field is discussed with respect to a laminate material that consists of an
elastic and an elastoplastic phase.

Outline In Sect. 2, the balance equations of a classical continuum as well as the transformation used in the
context of a change of observer are revisited. Moreover, an energy balance is proposed that contains generic
extensions due to additional DOFs of arbitrary nature. The dissipation inequality in terms of the Clausius–
Duhem inequality is brieflydiscussed.Regarding an additional scalar-valuedDOF, the invarianceof an extended
energy balance with respect to a change of observer is discussed in Sect. 3. The relation to an extended principle
of virtual power is shown. In Sect. 4, the application of the approach presented is illustrated regarding a slip
gradient crystal plasticity theory. Themanuscript is concluded by Sect. 5. A discussion concerning an additional
vectorial DOF and the derivation of the corresponding conservation ofmicro-inertia is provided in “Appendix.”

Notation A direct tensor notation is preferred throughout the manuscript. Vectors and second-order tensors are
denoted by lowercase and uppercase bold letters, e.g., a and A, respectively. A linear mapping of second-order
tensors by a fourth-order tensor is written as A = C[B]. The scalar product and the dyadic product are denoted,
e.g., by A · B and A ⊗ B, respectively. The composition of two second-order or two fourth-order tensors is
formulated by AB and AB.

2 Fundamentals

2.1 Energy balance

Energy balance of a classical continuum Regarding the current configuration of a material volume, the balance
of total energy of a classical continuum is given by

d

dt

∫
Vt

ρ

(
e + 1

2
v · v

)
dv =

∫
Vt

ρ (b · v + r) dv +
∫

∂Vt

t · v + h da, (1)

cf. Marsden and Hughes [43]. The volume of the continuum is referred to as Vt and its boundary as ∂Vt .
Equation (1) also holds true for a material volume that contains a singular surface. However, singular surfaces
are not considered throughout the work at hand. Here, e denotes the mass specific internal energy and ρ the
mass density. The spatial velocity field of the body is denoted by v. Mechanical power is expended by the body
and traction forces b and t , respectively. The thermal contribution is due to the radiation r and the heat flux h.

Invariance consideration of the energy balanceGiven are two independent Euclidean vector spacesW andW ′.
While Euclidean vector spaces are isomorph in general,W andW ′ are distinguished, here. Each vector space
is associated with an observer. The relation between quantities described by the corresponding observer is
given by the Euclidean transformation

x′(t) = Q(t)x(t) + c′(t). (2)

In this context, Q(t) describes a time-dependent isometry between the two vector spaces. Consequently, Q
is invertible and det(Q) = 1 holds true. The origins of both vector spaces are related to each other by the
time-dependent vector c′(t). Regarding W and W ′, x ∈ W , x′ ∈ W ′, c′ ∈ W ′ and Q : W → W ′ holds true.
Thus, the isometry Q is given by Q = Qi j e′

i ⊗ e j with e′
i ∈ W ′ and e j ∈ W , see , e.g., [39] for more details.

Both observers consider the same physical process in their respective vector space. This motivates to assume
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the invariance of the energy balance with respect to a change of observer which yields the existence of the
Cauchy stress tensor σ and the heat flux vector q, reading

t = σn, and h = −q · n, (3)

cf. Šilhavý [62]. Moreover the balance of mass, linear and angular momentum, and the balance of internal
energy are obtained

ρ̇ + ρdiv (v) = 0, ρ (a − b) − div (σ ) = 0, σ = σT,

ρė − ρr − σ · D + div (q) = 0.
(4)

The material time derivative is denoted by a ˙( ). The acceleration is abbreviated as a = v̇, and the symmetric
part of the velocity gradient is denoted as

D = sym(grad (v)). (5)

A continuum satisfying the balance equations (1) and (4) is referred to as classical Boltzmann continuum or
Cauchy continuum in the literature.

Energy balance with generic extensions To provide a basis for the subsequent sections, an energy balance is
considered that is extended by generic additional contributions compared to Eq. (1). The considered extensions
are introduced irrespective of the tensorial order of the additional DOFs. Thus, an extended energy balance
can be formulated with respect to the current configuration as

ε = d

dt

∫
Vt

ρ

(
e + 1

2
v · v + κ

)
dv −

∫
Vt

ρ (b · v + β + r) dv

−
∫

∂Vt

t · v + s + h da = 0. (6)

Here, κ denotes an additional kinetic energy density, β and s an additional volume and surface specific
mechanical power, respectively. Application of Reynold’s transport theorem to Eq. (6) leads to

ε =
∫
Vt

(ρ̇ + ρdiv (v))

(
e + 1

2
v · v + κ

)
+ ρė + ρ (a − b) · v + ρκ̇ − ρβ − ρr dv

−
∫

∂Vt

t · v + s + h da = 0. (7)

The additional contributions κ , β and s differ for each considered approach. In most approaches, the extensions
are related to additional kinematic DOFs of various kinds, cf., e.g., the micromorphic medium according
to Eringen and Suhubi [20] and the director theory according to Green et al. [32]. However, it is also possible
to consider more general DOFs that are not associated with kinematics, cf. the interstitial working according to
[16], for instance. A treatment of generic scalar-valued DOFs is given by Svendsen [64]. Thermal contributions
are often considered unaltered, aswith a classical continuum. The idea of obtaining conservation laws bymeans
of an invariance consideration of the total energy density is closely related to Noether’s theorem [51].

2.2 Dissipation inequality

Entropy balance Regarding the current configuration of a material volume, the standard form of the entropy
balance is given by

d

dt

∫
Vt

ρη dv = −
∫

∂Vt

φη · n da +
∫
Vt

ργ + sη dv, (8)

cf. Müller [49]. Here, η denotes the mass specific entropy considering the bulk material, φη the entropy flux
across the boundary ∂Vt , γ the mass specific entropy production and sη the entropy supply.

Clausius–Duhem inequalityAs common in classical thermodynamics [12], the entropy fluxφη is assumed to be
given by the ratio of the heat flux q and the temperature θ , and the entropy supply is assumed to be sη = ρr/θ .
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The bulk dissipation is defined as δ := γ θ . Accounting for the previous assumptions, as well as Reynold’s
transport theorem and the divergence theorem, localization of Eq. (8) yields

ρδ = ρθη̇ − ρr + θdiv
(q

θ

)
(9)

Moreover, the relation between the free energyψ , the internal energy e and the entropy η is given asψ = e−θη,
resulting from the Legendre transformation [4]. The second law of thermodynamics states that the dissipation
is always non-negative. This yields the dissipation inequality, based on Eq. (9), reading

ρδ = ρė − ρψ̇ − ρθ̇η − ρr + div (q) − 1

θ
q · g ≥ 0, (10)

with g = grad (θ). In this form, the dissipation inequality according to Eq. (10) is also often referred to as
Clausius–Duhem inequality [11].

3 Additional scalar-valued DOF

3.1 Extended energy balance

Deformation and microstructure function The energy balance Eq. (7) is given with respect to a current config-
uration referred to as S. The current configuration is occupied by a body that is exposed to arbitrary, external
loads. An arbitrary reference configuration is denoted as B. Within the scope of this manuscript, S and B are
considered to be embedded in the Euclidean space, i.e., an Euclidean ambient space is considered [74]. A
material point, identified by its position vector X , is mapped from B to S by the deformation function ϕt .
Regarding the current configuration, a material point is identified by its position vector x. The spatial velocity
field v is obtained by means of the time derivative of the deformation mapping ϕt . It is calculated by

v(x, t) = V (X, t) ◦ ϕt
−1 , V (X, t) = ∂ϕt (X)

∂t

∣∣∣∣
X=const.

, x = ϕt (X). (11)

Here, the composition between two maps, f and g, is denoted as f ◦ g. The additionally considered DOF is
referred to as p. It is given in terms of the microstructure function ϕ̃t . The spatial velocity ṽ of p is calculated
by means of the time derivative of ϕ̃t , i.e.,

ṽ(x, t) = Ṽ (X, t) ◦ ϕt
−1, Ṽ (X, t) = ∂ϕ̃t (X)

∂t

∣∣∣∣
X=const.

, p = ϕ̃t (X). (12)

Energy balance Regarding Eq. (7), the considered extensions to the energy balance, based on the additional
DOF, are given by

κ = 1

2
Ãṽ2, β = b̃ṽ , s = t̃ ṽ . (13)

Here, b̃ denotes a generalizedmicro-body force and t̃ a generalizedmicro-traction. Themicro-inertia is referred
to as Ã. Thus, the extended energy balance Eq. (7) can be written in the form

ε =
∫
Vt

(ρ̇ + ρdiv (v))

(
e + 1

2
v · v + 1

2
Ãṽ2

)
+ ρė + ρ (a − b) · v

+ ρ
(

Ãã − b̃
)

ṽ + 1

2
˙̃Aṽ2 − ρr dv −

∫
∂Vt

t · v + t̃ ṽ + h da = 0. (14)

As discussed in Sect. 2.1, it is assumed that the energy balance is invariant with respect to a change of observer,
described by Eq. (2). The additionally considered DOF is scalar-valued and, thus, not affected by a change of
observer. The energy balance described by the observer of the vector spaceW is denoted by ε. Consequently,
the observer of the vector spaceW ′ refers to the energy balance as ε′. To obtain the balance laws, the difference

Δεt0 = (
ε − ε′)∣∣

t=t0
(15)

is introduced and evaluated. The considered calculations are closely related to the discussion given in Marsden
and Hughes [43, pp. 145-149]. Instead of the Euclidean transformation according to Eq. (2), it is also possible
to consider a pure translational transformation first and a pure rotational one subsequently.
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3.2 Translational transformation

Applied transformations A pure translational transformation implies that both observers exhibit the same
orientation, i.e., Q = e′

i ⊗ ei . Consequently, the Euclidean transformation according to Eq. (2) is simplified.
The relations between x and x′, v and v′, as well as a and a′ are given by

x′ = x + c′, v′ = v + w, a′ = a + ẇ (16)

withw = ċ′. All scalar quantities, including the contributions associated with the additional DOF, are invariant
under the considered transformations. Moreover, the surface traction t remains unchanged under the transla-
tional transformation. Regarding the body force b′, an additional contribution associatedwith the acceleration c̈′
of the relative translation has to be taken into account. This contribution is referred to as fictitious body force,
cf. Marsden and Hughes [43, p. 147]. Consequently, the transformation

a′ − b′ = a − b (17)

holds true. Alternatively, the requirement of c̈′ = 0 also ensures the validity of Eq. (17), cf. Yavari andMarsden
[74, p. 9] andMarsden and Hughes [43, p. 146]. As a consequence of the transformations according to Eq. (16),
the kinetic contribution to the energy v · v/2 is not invariant under the translational transformation. It contains
additional terms that are linear and quadratic in ċ′. The arbitrariness of c′ and, thus, ċ′ is used to derive the
balance of mass, subsequently. This is an essential aspect for further invariance considerations of the extended
energy balance.

Existence of the Cauchy stress tensor Evaluation of Eq. (15) yields

Δεt0 =
∫
Vt

(ρ̇ + ρdiv (v))

(
v · w + 1

2
w · w

)
+ ρ (a − b) · w dv −

∫
∂Vt

t · w da = 0. (18)

Application of Eq. (18) to an infinitesimal tetrahedron yields the existence of the Cauchy stress tensor σ

σn = t, (19)

cf. Bertram [5, p. 138].

Conservation of mass Accounting for Eq. (19), Eq. (18) can be formulated as

Δεt0 =
∫
Vt

(ρ̇ + ρdiv (v))

(
v · w + 1

2
w · w

)

+ (ρ (a − b) − div (σ )) · w − σ · grad (w) dv = 0. (20)

The vector field w is arbitrary and given by w = ċ′. Thus, w = λu is considered, with the constant unit
vector u and λ �= λ(x), cf. Marsden and Hughes [43, p. 148]. This leads to

Δεt0 =
∫
Vt

(ρ̇ + ρdiv (v))

(
λv · u + 1

2
λ2u · u

)

+ λ (ρ (a − b) − div (σ )) · u dv = 0. (21)

Differentiating Eq. (21) twice with respect to λ yields

d2Δεt0

dλ2
=

∫
Vt

(ρ̇ + ρdiv (v)) (u · u) dv = 0. (22)

Since u is a constant unit vector, i.e., u · u = 1, conservation of mass is obtained in its local form, reading

ρ̇ + ρdiv (v) = 0. (23)

Balance of linear momentum Accounting for conservation of mass, cf. Eq. (23), Eq. (21) can be formulated as

Δεt0 =
∫
Vt

λ (ρ (a − b) − div (σ )) · u dv = 0. (24)

Since λ and u are arbitrary, localization of Eq. (24) yields the local form of the balance of linear momentum as

ρ (a − b) − div (σ ) = 0. (25)
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3.3 Rotational transformation

Applied transformations Considering a pure rotational transformation implies that both observers share the
same origin, i.e., c′ = 0. Consequently, the relation between x and x′, respectively, and between v and v′ is
given by

x′ = Qx, v′ = Qv + w, (26)

with w = Q̇x. The traction force is assumed to transform objectively, reading

t ′ = Qt. (27)

Contrarily, the acceleration a does not transform objectively, which is a consequence of the transformation
law for v′, cf. Eq. (26). Additional contributions associated with the centripetal and Coriolis forces are added.
Taking into account these fictitious forces, the difference between body force and acceleration is assumed to
transform objectively (

a′ − b′) = Q (a − b) , (28)

cf. Marsden and Hughes [43]. It is assumed that Q(t0) = I holds true. According to the assumptions of the
previous section, all scalar quantities are considered invariant with respect to the applied transformations. This
implies that p, t̃ , b̃ and ṽ are invariant with respect to the rotational transformations.

Conservation of micro-inertia Evaluation of Eq. (15) leads to a form that does not contain any microstructural
quantities associated with the additional DOFs, reading

Δεt0 =
∫
Vt

−σ · grad (w) dv = 0. (29)

Thus, the existence of a micro-inertia conservation cannot be proved based on invariance considerations
regarding a change of observer. The same holds true if invariance with respect to a superimposed rigid-body
motion is considered. This is different from the consideration of an additional vectorial DOF, cf. Eq. (74).

Balance of angular momentum Substituting w according to Eq. (26) into Eq. (29) yields

Δεt0 =
∫
Vt

−σ · Q̇ dv = 0. (30)

Since Q̇(t0) ∈ Skw, the localization of Eq. (30) yields the standard balance of angular momentum, as given
in Eq. (4), reading

σ = σT. (31)

Existence of micro-stress vector Accounting for the results in Eqs. (19), (23) and (25), Eq. (14) reads
∫
Vt

ρė + ρ
(

Ãã − b̃
)

ṽ + 1

2
˙̃Aṽ2 − ρr − σ · grad (v) dv −

∫
∂Vt

t̃ ṽ + h da = 0. (32)

Application of Eq. (32) to an infinitesimal tetrahedron yields
∫

∂Vt

t̃ ṽ + h da = 0. (33)

The integrand of the surface integral consists of the contribution due to the micro-traction t̃ and the heat flux h.
The existence of a flux term k(x, t) can be proven for which k(x, t) · n = t̃(x, t, n)ṽ(x, t) + h(x, t, n) holds,
cf. Marsden and Hughes [43, p. 127]. Both, t̃ and h do not depend on ṽ. Thus, the only possible choice
for k(x, t) that provides the integrand of Eq. (33) is given by

k(x, t) = ξ ṽ + h, with t̃ = ξ · n and h = h · n. (34)

Consequently, the existence of the micro-stress vector ξ is shown unambiguously. This is different from the
treatment of extended continua by an extended principle of virtual power. In this context, the existence of both
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the Cauchy stress tensor and the micro-stress vector is presumed from the outset, cf. the remark on this topic
in the review paper of Mariano [42, p. 14].

Existence of heat flux vector Regarding Eq. (34), the heat flux vector q is introduced such that

q = −h, with q · n = −h, (35)

cf. Marsden and Hughes [43, p. 148].

Balance of internal energyConsidering the results in Eqs. (19), (23), (25), (31) and (34), localization of Eq. (14)
yields the local form of the balance of internal energy, reading

ρė + ρ
(

Ãã − b̃
)

ṽ + 1

2
˙̃Aṽ2 − ρr − σ · D − ξ · grad (ṽ) − div (ξ) ṽ + div (q) = 0. (36)

Simplifying assumptions Additionally considered DOFs are commonly used to describe the evolution of the
underlying microstructure. Nonlocal damage [29], nonlocal diffusion [70] and nonlocal plasticity [72] are
prominent examples for the application of extended continua. In this context, effects due to micro-inertia and
micro-body forces are usually neglected, i.e., Ã = 0 and b̃ = 0. Only micro-traction forces are considered.
Thus, the balance of internal energy Eq. (36) reads

ρė − ρr − σ · D − ξ · grad (ṽ) − div (ξ) ṽ + div (q) = 0. (37)

3.4 Nonlocal evolution equation for an additional DOF

Exploitation of the Clausius–Duhem inequality To discuss the evolution equation for the additional DOF, the
simplified balance of internal energy according to Eq. (37) is considered, subsequently. Moreover, a small
strain framework is considered for brevity, i.e., D = ε̇ holds. Consequently, the Clausius–Duhem inequality
according to Eq. (10) is given by

ρδ = σ · ε̇ + ξ · ∇ ṗ + div (ξ) ṗ − ρψ̇ − ρθ̇η − 1

θ
q · g ≥ 0, (38)

where ṗ = ṽ and ∇ ṗ = grad ( ṗ) is used. An additive split of the infinitesimal strain ε into a purely elastic
part εe and a part εp(p) related to the additional DOF p is assumed, i.e., ε = εe + εp holds true. The free
energy density is assumed to depend on ε, εp, p, ∇ p, θ , i.e.,

ψ = ψ(ε, εp, p, ∇ p, θ) (39)

holds true. It is assumed that the elastic properties are not affected by εp during the deformation process, similar
to Bertram and Krawietz [7, p. 2262]. This motivates that ψ only depends on the elastic strain εe = ε − εp.
Furthermore, for simplicity, it is assumed that the free energy density ψ can be additively decomposed into an
elastic contribution ψe, a contribution ψp that depends on the additional DOF p, a gradient contribution ψg
that accounts for the effects of the gradient of the additional DOF, and a thermal contribution ψθ , i.e.,

ψ(ε − εp, p, ∇ p, θ) = ψe(ε − εp) + ψp(p) + ψg(∇ p) + ψθ(θ). (40)

Naturally, this assumed split of the free energy density represents a special case [7]. Regarding rate-dependent
material behavior, the Clausius–Duhem inequality, cf. Eq. (38), reads

ρδ =
(

σ − ρ
∂ψe

∂ε

)
· ε̇ − ρ

∂ψe

∂εp
· ∂εp

∂p
ṗ − ρ

(
η + ∂ψθ

∂θ

)
θ̇ − q · g/θ

+
(
div (ξ) − ρ

∂ψp

∂p

)
ṗ +

(
ξ − ρ

∂ψg

∂∇ p

)
· ∇ ṗ ≥ 0. (41)

The standard procedure of Coleman and Noll is applied [12]. It is assumed that the micro-stress ξ is purely
energetic. This yields the potential relations for the Cauchy stress, the entropy and the generalized stress

σ = ρ
∂ψe

∂ε
, η = −∂ψθ

∂θ
, ξ = ρ

∂ψg

∂∇ p
. (42)
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Thus, the reduced dissipation inequality is given by(
div (ξ) − ρ

∂ψp

∂p
− ρ

∂ψe

∂εp
· ∂εp

∂p

)
ṗ − q · g/θ ≥ 0. (43)

While the first term of Eq. (43) refers to the mechanical dissipation, the thermal dissipation is represented by
the second expression.

Evolution equation Subsequently, no coupling is assumed between themechanical and the thermal dissipation .
Thus, Fourier’s law [6] ensures the positivity of the second term in Eq. (43). Linear irreversible thermodynamics
yields an admissible choice for ṗ, consistent with the reduced dissipation inequality, reading

ṗ = ṗ0

(
div (ξ) − ρ

∂ψp

∂p
− ρ

∂ψe

∂εp
· ∂εp

∂p

)
, with ṗ0 ≥ 0. (44)

Here, ṗ0 denotes a referential rate. Equation (44) constitutes a nonlocal evolution equation for the additionally
considered DOF. Partitioning of Eq. (44) leads to a partial differential equation (PDE) and a local evolution
equation, given by

π − div (ξ) = 0, ṗ = ṗ0

(
π − ρ

∂ψp

∂p
− ρ

∂ψe

∂εp
· ∂εp

∂p

)
. (45)

For vanishing rates, i.e., ṗ = 0, the nonlocal evolution equation according to Eq. (44) reduces to a partial
differential equation, reading

div (ξ) − ρ
∂ψp

∂p
− ρ

∂ψe

∂εp
· ∂εp

∂p
= 0. (46)

Equation (46) characterizes the distribution of the additional DOF p in thermodynamical equilibrium. It is
exploited in the context of a slip gradient crystal plasticity theory in the subsequent section.

3.5 Connection to an extended principle of virtual power

Weak forms Subsequently, the connection of the presented framework to an extended principle of virtual
power is discussed. To this end, the weak forms of the PDE according to Eq. (45)1 and the balance of linear
momentum Eq. (25) are provided, first. Multiplication of Eq. (45)1 with a test function f , integration over Vt
and application of the divergence theorem yield the corresponding weak form

−
∫
Vt

π f + ξ · grad (f ) dv +
∫

∂Vt

t̃ f da = 0, (47)

with t̃ = ξ · n. Moreover, the weak form of the balance of linear momentum in Eq. (25) is given by,∫
Vt

ρ (a − b) · f + σ · grad ( f ) dv −
∫

∂Vt

t · f da = 0, (48)

where f is the vectorial test function.

Extended principle of virtual power Subsequently, the quasi-static case is considered and body forces are
neglected, i.e., a = 0 and b = 0. Replacing the test functions f and f by the virtual rates δṽ and δv,
respectively, the sum of Eq. (47) and Eq. (48) yields δPint = δPext, with

δPint =
∫
Vt

πδṽ + ξ · grad (δṽ) + σ · grad (δv) dv,

δPext =
∫

∂Vt

t̃δṽ + t · δv da (49)

denoting the internal and external virtual power, respectively. This extended principle of virtual power is
equivalent to the extended energy balance and the partitioned flow rule in Eq. (45). The exploitation of an
extended principle of virtual power is widely used to derive additional field equations regarding extended
continua [24]. The extended principle of virtual power using Eq. (49) is structurally equivalent to Wulfinghoff
et al. [72, Eqs. (3) and (4)], Bayerschen and Böhlke [2, Eqs. (3) and (4)], similar to, e.g., Cermelli and Gurtin
[10, Eq. (3.2)], Gurtin et al. [36, Eq. (3.2)]. In this context, Eq. (45)1 is referred to as additional balance
equation. It is denoted as micro-force balance; however, the notion of a balance is misleading according to the
previous discussions. It is rather part of a partitioned, time-dependent partial differential equation.
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4 Application to slip gradient crystal plasticity

4.1 Single slip

Plastic slip as additional degree of freedom In the context of a slip gradient crystal plasticity theory, the
additional DOF p is considered as the plastic slip within a slip system. Consequently, the contribution εp

denotes the plastic part of the strain tensor. Regarding single slip, ε̇p = ṗM is assumed with the corresponding
Schmid tensor M = sym(d⊗n). Here, n denotes the normal of the slip system and d the slip direction. While
the defect energy density ψg is related to hardening on the basis of geometrically necessary dislocations, the
hardening contribution ψp accounts for isotropic hardening due to statistically stored dislocations [3] in the
context of monotonic loadings.

Free energy and material parameters The contributions to the free energy density are given by

ψe(ε − εp) = 1

2ρ

(
ε − εp

) · (
C

[
ε − εp

])
,

ψg(∇n p) = 1

2ρ
Kg∇n p · ∇n p,

ψp(p) = 1

2ρ
Θ0 p2. (50)

The planar gradient with respect to the considered slip system is denoted as ∇n. Accounting for the lattice
stretch and rotation, the elastic contribution ψe is assumed to be quadratic in the difference of the total strain ε
and the plastic strain εp. Subsequently, an analytical solution of Eq. (46) is discussed. Thus, it is convenient
to assume the defect contribution ψg as well as the hardening contribution ψp to be quadratic. Regarding a
numerical implementation of the presented theory, more complex contributions are feasible such as Voce-
hardening [72] or latent hardening [52] or a power-law defect energy [1,2]. Thermal effects are neglected,
i.e., the thermal contribution ψθ(θ) vanishes. While C denotes the elastic stiffness tensor of fourth order, Kg
denotes the defect parameter, introducing an internal length scale to the model [72]. The initial hardening
modulus is referred to as Θ0 and the density of mass as ρ. Subsequently, it is assumed that the stiffness tensor,
the defect parameter and the initial hardening modulus are constant parameters. Assuming the elastic material
behavior to be isotropic, the elastic constants are chosen to be G = 27 GPa and ν = 0.347, representing the
elastic behavior of aluminum. Moreover, the defect parameter and the initial hardening modulus are chosen
as Kg = 84 µN and Θ0 = 1075 MPa, respectively. The material parameters are in line with [3]. Under
consideration of the contributions to the free energy density, cf. Eq. (50), Eq. (46) reads


n p − p
Θ0

Kg
= − τ

Kg
, (51)

where τ = σ · M is the resolved shear stress. Here, 
n denotes the Laplacian that uses the planar gradient.

4.2 Analytic solution for a laminate material

Simplifications An analytical, one-dimensional solution of Eq. (51) is discussed in the context of a laminate
material consisting of two phases. Thematerial behavior of one phase is assumed to be purely elastic. Contrarily,
thematerial behavior of the second phase is considered to be elastoplastic. The plastic behavior is characterized
by an individual slip system of a face-centered cubic (FCC) single crystal. A schematic illustration of the
considered laminate is given in Fig. 1. The elastic phase is illustrated in dark gray, the elastoplastic phase in
light gray. The normal and slip direction of the considered slip system are given by n = e2 and d = e1. The
coordinate system is located within the middle of the elastoplastic phase. While the elastoplastic phase has a
width of 2h, the width of the elastic phase is s.

Kinematics Subsequently, the following ansatz for the displacement field u(x) is considered

u = γ̄ x2e1 + ũ(x1)e2, (52)
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Fig. 1 Considered laminate material subjected to shear in e1- and periodic fluctuation in e2-direction. The elastoplastic phase is
illustrated in light gray, the elastic phase in dark gray. The coordinate system is located in the center of the elastoplastic phase

cf. Forest [25], Forest andGuéninchault [26],Wulfinghoff et al. [73]. Here, γ̄ denotes the constant macroscopic
shear and ũ(x1) a periodic fluctuation. The corresponding infinitesimal strain tensor and the plastic strain tensor
are given by

ε = 1

2

(
γ̄ + ũ′(x1)

)
(e1 ⊗ e2 + e2 ⊗ e1) , εp = 1

2
p(x1) (e1 ⊗ e2 + e2 ⊗ e1) . (53)

Based on the applied deformation, the plastic slip depends purely on x1. The derivative of a quantitywith respect
to x1 is denoted by (·)′. The elastic shear εe = ε − εp is obtained by the assumed additive decomposition of
the infinitesimal strain tensor in an elastic and a plastic contribution. For brevity, an isotropic elastic behavior
is assumed in the following. Hooke’s law for linear elasticity yields the corresponding Cauchy stress σ as

σ = G
(
γ̄ + ũ′(x1) − p(x1)

)
(e1 ⊗ e2 + e2 ⊗ e1) , (54)

with the shear modulus G. The balance of linear momentum Eq. (25) yields the differential equation

ũ′′(x1) = p′(x1). (55)

Regarding Eq. (51), the Laplacian 
n p can be replaced by p′′(x1). Moreover, the resolved shear stress
τ = G

(
γ̄ + ũ′(x1) − p(x1)

)
can be reformulated by means of Eq. (55). Thus, Eq. (51) reads

p′′ − Θ0

Kg
p = − σ0

Kg
, σ0 = G (γ̄ + c) , (56)

where c denotes the integration constant if Eq. (55) is integrated once with respect to x1. At the boundaries
between both phases, the plastic slip vanishes, i.e., p (−h) = 0 and p (h) = 0 hold true. The function ũ(x1)
is considered to be a periodic fluctuation. Thus,

∫ h+s

−h
ũ(x1) dx1 = 0,

∫ h+s

−h
ũ′(x1) dx1 = 0 (57)

hold true, cf. Wulfinghoff et al. [73, Eq. (27)]. These conditions are used to determine the integration constants
that arise in the context of Eq. (55). Finally, solving Eq. (56) closes the ansatz for the displacement field, given
by Eq. (52).

Solution The ordinary, linear differential equation, cf. Eq. (56), can be solved analytically. The solution is
given in dependency of σ0 and reads

p(x1) = − σ0

Θ0

⎛
⎝e

√
Θ0
Kg

x1 + e
−

√
Θ0
Kg

x1

⎞
⎠

⎛
⎝e

√
Θ0
Kg

h + e
−

√
Θ0
Kg

h

⎞
⎠

−1

+ σ0

Θ0
. (58)
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Fig. 2 Parabolic distribution of the plastic slip p(x1) as a consequence of the quadratic defect energy. Three different amplitudes σ0
are considered. If the defect energy is neglected, the solution for the plastic slip is homogeneous

For brevity, the integration constants to determine ũ(x1) are not given explicitly, here. Regarding a sequence
of equilibrium states, the distribution of the plastic slip p(x1) is depicted in Fig. 2. The amplitude σ0 is chosen
as 15MPa, 25MPa and 35MPa, respectively. For the illustration, h is chosen as 0.5µm. The solution according
to Eq. (58) is shown in purple. Due to the quadratic defect energy, a parabolic distribution of the plastic slip is
obtained. The analytical solution is qualitatively in line with the numerical results presented in [3]. Neglecting
the contribution due to the defect energy leads to a constant distribution of the plastic slip. This solution
represents the classical distribution of the plastic slip without gradient effects and is illustrated in Fig. 2 in
orange. The absolute value of the classical distribution of the plastic slip is significantly higher compared to
the parabolic distribution.

5 Concluding remarks

The consideration of an additional, scalar-valued DOF does not provide an associated, additional force balance
by means of the discussed invariance considerations. Moreover, the existence of a conservation law for micro-
inertia cannot be obtained. However, the unambiguous existence of the Cauchy stress tensor, the micro-stress
vector and the heat flux vector can be shown. This is in direct contrast to a corresponding extended principle
of virtual power, which assumes the existence of stress quantities from the outset. The conservation of mass as
well as the balance of linear momentum is obtained in the same form as for a classical continuum. In addition,
the Cauchy stress tensor remains symmetric. The exploitation of the Clausius–Duhem inequality leads to a
thermodynamically consistent, nonlocal flow rule for the scalar-valued DOF. Partitioning of the obtained flow
rule yields the so-called micro-force balance as a constitutive equation. Moreover, the equivalence between
the extended energy balance and an extended principle of virtual power is shown for a scalar-valued DOF
neglecting micro-inertia and micro-body forces. In this context, it is outlined that the notion of balance is
misleading with respect to the micro-force balance. A slip gradient crystal plasticity theory is considered as
application of the approach presented. For brevity, considerations are limited to small deformations and single
slip. Based on a quadratic defect energy, a parabolic distribution of the plastic slip is obtained by analytical
means. The analytical results are in good agreement with numerical experiments.
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Theory’ of the DFG Research Group 1650 ‘Dislocation based Plasticity’ under Grant BO1466/5 is gratefully acknowledged. In
addition, discussions with Matti Schneider on the topic are gratefully acknowledged.
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Appendix: Additional vector-valued DOF

Extended energy balance

Subsequently, the additionally considered DOF is referred to as p and defined on the tangent space of the
Euclidean ambient space. It is given in terms of the microstructure function ϕ̃t . The spatial velocity ṽ of p is
calculated by means of the time derivative of ϕ̃t , i.e.,

ṽ(x, t) = Ṽ (X, t) ◦ ϕt
−1, Ṽ (X, t) = ∂ϕ̃t (X)

∂t

∣∣∣∣
X=const.

, p = ϕ̃t (X). (59)

Regarding Eq. (7), the considered extensions to the energy balance, based on the vectorial DOF, are given by

κ = 1

2
Ãṽ · ṽ, β = b̃ · ṽ , s = t̃ · ṽ . (60)

Here, b̃ denotes a generalizedmicro-body force and t̃ a generalizedmicro-traction. Themicro-inertia is referred
to as Ã. Thus, the extended energy balance Eq. (7) can be written in the form

ε =
∫
Vt

(ρ̇ + ρdiv (v))

(
e + 1

2
v · v + 1

2
Ãṽ · ṽ

)
+ ρė + ρ (a − b) · v

+ ρ
(

Ãã − b̃
)

· ṽ + 1

2
˙̃Aṽ · ṽ − ρr dv −

∫
∂Vt

t · v + t̃ · ṽ + h da = 0. (61)

The additional vectorial DOF p is assumed to transform objectively concerning a change of observer, i.e.,

p′ = Q(t) p (62)

holds true. Thus, p is unaffected if a pure translational transformation is considered. The implications for the
spatial velocity fields are given in the first row of Table 1. The considered calculations are closely related to the
discussion given in Marsden and Hughes [43, pp. 145-149]. As for the additional scalar-valued DOF, a pure
translational transformation is considered first, and a pure rotational one subsequently.

Translational transformation

Since the same transformations are considered as discussed in Sect. (3.2), the additional DOF is not affected
by the rigid-body translation. Thus, the existence of the Cauchy stress, cf. Eq. (19), as well as the conservation
of mass, cf. Eq. (23), and the balance of linear momentum, cf. Eq. (25), are obtained, respectively.

Rotational transformation

Accounting for the results in Eqs. (19), (23) and (25), a pure rotational transformation is considered subse-
quently, according to the transformation laws in the third row of Table 1. In line with Eq. (27), the traction
forces are assumed to transform objectively with respect to a change of observer, reading

t ′ = Qt, t̃ ′ = Qt̃. (63)

Table 1 Transformations of the material points and the additionally considered vectorial DOF in the context of a change of
observer

x′ v′ w p′ ṽ′ z

Euclidean transformation Qx + c′ Qv + w Q̇x + ċ′ Q p Qṽ + z Q̇ p
Pure translation x + c′ v + w ċ′ p ṽ 0
Pure rotation Qx Qv + w Q̇x Q p Qṽ + z Q̇ p
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Similar to Eq. (28), the difference between body forces and accelerations is assumed to transform objectively

(
a′ − b′) = Q (a − b) ,

(
ã′ − b̃

′) = Q
(
ã − b̃

)
, (64)

cf. Marsden and Hughes [43]. As in Sect. (3.3), all scalar quantities are invariant with respect to the considered
transformations. It is assumed that Q(t0) = I holds true.

Existence of micro-stress tensor Evaluation of Eq. (15) yields

Δεt0 =
∫
Vt

−σ · grad (w) + ρ
(

Ãã − b̃
)

· z + ρ
˙̃A
(

ṽ · z + 1

2
z · z

)
dv

−
∫

∂Vt

t̃ · z da = 0. (65)

Application of Eq. (65) to an infinitesimal tetrahedron yields the existence of the micro-stress tensor σ̃ given
by

σ̃n = t̃, (66)

cf. Yavari and Marsden [74, p. 9].

Conservation of micro-inertia Accounting for Eq. (66) and applying the divergence theorem, Eq. (65) can be
formulated as

Δεt0 =
∫
Vt

−σ · grad (w) + ρ
(

Ãã − b̃
)

· z + ρ
˙̃A
(

ṽ · z + 1

2
z · z

)

− div (σ̃ ) · z − σ̃ · grad (z) dv = 0. (67)

Moreover, substituting w and z according to the third row of Table 1 yields

Δεt0 =
∫
Vt

−σ · grad (
Q̇x

) + ρ
(

Ãã − b̃
)

· (
Q̇ p

)

+ ρ
˙̃A
(

ṽ · ( Q̇ p
) + 1

2

(
Q̇ p

) · (
Q̇ p

))

− div (σ̃ ) · ( Q̇ p
) − σ̃ · grad (

Q̇ p
)
dv = 0. (68)

Manipulations of Eq. (68) lead to

Δεt0 =
∫
Vt

−σ · Q̇ + ρ
(

Ãã − b̃
)

· (
Q̇ p

)

+ ρ
˙̃A
(

ṽ · (
Q̇ p

) + 1

2

(
Q̇

T
Q̇

)
· ( p ⊗ p)

)

− div (σ̃ ) · (
Q̇ p

) − σ̃ · (
Q̇ grad ( p)

)
dv = 0. (69)

In general, a rotation tensor can be expressed by means of its rotation axis n and its rotation angle θ , cf. [63],
reading

Q = n ⊗ n + cos θ (I − n ⊗ n) − sin θε[n]. (70)

If the rotation axis is considered as a constant unit vector, the time dependency of Q is due to the rotation
angle θ = θ(t). Thus, the time derivative of the rotation tensor is given by

Q̇(t) = − (sin θ) θ̇ A − (cos θ) θ̇B, (71)

with A = (I − n ⊗ n) and B = ε[n]. Thus, the second derivative of Eq. (69) with respect to θ̇ reads

d2Δεt0

d θ̇2
=

∫
Vt

1

2
ρ

˙̃A
d2

(
Q̇

T
Q̇

)

d θ̇2
· ( p ⊗ p) dv

=
∫
Vt

ρ
˙̃A (

( sin θ)2AA − ( cos θ)2BB
) · ( p ⊗ p) dv = 0. (72)
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Localization of Eq. (72) yields

ρ
˙̃A (

( sin θ)2AA − ( cos θ)2BB
) · ( p ⊗ p) = 0. (73)

Since ρ �= 0, ( sin θ)2AA − ( cos θ)2BB �= 0 and p ⊗ p �= 0, the conservation of micro-inertia is obtained,
reading

˙̃A = 0. (74)

Balance of angular momentum Accounting for conservation of micro-inertia as stated in Eq. (74), Eq. (69)
can be formulated as

Δεt0 =
∫
Vt

(
−σ +

(
ρ

(
Ãã − b̃

)
− div (σ̃ )

)
⊗ p − σ̃ (grad ( p))T

)
· Q̇ dv = 0. (75)

Since Q̇(t0) ∈ Skw, the localization of Eq. (75) yields the modified balance of angular momentum

−σ +
(
ρ

(
Ãã − b̃

)
− div (σ̃ )

)
⊗ p − σ̃ (grad ( p))T∈ Sym. (76)

Consequently, the Cauchy stress σ is not symmetric as in Eq. (4).

Existence of heat flux vector Accounting for the results in Eqs. (19), (23), (25), (66) and (74), Eq. (61) can be
written as ∫

Vt

ρė − σ · grad (v) +
(
ρ

(
Ãã − b̃

)
− div (σ̃ )

)
· ṽ − σ̃ · grad (ṽ) − ρr dv

−
∫

∂Vt

h da = 0. (77)

Application of Eq. (77) to an infinitesimal tetrahedron yields the existence of the heat flux vector q given by

q · n = −h, (78)

cf. Marsden and Hughes [43, p. 148].

Balance of internal energy Under consideration of all previously discussed results, localization of Eq. (61)
yields the local form of the balance of internal energy, reading

ρė − σ · grad (v) +
(
ρ

(
Ãã − b̃

)
− div (σ̃ )

)
· ṽ − ρr − σ̃ · grad (ṽ) + div (q) = 0. (79)
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