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Abstract We present a theoretical model of the free Helmholtz energy (F) for solid metals that incorporates
three contributions: the elastic part through a local strain description, the vibrational energy within a quasi-
harmonic Einstein model with volume-dependent cohesive energy, and the electronic contribution in the free
electron gas setting. To get F , we introduce discrete approximations of the Helmholtz energy defined in cubic
lattices and show their convergence to F by finite element methods. For homogeneous deformations, the
obtained model is applied to derive an equation of state (EOS) which shows a very good agreement with
experimental data. Moreover, compared to other known theoretical EOSs, the present model is highly stable
under different estimations of its parameters.

Keywords Equation of state · Solid metals · Elastic deformations · Thermodynamic model

1 Introduction

Thermostatistical models of matter play a key role in the illustration and understanding of physical behavior
of many systems and also in the description of the relations between the properties involved. In fact, the
knowledge of the thermal properties and the EOSs of solids is a subject of permanent interest in many fields
of basic and applied sciences including physics, metallurgy, and geophysics.

There are several experimental, theoretical, and numerical approaches to determine EOSs for solids [1–9].
Among the best-known models, we can mention the ones of Birch–Murnaghan [10], Rose–Vinet [11,12],
and Mie–Grüneisen [13,14]. The EOSs have either empirical or theoretical bases; they are very useful for
interpolation and extrapolation of pressure–volume data, for predicting behaviors and also for determining
values of other quantities, as the bulk modulus. However, in most of the standard frameworks, the Helmholtz
or Gibbs free energies were not derived, so a full thermodynamic description was not constructed. Moreover,
there are many numerical and computational methods such as molecular dynamic simulations [15,16] and
density function theory [17,18] to analyze solids under deformations with a great experimental agreement.
Nevertheless, numerical methods can yield isothermal curves for a specific system but, in contrast to analytical
approaches, do not provide a full understanding about the mutual relations among physical parameters.
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The general purpose of the present work is to contribute to the development of a reference for the study of
metal deformations, with a full and self-consistent thermodynamic description. The total freeHelmholtz energy
is constructed from three contributions: vibrational, electronical, and elastic. The vibrational energy is given
by a quasi-harmonic Einstein model with a dimensionless cohesive energy versus distance function (F(z))
involving the Wigner–Seitz radius and a material-dependent scaling length, as suggested in classical works by
Rose, Ferrante, Smith, and collaborators [11,19]. Secondly, the electronic part is estimated as the energy of
free electron gas in the standard form. Finally, the elastic energy is described extending the internal energy in
a power series with respect to a deformation parameter. This method has been previously used in [20,21] for
describing the behavior of solid argon and gold. However, our insight is different; on the one side, we explicitly
introduce the deformation map u that describes the new positions of the atoms after the deformation, allowing
to expand the elastic energy in terms of linear thermal strains. On the other side, we derive a continuum and
macroscopic model from a discrete and microscopic description of the atomic interactions. In consequence,
our model not only quantifies the change in volume produced by the deformation, but also contemplates how
the change in volume is generated.

The paper is organized as follows. In Sect. 2, we provide the basic setting of the phenomenon under
study, including standard assumptions on the partition of the total Helmholtz energy. The construction of the
discrete models for the total energy is discussed in Sect. 3. In this part, we shall also provide full details of the
formulation of each discrete energy contribution. The continuum model for the Helmholtz energy is presented
in Sect. 4. A deep discussion of the model for the case of homogeneous deformations, including derivations of
EOSs, is provided in Sect. 5. In that part, we shall also compare the theoretical findings to both experimental
data and previous equations of state in the literature. In Sect. 6, we present the general conclusions of the paper.
Finally, we close the paper with Appendix, where we supply the details in deriving the continuum model from
the discrete approximations.

2 Basic framework

We consider a metallic three-dimensional body �0 ⊂ R
3 with simple cubic structure. We call �0 the initial

configuration with temperature T0 and pressure P0. The solid is initially in equilibrium and is deformed
into a new stable configuration (�) by a change in temperature or pressure. However, we assume that the
thermodynamic change does not produce a phase transition.

The total Helmholtz energy of a solid can be expressed as the sum of three terms describing the elastic
(Fe), vibrational (Fvib), and electronic (Fel) contributions [22]:

F = Fe + Fel + Fvib. (2.1)

Each of these partial contributions Fi will be found using the following standard expression:

Fi = Ei − T Si , (2.2)

where Ei is the internal energy and Si is the corresponding entropy. We shall write each Fi over discretizations
of the deformed solid, and then by a limiting procedure we shall derive a continuum model for F .

3 The discrete model

3.1 Basic considerations

We model the deformation from �0 onto � by a function u with continuous first-order partial derivatives. In
the sequel, V0 and V represent the volumes of the initial and final configurations, respectively.

In the initial configuration �0, we distinguish between the lattice given by the cubic crystal system and the
lattices generated by the discretization. The first one is fixed (dashed lines in Fig. 1), the nodes of the lattice
are all the atoms of the solid, and the smallest distance between them is the lattice parameter a. On the other
hand, the discretization gives rise to a set of cubic lattices �0 ∩Lh , where Lh = hZ

3 and h is the lattice mesh
(solid lines in Fig. 1 for h = 2a). When h = a, the number of nodes (Nn(h)) is exactly the number of atoms
(N ). In the sequel, the following parameter will be used:
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Fig. 1 Representation of the solid with its cubic simple structure with lattice parameter a and its discretization with mesh h

Fig. 2 Representation of a standard lattice cell

N (h) =
{
Nn(h) if h > a,

N if h ≤ a.
(3.1)

Moreover, we let uh the discrete deformation that coincides with u on the nodes of Lh ∩ �0.

3.2 Contributions to the discrete total Helmholtz energy

3.2.1 Helmholtz elastic energy

This energy is related to the displacements of the atoms in the deformed configuration with respect to the initial
positions,without considering the atomic vibrations. For givenh,wewill describe the elastic deformation taking
into account only the interactions between first-neighbor nodes of the corresponding discretized lattice.

For each h and node α ∈ Lh ∩ �0, we define the lattice cell as Ch
α = α + h[0, 1]3 (Fig. 2). The internal

elastic energy associated with each cell (Eh,α
e ) is considered as the quotient between the total internal energy

of the solid and the number of cells (that is approximately N (h)). Similarly:

V0 ≈ N (h)h3 and V ≈
∑

α∈Lh∩�0

vhα,

where vhα is the volume of the deformed lattice cell. Hence, performing a Taylor expansion of Eh,α
e around the

initial equilibrium state h3 in terms of vhα , we obtain:
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Eh,α
e = ∂Eh,α

e

∂vhα
(vhα −h3)+ 1

2

∂2Eh,α
e

∂(vhα)2
(vhα −h3)2+· · · = A

N (h)
(vhα −h3)+ 1

2

B

N (h)h3
(vhα −h3)2+· · · , (3.2)

where B is the bulk modulus and A is the elastic pressure of the solid, both at the initial equilibrium state. In
the sequel, we shall rewrite (3.2) in terms of bond deformations.

For each lattice cell and for each permutation π ∈ S3 of the elements 1, 2, and 3, the deformation of the
edge with end points α + h(eπ(0) + · · ·+ eπ(i)) and α + h(eπ(0) + · · ·+ eπ(i) + eπ(i+1)) may be quantified by:

εh,i
α,π := |uh(α + h(eπ(0) + · · · + eπ(i) + eπ(i+1)) − uh(α + h(eπ(0) + · · · + eπ(i)))|

h
(3.3)

for i = 0, 1, 2 (where we take π(0) = 0).
The parameter (3.3) characterizes the edge deformation with respect to the reference configuration. There-

fore, the term vh,i
α,π := h3εh,i

α,π is an approximation of the final cell volume vhα. Indeed, an elastic contraction
gives rise to εh,i

α,π < 1 and hence vh,i
α,π < h3. Similarly, an expansion gives εh,i

α,π > 1 and vh,i
α,π > h3. Averaging

over all edges and permutations, we get the estimation:

vhα ≈ 1

18

∑
π,i

vh,i
α,π . (3.4)

Moreover, observe that the term vh,i
α,π − h3 is h3(εh,i

α,π − 1) and that εh,i
α,π − 1 corresponds with the standard

linear thermal strain for the edgewith end pointsα+h(eπ(0)+· · ·+eπ(i)) andα+h(eπ(0)+· · ·+eπ(i)+eπ(i+1)).
Plugging the expressions (3.3) and (3.4) into (3.2), we derive:

Eh,α
e ≈ A

18N
h3

∑
π∈S3

[( |uh(α + heπ(1)) − uh(α)|
h

− 1

)
+

( |uh(α + h(eπ(1) + eπ(2)) − uh(α + heπ(1))|
h

− 1

)

+
( |uh(α + h(eπ(1) + eπ(2) + eπ(3)) − uh(α + h(eπ(1) + eπ(2))|

h
− 1

)]

+ B

36N
h3

∑
π∈S3

[( |uh(α + heπ(1)) − uh(α)|
h

− 1

)2

+
( |uh(α + h(eπ(1) + eπ(2)) − uh(α + heπ(1))|

h
− 1

)2

+
( |uh(α + h(eπ(1) + eπ(2) + eπ(3)) − uh(α + h(eπ(1) + eπ(2))|

h
− 1

)2
]

.

(3.5)

Observe that we used the convex approximation (
∑

i λi xi )
2 ≈ ∑

i λi x
2
i for λi ∈ [0, 1], ∑

i λi = 1 and xi
small.

An approximation to the internal elastic energy of the lattice (Eh
e ) will be the sum of (3.5) over inner cells

Ch
α ⊂ �0. On the other hand, the static entropy can be calculated using the formula Ste = −kBN (h)

∑
i pi ln pi

with i = 1, 2, where p1 = qh = N (h)v/V represents the fraction of cell space occupied by nodes of volume
v, and p2 = 1 − qh . Then, using (2.2), the discrete model for the Helmholtz elastic energy of the solid may
be written as:

Fh
e = Eh

e + N (h)T kB
(
qh ln qh + (1 − qh) ln(1 − qh)

)
. (3.6)

At the initial state, v can be estimated as 4/3π(a/2)3, where a is the lattice parameter. Then, the space filling
coefficient when h = a satisfies q0 ∼ 0.5 that is expected for cubic simple lattices. Hence,

qh → q = q0V0
V

as h → 0.

Observe that q < 1 provided V > 0.5V0. This restriction on the deformation will be assumed in the rest of
the paper.

A similar equation to (3.2) is obtained in [20,21] where the internal elastic energy is expanded in terms of
the elastic strain ε = (V −V0)/V0. However, our approach is different: While ε only quantifies the net change
in volume, the strain of the present work (3.3) gives a local description of each edge deformation.
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3.2.2 Helmholtz vibrational energy

To describe the vibrational contribution, we treat the atoms as a set of Einstein oscillators [23,24] in the
framework of the quasi-harmonic approximation (QHA). In QHA, it is assumed that the atomic vibrations are
harmonic but the frequency ω depends on V via the following relation [22]:

γ := − ∂ lnω

∂ ln V
.

The parameter γ is a kind of Grüneisen parameter [25] that can be taken in a first approximation to be constant.
Hence, the above expression can be integrated between two states to obtain:

ω = ω0

(
V0
V

)γ

, (3.7)

where ω0 is the Einstein frequency at the ground state, i.e., T = 0 and P = 0. The correction of the Einstein
model presented by Eq. (3.7) implies that the vibrational energy depends on the deformation via the volume
variation.

According to the above considerations, the vibrational contribution to the Helmholtz energy can be
expressed as [24]:

Fh
vib = N (h)uh0 + 3N (h)kBT

[
θ

2T
+ ln

(
1 − e−θ/T

)]
, (3.8)

where θ = �ω(V )/kB . The quantity uh0 is related to the cohesive energy of the solid (Ecoh) as follows [35]:

uh0 = EcohF(zh)

with F(zh) = −(1 + zh)e−zh the standard Rydberg function [12,19] and zh a dimensionless variable given
as:

zh(V ) = (r − r0) / l,

where r = (3V/(4πN (h)))1/3 is the Wigner–Seitz radius, r0 is the Wigner–Seitz radius at equilibrium, and
l is a material-dependent scaling length [19]. We point out that (3.8) contemplates not only the vibrational
(kinetic) energy but the static (cohesive) energy as well.

3.2.3 Helmholtz electronic energy

This contribution is estimated as the energy of a standard free electron gas [22,26]. In this framework, the
electronic contribution to the Helmholtz energy can be expressed as [26]:

Fel = 3

5
n(h)ε f

[
1 − 5

12

(
πkBT

ε f

)2
]

, (3.9)

where ε f is the Fermi energy at the ground state and is defined as [6,26]:

ε f = �
2

2m

(
3π2 n(h)

V0

)2/3

.

Moreover, n(h) is the number of free electrons and can be taken as:

n(h) = N (h).nv,

where nv is the number of valence electrons per atom.
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4 The continuum model

The total discrete Helmholtz energy is obtained plugging the contributions (3.6), (3.8), and (3.9) into (2.1), to
get:

Fh : = Eh
e + N (h)T kB

(
qh ln qh + (1 − qh) ln(1 − qh)

)

+ N (h)EcohF (zh) + 3N (h)kBT

[
θ

2T
+ ln

(
1 − e−θ/T

)]
+ 3

5
n(h)ε f

[
1 − 5

12

(
πkBT

ε f

)2
]

.

(4.1)
By applying finite element methods and letting h → 0 in (4.1), we derive a continuum model to the total
Helmholtz energy:

F = A

3N

∫
�0

3∑
i=1

(|∂i u(x)| − 1) dx + B

6N

∫
�0

3∑
i=1

(|∂i u(x)| − 1)2 dx + NTkB (q ln q + (1 − q) ln(1 − q))

+ NEcohF (z) + 3NkBT

[
θ

2T
+ ln

(
1 − e−θ/T

)]
+ 3

5
nε f

[
1 − 5

12

(
πkBT

ε f

)2
]

,

(4.2)
where

z = l−1

[(
3V

4πN

)1/3

− r0

]
. (4.3)

We refer the reader to Appendix for the calculations.
Integral representations, as those obtained in (4.2), are usually found in models for the internal elastic

energy (see for example [27,28] and the references therein). Moreover, the dependence of the elastic part on
the gradient of the deformation is also standard in the literature and it accounts for the local deformation at
each material point.

Equation (4.2) constitutes our basic model, and from it, we can derive a complete thermodynamic descrip-
tion, as we will show in the next section.

5 Discussion and implications of the model

5.1 Solid without deformation

As a basic example, suppose that the initial conditions of the solid T0 = 0 and P0 = 0 do not change. In this
case, the deformation is u(x, 0, 0) = x and its gradient is:

∇u(x, 0, 0) =
⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠ .

Thus, the elastic contribution in Eq. (4.2) disappears and the total energy reduces to:

F = −NEcoh + 3

5
nε f + 3

2
N�ω0,

which is the expected Helmholtz energy in the ground state.

5.2 Cubic solid under an homogeneous deformation

Suppose now that we have a cubic solid [0, s0]3 with initial conditions V0 = s30 , T0, and P0. The cube undergoes
an homogeneous deformation, and it expands at the same rate over the directions e1, e2, and e3. A possible
form for this deformation is:

u(x, T, P) = (1 + c(T − T0) + k(P − P0))x, (5.1)
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where c is a constant expressed in K−1 and k in (N/m2)−1. Observe that u satisfies the general relation that
the standard linear thermal strains over each edge of the cells are proportional to the change in temperature.
Below, we present interpretations of the constants c and k.

Recall that the linear thermal expansion coefficient (αL ) at constant pressure (P = P0) can be estimated
as:

�L

L0
= αL�T, (5.2)

where �T = T − T0, L0 = h and:

�L = |u(α + h(eπ(0) + · · · + eπ(i) + eπ(i+1))) − u(α + h(eπ(0) + · · · + eπ(i)))| − h = c�Th.

So, we derive:
αL = c. (5.3)

A similar relation to (5.3) for thewhole solidmay be deduced considering the volumetric thermal expansion
coefficient (αV ), estimated as:

�V

V0
= αV�T . (5.4)

Indeed, using V0 = s30 , we have that (5.4) gives:

[(1 + c�T )s0]3 − s30
s30

= αV�T .

A first-order Taylor expansion implies:

c ≈ 1

3
αV . (5.5)

The approximation (5.5) yields that αL ≈ (1/3)αV , that is, a well-known result for isotropic materials [26].
Analogously, the isothermal compressibility (κ) can be estimated as:

�V

V0
= −κ�P,

where �P = P − P0. In this case:

[(1 + k�P)s0]3 − s30
s30

= −κ�T

and then the constant k in (5.1) can be interpreted as:

k ≈ −1

3
κ.

5.2.1 Helmholtz total energy

In view of (5.1), we can write:

V = (1 + c�T + k�P)3V0.

Hence, Eq. (4.2) gives:

F = A
N V0

[(
V
V0

)1/3 − 1

]
+ B

2N V0

[(
V
V0

)1/3 − 1

]2
+ NTkB

[
V0
2V ln

(
V0
2V

)
+

(
1 − V0

2V

)
ln

(
1 − V0

2V

)]

+NEcohF (z) + 3NkBT
[

θ(V )
2T + ln

(
1 − e−θ(V )/T

)]
+ 3

5nε f

[
1 − 5

12

(
πkBT

ε f

)2]
. (5.6)

Observe that B/N ∼ 10−19 − 10−18N/m2, θ ∼ 102 − 103K [29] , ε f ∼ 10−19 J [29], and kB ∼
10−23 J/K . Since the solid is a unit cube with simple cubic structure, we have N ∼ 1030. Therefore, (5.6)
yields (∂2F/∂T 2)V < 0 that indicates a thermodynamically stable state.
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5.2.2 Equation of state (EOS)

FromEq. (5.6), it is possible to obtain a complete description of the thermodynamics of the system. In particular,
using the relation P = −(∂F/∂V )T , we can get the following equation of state:

P = − A

3N
x−2/3 − B

3N

(x1/3 − 1)

x2/3
− NkBT

2V0

ln (2x − 1)

x2
+ 3NkBγ θ

V0
x−3

(
1

2
+ 1

eθ/T − 1

)
− Ecoh

4πl

(
4πN

3xV0

)2/3

z(x)e−z(x) ,

(5.7)
where x = V/V0 and z(x) is given by (4.3). At the ground state, where T = 0 and P = 0, Eq. (5.7) gives:

A

3N
= 3NkBθγ

2V0
. (5.8)

Hence, the elastic pressure around the equilibrium cancels out the pressure generated by the atomic vibrations.
Equation (5.7) is easy to implement, and the input parameters used to apply it are well known [19,29].

Moreover, the present theory does not need fitting parameters.

5.2.3 Numerical analysis

In Fig. 3, we show the agreement between the present EOS (5.7) and the experimental data for Na, Mo, and
Au. The model is successful in representing the isothermal EOS of the different metals. The values of Ecoh,
B, and θ were obtained from [29], whereas l and r0 from [19]. For simplicity, we take γ = 2 [26]. For the
particular case of Na, we show two different samples, one with V0 = 24 cm3/mol (T = 20 K ) and the other
with V0 = 22.38 cm3/mol (T = 51K, 150K and 250K).

Observe that, even do the model was derived from cubic simple lattices, it can be satisfactorily applied to
obtain the EOS of bcc and fcc metals. The accuracy is better for small deformations which is consistent with
the theoretical approach. Moreover, for highest deformations (x ≈ 0.8) the relative error between (5.7) and
experimental data is 5.9% for Au, 1.6% and 2.5% for Na at T = 20K and T = 51K, respectively, and 11.9%
for Mo.

In Fig. 4, we compare (5.7) for Mo with other EOS: Rose–Vinet [22] (in (a)) and Kamal et al. [7] (in
(b)). The gray zones represent a probable range of P-V values, considering different estimations of the EOS
parameters, viz. B [7,19,29,33] and the pressure derivative of the bulk modulus (B’) [7,19,34,35]. These well-
known models have a sensitive dependence on B’, whose predicted values present a huge relative difference
in the literature. On the other hand, the red zone shows the range of P-V given by Eq. (5.7) for several values
of B [7,19,29,33], θ [29,36,37], and Ecoh [19,29,33]. It is evident that the effect of the parameter variations
in our model is much less significant than that in the EOSs involving B’.

Fig. 3 Relationship between pressure and x = V/V0 for Na (a), Mo (b), and Au (c) at different temperatures. Squares represent
experimental values from [30–32], respectively. The solid lines show the predictions given by Eq. (5.7)
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Fig. 4 Comparison of isothermal EOS for Mo at 293 K, obtained from different sources. The shadowed regions represent the
range of values in the P-V relation for several estimations of the EOS parameters. The lower curves were obtained by the smallest
founded values of B and B’ (black curve) and for B, θ and Ecoh (red curve). Similarly, the upper curves correspond to the highest
values (color figure online)

Based on experimental or numerical P-V values, the usual approach is to treat B’ as a fitting parameter.
However, when P-V data are not available, Fig. 4 suggests the use of models not involving B’. In this sense,
our framework presents a clear advantage, even for Mo where the agreement is less accurate.

6 Concluding remarks

The main goal of the present paper is to develop a full theoretical description of metallic solids under deforma-
tion. This deformation is caused by changes in pressure or temperature and is described in terms of a smooth
mapping that connects each point in the initial configuration with its final state.

The model is derived from a discretization of the solid in cubic lattices. On each discrete structure, we
consider the total Helmholtz energy as the sum of three contributions: elastic, vibrational, and electronic. The
elastic part is modeled through a local strain defined in terms of the final distance between first-neighbor
nodes in the lattice. The vibrational contribution is given by a quasi-harmonic Einstein model with a volume-
dependent cohesive energy where the Rydberg function intervenes. Lastly, the electronic part is described in
the framework of the free electron gas.

From the discrete setting and using finite element method, we obtain the continuum Helmholtz free energy
F . The convenience of constructing F is to obtain a complete thermodynamic description, including an
equation of state. Hence, it is straightforward to derive other thermodynamic quantities such as the isobaric
thermal expansion (αT = −(∂P/∂T )V /V (∂P/∂V )T ) and the heat capacity at constant volume (CV =
−T (∂2F/∂T 2)V ).

The present framework can be applied to any smooth deformation, without phase transitions, and where
V/V0 > 0.5. In particular, we make an exhausted analysis in the case of an homogeneous deformation. A
comparison with experimental P-V data for Na, Mo, and Au shows that the obtained EOS accounts for the
experimental trends at T << Tmelting with a very good agreement. Hence, even do the model is developed
from cubic simple lattices, it can be satisfactory applied to other cubic structures. Finally, the present EOS
is compared with other known equations of state, concluding that it is more stable under the variations of its
parameters. This advantage is due, in part, to the absence of B ′.

7 Appendix

In this section, we give full details in the derivation of the continuum model (4.2).
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Fig. 5 Triangulation of the cell taking in the standard form

7.1 Standard triangulation in R
3

Throughout this section, � is an open bounded subset of R
3. For s > 0, we denote:

�s = {x ∈ �; dist(x, ∂�) > s},
where dist(x, ∂�) stands for the distance of x to the boundary ∂� of the set �.
The standard triangulation of the three-dimensional cube C3 = [0, 1]3 is defined as follows (Fig. 5). For all

permutations π ∈ S3 of 3 elements, let T π be the 3-simplex obtained by:

T π = {(x1, x2, x3) ∈ C3; xπ(1) ≥ xπ(2) ≥ xπ(3)}.
Introducing the canonical vectors:

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1),

we notice that T π is the convexification of its vertices:

T π = conv
{
0, eπ(1), eπ(1) + eπ(2), eπ(1) + eπ(2) + eπ(3) = e1 + e2 + e3

}
,

and that all simplices T π have 0 and (1, 1, 1) = e1+e2+e3 as common vertices. The collection of 3! simplices
{T π }π∈S3 constitutes the standard triangulation of C3, which can also be naturally extended to each lattice cell
α + hC3 where α ∈ hZ

3:

T π
α = conv

{
α,

{
α + h

j∑
i=1

eπ(i)
}3
j=1

}
.

Moreover, we call Th,3 the whole triangulation, that is:

Th,3 = {T π
α ; α ∈ hZ

3, π ∈ S3}. (7.1)

7.2 The discrete model

Let Uh ⊂ �0 be the set of those nodes so that the lattice cell Ch
α is included in �0, and let Uh be the region

covered by those cells. For a given deformation u ∈ C1(�0) with continuous first-order derivatives in �0, we
consider the lattice Helmholtz total energy as:

Fh : =
∑
α∈Uh

Eh,α
e + N (h)T kB

(
qh ln qh + (1 − qh) ln(1 − qh)

)

+ N (h)EcohF(z) + 3N (h)kBT

[
θ

2T
+ ln

(
1 − e−θ/T

)]
+ 3

5
n(h)ε f

[
1 − 5

12

(
πkBT

ε f

)2
]

.
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7.3 Integral representation of the elastic contribution

Extend u to the whole space R
3 so that u ∈ C10(R3, R

3). By the fundamental estimate of finite elements [38],
theP1-interpolation uh of u on Th,3, i.e., the continuous function affine on the simplices in Th,3 which coincides
with u on hZ

3, satisfies:
‖uh − u‖W 1,2(�) → 0 (7.2)

as h → 0 for any � open and smooth domain in R
3 and moreover:

‖∇uh‖L∞(�′) ≤ ‖u‖L∞(�′), (7.3)

for all h and bounded set �′ compactly contained in �.
Recalling the expression for the internal elastic energy associated with a cell (3.5) and using the piecewise

affine interpolation of u in the triangulation, we may write:

h3
( |uh(α + heπ(1)) − uh(α)|

h
− 1

)
= h3

(|∂π(1)uh(α)| − 1
) = 6

∫
T π
α

(|∂π(1)uh(α)| − 1
)
dx

h3
( |uh(α + h(eπ(1) + eπ(2)) − uh(α + heπ(1))|

h
− 1

)
= h3

(|∂π(2)uh(α)| − 1
)

= 6
∫
T π
α

(|∂π(2)uh(α)| − 1
)
dx,

and finally:

h3
( |uh(α + h(eπ(1) + eπ(2) + eπ(3)) − uh(α + h(eπ(1) + eπ(2))|

h
− 1

)
= h3

(|∂π(3)uh(α)| − 1
)

= 6
∫
T π
α

(|∂π(3)uh(α)| − 1
)
dx .

Similarly, we derive integral expressions for the second-order terms. Therefore, the discrete model takes the
form:

Fh = A

3N (h)

∫
Uh

3∑
i=1

(|∂i uh(x)| − 1)dx + B

6N (h)

∫
Uh

3∑
i=1

(|∂i uh(x)| − 1)2dx + N (h)EcohF(zh)

+ N (h)T kB
(
qh ln qh + (1 − qh) ln(1 − qh)

)
+ 3N (h)kBT

[
θ

2T
+ ln

(
1 − e−θ/T

)]
+ 3

5
n(h)ε f

[
1 − 5

12

(
πkBT

ε f

)2
]

.

7.4 The limiting model

In this part,we shall describe the limit behavior of the discreteHelmholtz total energy Fh for a given deformation
u ∈ C1(�0).
First, as before, we may consider u as a function in C10(R3, R

3). In view of the strong convergence (7.2), we
derive that:

uh → u, ∇uh → ∇u as h → 0,

at almost every point in �0. Call χh := χUh the characteristic function of the set Uh . Writing:∫
Uh

(|∂i uh(x)| − 1) dx,
∫
Uh

(|∂i uh(x)| − 1)2 dx

as: ∫
�0

(|∂i uh(x)| − 1) χh(x)dx,
∫

�0

(|∂i uh(x)| − 1)2 χh(x)dx,
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respectively, and recalling the uniform bound (7.3) of the gradients together with the convergences |∇uh |χh ↗
|∇u| and |∇uh |2χh ↗ |∇u|2as h → 0, almost everywhere in �0, we deduce from Lebesgue dominated
convergence theorem that:

lim
h→0

(
A

3N (h)

∫
Uh

3∑
i=1

(|∂i uh(x)| − 1)dx + B

6N (h)

∫
Uh

3∑
i=1

(|∂i uh(x)| − 1)2dx

)

= A

3N

∫
�0

3∑
i=1

(|∂i u(x)| − 1)dx + B

6N

∫
�0

3∑
i=1

(|∂i u(x)| − 1)2dx .

(7.4)

In this way, as h goes to 0, the discrete total Helmholtz energy converges to (4.2).
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