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Abstract The purpose of this paper is to develop a homogeneous, couple-stress continuum model as a rep-
resentation of 2D random fiber networks in the small deformation regime. The couple-stress substitution
continuum is calibrated based on the response of a network model (window of analysis, WOA) subjected to
prescribed kinematic boundary conditions applied on part of theWOA boundary, while the free surface bound-
ary conditions are applied on complementary surfaces. Each fiber in the network is considered as a Timoshenko
beam and the cross-links between fibers are modeled as welded joints in which the relative angles between
the crossing beams remain constant during deformation, and hence they transmit moments along and between
crossing fibers. The effective elastic constants of the couple-stress continuum are deduced by an equivalent
strain energy method, and the characteristic lengths are identified from the resulting homogenized moduli. The
competition between the affine (ADR) and non-affine (NADR) deformation regimes is shown to be quantified
by the bending length, a scalar quantity that measures the relative importance of fiber bending in comparison
with fiber stretch. The scaling laws of the effective moduli versus the bending length, network density and
window size are determined in the affine and non-affine deformation regimes. The motivation of the adopted
couple-stress substitution continuum is brought by comparing the identified effective non-classical properties
with the mechanical properties predicted by FE simulations performed over the fully resolved fibrous network.
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1 Introduction

Many natural and synthetic materials exhibit fibrous microstructures. In nature, fibrous structures arrange in
a hierarchic manner to form highly complex and multi-functional parts; protein frequently occurs in fibrous
form. The most abundant fibrous protein in mammals is collagen which is a major constituent of tendons,
ligaments and most of the organic matrix in bone and dentin [1]. Synthetic fibrous materials have high stiffness
and strength-to-weight ratios, making them quite attractive in numerous applications such as fiber-reinforced
composites, civil constructions and in the aerospace industry. (Interesting examples of fibrous complex struc-
tures are described in the works [2–5].) Hence, the study of fibrous networks is essential for characterizing the
mechanical properties of such materials and understanding the dependence of these properties on structural
parameters of the fibrous networks. Since material properties are strongly influenced by structural arrangement
of constituent fibers, it is necessary to model the deformation and failure mechanisms on system subscale. Cox
[6] calculated the elastic modulus of paper by assuming affine stretching of fibers as the dominant deformation
mechanism. However, when fibers have a relatively low bending stiffness and are randomly oriented, bending
is an important feature, particularly in absence of matrix which embeds the fibers [7,8]. Biopolymer network
models studied in [9–11] elucidate the interplay between fiber stretching and bending in the overall nonlinear
elastic behavior of the material at macroscale. As discussed in [12], models used to describe the mechan-
ical behavior of fiber networks can be categorized as phenomenological models and homogenized models
accounting for micromechanics at smaller scales. The phenomenological models rely on fitting a mathemati-
cal model to an experimental stress–strain curve to obtain the required model parameters. This approach does
not capture the dependence of model parameters on structural properties of the fiber network. Homogenized
models overcome this shortcoming by homogenizing fiber networks using analytical or computational meth-
ods. We shall mention in this category the contribution [13] in which the authors adopt a Lagrangian model à
la Hencky for estimating elastic parameters starting from a geometrically nonlinear behavior of the fiber net-
work. Indeed, homogenization techniques are very useful since effective continuum models have, in general,
a low computational cost. Obviously, depending on the research topic, different methods can be applied. (See
[14] for rigorous results about one-dimensional discrete dynamical systems, or [15] for some applications to
inhomogeneous systems described as foams and [16] for homogenization of fiber-reinforced composites using
asymptotic methods.)

A number of parameters, influencing the overall mechanical behavior of the material, are used to char-
acterize a fiber network. An important structural descriptor is the network density, ρ, defined as the total
fiber length per unit area. The orientation tensor, describing the alignment of fibers, is another factor influ-
encing the material response of the network. Fiber properties are also important. Bending length of fibers,
lb = √

E I/E A, quantifies the relative importance of bending stiffness of the fiber to its axial stiffness. (Here,
E is the fiber elastic modulus, A is the cross-sectional area, and I is the moment of inertia of the fiber cross
section.) A number of works have established that as the network density ρ and bending length lb increase,
the dominant fiber deformation mode transitions from bending to stretching and the degree of heterogeneity
decreases [9,10,17,18]. Heterogeneity leads to a strong dependence of the apparent elastic moduli on the size
of the probed network domain. The degree of heterogeneity is quantified in [18] by evaluating the correlation
function between tensile modulus and size of the probed domain. Although there are several works in the
literature based on the affine deformation assumption (such as [8] and [19]), many random fibrous networks
deform non-affinely. Recent investigations in [20,21] concluded that non-affine deformation of random fibrous
networks occurs at a lower energy level than affine deformation of the same structure and is dominated by
bending of the fibers (since the bending modulus is much smaller than the stretching modulus). The stochastic
generation of fibers is responsible for the formation of clusters of fibers, which in turn generate internal strain
gradients corresponding to non-affine deformations of the fiber network even when the network is subjected to
uniform far-field strain. Affine deformation regime refers to motion of internal nodes following the imposed
boundary displacements, whereas non-affine deformation regimes occur when the internal nodes do not follow
the imposed kinematic boundary conditions as shown in Fig. 1.

Our methodology in this work belongs to the class of homogenization approaches. In this work, we adopt
the framework of generalized continuum theories, which have been used extensively to explain size effects
for a wide class of materials, but not for random fibrous materials to our knowledge. This constitutes the main
originality advocated so far in the present work. Classical continuum theory based on the Cauchy approach is
the simplest continuummodel inwhich the stress at amaterial point depends only on the strain at that point. As a
consequence, it cannot incorporatemicrostructural size effects and internal,material-specific lengths.However,
real heterogeneous materials exhibit internal length scales which are important to their mechanics and which
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Fig. 1 Illustration of the difference between affine and non-affine deformation regimes

need to be accounted for in computational models, in order for these to be able to represent spatially varying
strain fields. There are two main classes of generalized continuum theories: the first is called higher- grade
theories, in which the gradients of strains or the higher-order gradients of displacements are incorporated; the
second class is called higher- order theories, in which additional degrees of freedom are incorporated. For
more details about these two classes of theories, the reader is referred to Cihan [22], who presented a historical
overview of generalized continuum theories. More complete descriptions of higher gradient continuummodels
can be found in [23–25]. Interesting applications of higher-order continuum theories are presented, instead, in
the works [26–28]. The development of the nonlinear theory of elasticity traces back to the seminal work of
Cosserat brothers [29]. At the beginning of the 1960s, several authors were interested in Cosserat’s theories
[30–35], and a special case of the Cosserat continuum theory has been investigated by Koiter [36], in which
the microrotation of rigid triad is defined in terms of displacement gradients, known as couple-stress theory. In
a recent work, Goda and Ganghoffer [37] identified the couple-stress moduli of vertebral trabecular bone by
modeling the network of trabeculae as a porous material with an idealized periodic structure made of 3D open
cubic cells. In this paper, we use the couple-stress theory as a modeling framework to identify both classical
and non-classical moduli of two-dimensional random fiber networks, at the level of a window of analysis
(WOA), and we analyze the influence of network parameters on the equivalent couple-stress moduli. Using
energy equivalence, we systematically compute the full set of classical and non-classical moduli of the random
fibrous networks. Similar methods have been used in [38] referred to granular systems, whereas in [39–42]
various identification procedures have been applied to more geometrical structures.

The article is organized as follows: the identification of random fibrous networks is explained in Sect. 2.
The method used for the identification of the couple-stress moduli based on the strain energy equivalence is
presented in Sect. 3. The motivations for adopting an effective couple-stress model are exposed in Sect. 4. The
influence of important network parameters, such as internal bending length, network density, size of WOA, on
the computed effective mechanical moduli is studied in Sect. 5. Finally, a summary of the work is presented
in Sect. 6 together with a few perspectives.

2 Generation of random fiber networks

Our random network consists of finite length fibers, with random orientation and random positions of their
centers of mass. A number of geometrical characteristics of such random line networks are given in the work
of Miles [43]. We consider here systems of two-dimensional networks in which the fibers are of identical
length L0 and are deposited on square regions of dimensions L as shown in (Fig. 2). In this work, we consider
random structures to be a special class of stochastic fibrous networks and classify a random process as one
where the events are independent of each other and equally likely, according to the criteria identified in one of
the important works on modeling two-dimensional random fiber networks, Kallmes and Corte [44].

The mutual geometrical interaction of fibers provides the connectivity of the network; its non-uniformity
can be captured by, for example, the variation of the fiber number density N (defined as the number of fibers per
unit area) or the network density, ρ = NL0 over differentWOA’s of size L in a bigger network. The cross-links
are introduced at all points where fibers intersect; for these nodes, the coordination number (defined as the
number of fiber segments converging at a node) is 2 ≤ z ≤ 4 and they are modeled as “welded joints,” which
implies that both moments and forces are transmitted between the fibers in contact. The comparison of the
impact of this choice of junction among other choices (rotating or pin) does not lead to noticeable differences
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Fig. 2 Window of analysis (WOA) for a 2D Mikado network

in the effective mechanical response (for both the classical and non-classical moduli); numerical computations
with “welded joints” type are more stable than those with “pin joints” type. The comparison between these
types of joints is also discussed in [18].

3 Methodology for the identification of moduli based on couple-stress theory

In themicropolar theory, the deformation is described by the displacement vector u and an independent rotation
vector φ, whereas in the more specific couple-stress theory, the rotation vector φ = φ · ez in the present planar
context is not independent of the displacement vector. (Here ez is the unit normal vector to the plane of
the network.) A special case of Cosserat theory is the couple-stress theory, in which the microrotation and
macrorotation coincide [36]. In comparison with a classical continuum, a couple-stress continuum is obtained
by adding a rotation (dependent of displacement vector) to each point of the continuum; it is based on the
assumption that micromoments exist at each point of the continuum. The appealing aspect of the couple-
stress theory is that a physically meaningful link can be made between the kinetic and kinematic variables of
the couple-stress theory and the behavior of materials with microstructure like random fibrous networks. An
extensive list of references to Cosserat and couple-stress elasticity models is available in the review articles
by [45–48]. Considering the present 2D context, the microrotation is related to the displacement gradient by

φ = 1

2

(
∂v

∂x
− ∂u

∂y

)
(1)

where u = [u, v]T is the displacement field vector in 2D case. On the basis of the couple-stress theory in a 2D
plane stress situation, the stress tensor has four independent components σxx , σyy, σxy, σyx and the couple-
stress tensor has two components mxz,myz . The strain and microcurvature components can be expressed in
terms of displacement gradients and microrotations as

εxx = ∂u
∂x

εyy = ∂v
∂y

εxy = ∂v
∂x − φ

εyx = ∂u
∂y + φ

κxz = ∂φ
∂x

κyz = ∂φ
∂y

(2)

Introducing kinematic constraint (1) into the strain components defined in (2), the strain tensor εi j becomes

symmetric with components defined as εxy = εyx = 1
2

(
∂v
∂x + ∂u

∂y

)
.

The static equilibrium in translation and rotation is given by

∇ · σ + f = 0
∇ · m − ε : σ + c = 0 (3)
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Ignoring body forces f and body moments c in equation (3) leads to the set of equations

∂σxx
∂x + ∂σyx

∂y = 0
∂σxy
∂x + ∂σyy

∂y = 0
∂mxz
∂x + ∂myz

∂y + σxy − σyx = 0

(4)

The last equation in (4) implies that the shear stress σxy differs from σyx ; Mindlin [49] suggested then resolving
σxy and σyx into a symmetric part σS and an anti-symmetric part σA

σS = 1

2

(
σxy + σyx

)
, σA = 1

2

(
σxy − σyx

)
(5)

The symmetric part of the shear stress produces the usual shear strain εxy , while the anti-symmetric part
tends to produce a local rigid microrotation. Thus, the constitutive equation can be expressed in the following
uncoupled form for the in-plane and out-of-plane bending responses (the fibrous microstructure is statistically
endowed with centrosymmetry) as ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

σxx
σyy
σS
mxz
myz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=
[

A 0
0 D

]
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εxx
εyy
εxy
κxz
κyz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6)

With

A =
⎡
⎣ A11 A12 0
A12 A22 0
0 0 A33

⎤
⎦ , D =

[
D11 0
0 D22

]
(7)

Matrix A contains the classical Cauchy moduli relating stresses to strains, while matrix D contains the microp-
olar moduli relating the two couple-stress components of the present 2D description to the corresponding
curvatures. We can derive the effective Young’s moduli from the effective compliance matrix [S] = [A]−1 as:

Ex = 1

S11
; Ey = 1

S22
. (8)

Furthermore, the effective Poisson’s ratios are computed as :

νxy = −S21Ex and νyx = −S12Ey (9)

The main purpose of this section is to determine the effective constitutive constants of the couple-stress
continuum from the WOA response of random fibrous networks. We design different boundary conditions for
the determination of the independent components of the constitutive (rigidity) constants over a WOA domain
Ω with boundary ∂Ω . The network has no thickness, and in each case, we force the WOA to bear the designed
specific deformation {εxx , εyy, εxy, κxz, κyz}T and compute numerically the total elastic strain energyWWOA
stored in theWOA under the corresponding boundary conditions. The numerical procedure used here is similar
to that used in [37] but restricted to 2D situation : the total strain energy stored in the WOA is required to be
equal to the energy of an equivalent homogeneous couple-stress continuum, thus

WWOA = Wcouple−stress = 1

2
· a · [εi j Ai jklεkl + κi j Di jklκkl ] (10)

where a is the area of theWOA. The strain energy stored in the effective homogeneous couple-stress continuum
canbe obtained by the prescribed strain–stress fields. The effective properties are obtained based on the response
of the WOA under prescribed boundary conditions. Kinematic boundary conditions are applied on part of the
WOA boundary, while free surface boundary conditions are applied on complementary surfaces. In a recent
work [47], it is found that the analysis using this kind of boundary conditions leads to classical and couple-
stress moduli which are, respectively, independent and dependent on the size of the WOA. In order to evaluate
the components of the couple-stress stiffness tensors A and D for the WOA, we conduct the following six
elementary tests :

The first following four tests are constructed to determine the stiffness matrix A.
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Fig. 3 Displacement fields corresponding to boundary conditions applied to identify the effective constitutive coefficients a A11
and b A22

Test 1: Horizontal uniaxial extension test for A11 (Fig. 3a): when we apply a uniform strain εxx = 1 and
shear stress σxy = 0 on the WOA’s boundary, the corresponding boundary conditions are then written as

u = x, ty = σxynx = 0 on nx face
v = 0, tx = σxyny = 0 on ny face

(11)

It gives

A11 = 2WWOA

a
(12)

Test 2: Vertical uniaxial extension test for A22 (Fig. 3b): when we apply a uniform strain εyy = 1 and shear
stress σxy = 0 on the WOA’s boundary, the corresponding boundary conditions are then written as

u = 0, ty = σxynx = 0 on nx face
v = y, tx = σxyny = 0 on ny face

(13)

It gives

A22 = 2WWOA

a
(14)

Test 3: Biaxial extension test for A12 (Fig. 4a): when we apply a uniform strain εxx = εyy = 1 and shear stress
σxy = 0 on the WOA’s boundary, the corresponding boundary conditions are then written as

u = x, ty = σxynx = 0 on nx face
v = y, tx = σxyny = 0 on ny face

(15)

It gives

A12 = 1

2

(
2WWOA

a
− A11 − A22

)
(16)

Test 4: Shear deformation test for A33 (Fig. 4b): when we apply a uniform shear strain εxy = 1 and normal
stress σxx = σyy = 0 on the WOA’s boundary, the corresponding boundary conditions are then written as

u = y/2, ty = σyyny = 0 on ny face
v = x/2, tx = σxxnx = 0 on nx face

(17)

It gives

A33 = 2WWOA

a
(18)

In order to evaluate the components of the stiffness matrix D, the following two bending tests are performed:
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Fig. 4 Displacement fields corresponding to boundary conditions applied to identify the effective constitutive coefficients a A12
and b A33

Fig. 5 Displacement fields corresponding to boundary conditions applied to identify the effective constitutive coefficients a D11
and b D22

Test 5: Uniform curvature test for D11 (Fig. 5a): when we apply a uniform bending curvature κxz = 1 on the
WOA’s boundary, the corresponding boundary conditions are then written as

u = −xy on nx face
v = x2/2 on ny face

(19)

It gives

D11 = 2WWOA

a
(20)

Test 6: Uniform curvature test for D22 (Fig. 5b): when we apply a uniform bending curvature κyz = 1 on the
WOA’s boundary, the corresponding boundary conditions are then written as

u = −y2/2 on nx face
v = xy on ny face

(21)

It gives

D22 = 2WWOA

a
(22)

Since the characteristic length is an essential parameter in the couple-stress continua, we generalize the defi-
nition of this parameter to an anisotropic continuum in terms of the engineering constants. Two characteristic
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lengths can be extracted from the micropolar constitutive law, corresponding to the bending or torsion couple-
stress components. The characteristic lengths are identified from the homogenized stiffness matrix components
as [47]:

lmx =
(

D11

4A33

) 1
2 ; lmy =

(
D22

4A33

) 1
2

(23)

In random networks, the fibers are considered as beam elements and are characterized by stretching, bending
and shear rigidities, expressed by parameters η = E f A, k = E f I and γ = λG f A. Parameters A and I
therein are the area and moment of inertia of the fiber cross section, E f is the fiber Young’s modulus, G f
is the fiber shear modulus, and λ is a constant equal to 0.88 (for beams with a circular cross section). We
note that in random fiber networks with random orientation of fibers, the distribution of segment length is a
Poisson process with an average lc = π/2ρ where ρ is the network density with dimensions of [length]−1[44].
However, a large number of short fiber segments appear in the networks and the Euler–Bernoulli model loses
accuracy [50]; this is why we prefer the Timoshenko beam model [51] that gives more accurate predictions
for short, stubby beams, although both models give the same predictions for long, slender beams.

In addition to the characteristic lengths of the system noted above, which depend on the geometry of the
fiber network, one shall introduce another characteristic length that depends on the mechanical properties of
individual fibers and quantifies the relative importance of bending versus stretch; this characteristic length is
elaborated from the bending and stretching stiffnesses, parameters k and η, respectively, as lb = (k/η)1/2.
This parameter plays an important role especially in quantifying the relative importance of bending effects of
the fibers in determining the dominant deformation mode of the network. We study the effect of fiber bending
length, network density, window size and the nature of fiber–fiber joints on the overall mechanical behavior of
the material. The total energy of the system is computed numerically as the sum of all strain energies associated
with bending, stretching and shear deformation, i.e.,

WWOA = 1

2

∑
f ibers

∫ L0

0

[
k

(
dψ

ds

)2

+ η

(
du

ds

)2

+ γ

(
dv

ds
− ψ

)2
]
ds (24)

In expression (24), ψ(s) the rotation of plane normal to the neutral axis of the beam. v(s) represents the
transverse displacement, and du(s)

ds is the axial strain at position s along the fiber. The rotation of the fiber cross

section is dv(s)
ds , while the difference dv(s)

ds − ψ(s) represents the transverse shear deformation of the beam.
The numerical homogenization technique consists in determining the overall effective mechanical properties
(couple-stress moduli and characteristic lengths) over a WOA of the random network using finite element
discretization of the WOA geometry. Each fiber segment is modeled as a three-node beam element (element
type B22 in ABAQUS), endowed with bending, stretching and shearing deformation mechanisms.

4 Justification of the construction of a couple-stress model for random fiber networks

The goal of this section is to justify the construction of couple-stress type generalized continuum models
through both analytical and numerical approaches. Motivations for adopting an effective couple-stress model
shall be provided by computing a closed-form solution of a tensile test and comparing with the response of the
same domain predicted by fully resolved FE computations; in a second step, we shall determine the bending
response of a macrobeam incorporating a random microstructure based on the homogenized couple-stress
moduli and also compare the effective bending modulus with the one predicted by FE analysis over the full
network.

4.1 Analytical approach

We consider the model problem of the uniaxial traction (Fig. 6) of an initially homogeneous plate, the material
behavior of which being modeled by a couple-stress continuum, with effective properties reflecting those of
a random fibrous underlying microstructure. We shall compare the local microrotation fields of the random
fiber networks real microstructures with the ones that develop within the homogeneous plate endowed with
the effective couple-stress properties of the same random fiber networks in the affine deformation regime.
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Fig. 6 Random fiber networks and homogeneous plate subjected to the same boundary conditions for a simple traction test

The microrotations are supposed nil on the top, bottom and left edges of the plate, simulating a simple
traction of a couple-stress continuum. Our interest here is to find a bivariate solution with respect to x and y
of the rotation function φ(x, y) and the kinematic measures κxz(x, y) = ∂φ

∂x and κyz(x, y) = ∂φ
∂y . The degrees

of freedom and the strain components are presented in Sect. 3 and are recalled here in index notation as

εi j = ui, j + εi jkφk, κi j = φi, j with φk = εi jku j,i/2 (25)

The displacement and microrotation field are sought in a general form as two functions depending on x and y

u = u(x, y) · ex + v(x, y) · ey and φ = φ(x, y) · ez (26)

These analyses entail the following strain and microcurvature tensors

[ε] =
⎛
⎝

∂u
∂x

∂v
∂x − φ 0

∂u
∂y + φ ∂v

∂y 0
0 0 0

⎞
⎠ and [κ] =

⎛
⎝ 0 0 0

0 0 0
∂φ
∂x

∂φ
∂y 0

⎞
⎠ (27)

The couple-stress constitutive laws are given by the following relations between the stress, couple stress, strain
and curvature tensors

σ = λ[tr(ε)]1 + 2με
m = α[tr(κ)]1 + 2βκ

(28)

Inserting thereabove the definition of the kinematic variables based on Eqs. (25) and (26) leads to the following
expression of the stress and couple-stress components

σxx = (λ + 2μ)∂u
∂x + λ∂v

∂y

σxy = 2μ
(

∂v
∂x − φ

)
σyx = 2μ

(
∂u
∂y + φ

)
σyy = λ∂u

∂x + (λ + 2μ)∂v
∂y

mxz = 2β ∂φ
∂x

myz = 2β ∂φ
∂y

(29)

These expressions are next inserted into equilibrium equations (4), leading in turn to the following two PDEs
for the three unknown kinematic variables

(λ + 2μ)

(
∂2u

∂x2
+ ∂2u

∂x∂y

)
+ (λ + 2μ)

(
∂2v

∂y2
+ ∂2v

∂x∂y

)
+ 2μ

(
∂φ

∂x
− ∂φ

∂y

)
= 0 (30)

∂2φ

∂x2
+ ∂2φ

∂y2
= 0 (31)
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Fig. 7 Comparison between analytical (continuous surface) and microstructural (black points) solutions of the normalized micro-
rotations field φ(x, y)/φ0. The window of analysis is selected to be of unit size, L = 1

By the method of separation of variables and Fourier analysis, one can determine the solution of the two-
dimensional Laplace equation satisfied by the microrotation assuming that the solution can be written in the
following separated form

φ(x, y) = f (x) · g(y) (32)

Using the boundary conditions shown in Fig. 6, we find the analytical solution of the Laplace equation for the
microrotation field

φ

φ0
= 4

π

∞∑
m=1

1

(2m − 1) sinh[(2m − 1)π] sinh
[
(2m − 1)πx

L

]
sin

[
(2m − 1)πy

L

]
(33)

and for the microcurvatures κxz = ∂φ
∂x and κyz = ∂φ

∂y as

κxz = 4φ0

L

∞∑
m=1

1

sinh[(2m − 1)π] cosh
[
(2m − 1)πx

L

]
sin

[
(2m − 1)πy

L

]
(34)

κyz = 4φ0

L

∞∑
m=1

1

sinh[(2m − 1)π] sinh
[
(2m − 1)πx

L

]
cos

[
(2m − 1)πy

L

]
(35)

The microrotation field predicted by the analytical solution of the effective couple-stress continuum and
the predictions of the fully resolved microstructural computations over the random fiber networks is in good
agreement, as shown in Fig. 7. This provides a first justification of the employed couple-stress substitution
medium.

4.2 Microstructural impact of the random microstructure on the effective bending rigidity

Based on the homogenized properties of the random fiber networks computed in Sect. 3 we will quantify the
effects of the couple-stress model on the macroscopic scale. We shall thereby compare the simplified equation
of a micropolar beam incorporating random fibers under pure bending to the standard bending equations of
classical beam theory. The geometrical parameters of the macrobeam are indicated in Fig. 8 with h the beam
height.

The bending response of an elastic beam subjected to a uniform bending moment M reads based on
couple-stress theory as

(Ex Iz + D11h)
∂φ

∂x
= −M and (Ey Iz + D22h)

∂φ

∂y
= −M (36)

with Ex and Ey the effectiveYoung’smoduli of themacroscopic beam,M the bendingmoment, Iz the quadratic
moment of the macroscopic beam along z and κxz

couple-stress = Ex Iz + D11h, κ
yz
couple-stress = Ey Iz + D22h the

bending stiffnesses of the beam exhibiting couple-stress effect. The macroscopic parameter h is the height
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Fig. 8 a A macroscopic beam with random fibers subjected to pure bending and b iso displacement for the bending of the
macrobeam in (mm)

of the random fiber structure which is taken as 2 mm (Fig. 8). Equation (36) shows that in addition to the
couple-stress moduli D11 and D22, there is a geometrical effect impacting the overall beam bending rigidity
via parameter h.

On the other hand if we exclude the couple-stress effects, the classical bending stiffnesses, κxz
classical and

κ
yz
classical, for a homogeneous equivalent beam are defined by the following relations

(Ex Iz)
∂φ

∂x
= −M and (Ey Iz)

∂φ

∂y
= −M (37)

The difference between the bending rigidities of the homogenized beam calculated based on Cauchy and
couple-stress theories is elaborated as the following scalar parameter expressed in percentage

gb = κcouple-stress − κclassical

κcouple-stress
· 100 (38)

The gain in flexural rigidity gb for the couple-stress continuum in the ADR and NADR is, respectively, 89%
and 94%; these numbers are validated by microstructural computations performed over the entire (discrete)
random microstructure, giving, respectively, rigidity increases of 90% and 93%. The gain in flexural rigidity
predicted by the equivalent couple-stress model and by fully resolved random fiber networks computations
has comparable values, close to 90%, thus evidencing that the random fiber microstructure has a significant
impact on the bending behavior at the macrolevel. The strong impact of bending effects of the fibers at the
macroscopic level motivates the use of a couple-stress continuum in which the overall bending response is
captured by the microrotation and the resulting microcurvatures.

5 Effect of random fiber networks main parameters on the effective moduli

5.1 Effect of fiber bending length lb

The effective elastic moduli depend strongly on the competition between energy storage in the bending and
axial modes quantified by parameter lb; we accordingly investigate the effect of lb on the classical and couple-
stress elastic constants. The effect of lb on the classical elastic constants has been discussed extensively in the
literature [18,52–54] and is presented here as a matter of reference.
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Fig. 9 Evolution of classical and couple-stress moduli versus the normalized fiber bending length lb/L0 with normalized network
density ρL0 = 75

Fig. 10 Microrotation fields for both deformation regimes. a Non-affine deformation regime (NADR) lb/L0 = 2 × 10−5 and b
affine deformation regime (ADR) lb/L0 = 2 × 10−2

We tune the fiber bending length by changing the fiber diameter, which in turn affects the area and moment
of inertia of the fibers. We represent in Fig. 9 in logarithmic axes the evolution of two among the four classical
moduli (A11 and A33) normalized by E f A versus the fiber bending length normalized by the fiber length L0.
The network density is kept constant in all computations such that ρL0 = 75. The values obtained for A22
match those reported in Fig. 9 for A11 (although not shown here), while A12 follows closely A33. Note that
the variable on the horizontal axis is proportional to the aspect ratio of fibers.

The same trend is observed for all classical moduli. For low values of normalized bending length we
observe that the classical moduli are proportional to E f Al2b which is equal to E f I , and strain energy is stored
predominantly in the bending mode: this is the non-affine deformation regime (abbreviated as NADR). This is
followed by a transition zone toward the affine deformation regime (abbreviated as ADR) for large values of
lb/L0 in which the classical moduli are proportional to E f A and the strain energy is stored predominantly in
the axial deformation mode of fibers. The vertical dashed lines shown in Fig. 9 define the approximate limits of
the NADR and ADR regimes. The transition region is defined as the intermediate region separating the affine
and non-affine behaviors.

In the same figure (Fig. 9), we show the evolution of normalized couple-stressmoduli versus the normalized
fiber bending length. Interestingly, the couple-stress moduli exhibit the same behavior as the classical moduli.
Furthermore, the transition from ADR to NADR takes place in the same range of the ratio lb/L0. The spatial
distribution of the local microrotation field at the scale of individual fibers computed by FE shown in Fig. 10
has clearly a much higher amplitude in the non-affine regime compared to the affine regime. The mesoscopic
microrotation represents in some sense the averaging of the individual fiber rotations.
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Fig. 11 Evolution of stretching modulus versus the normalized fiber bending length lb/L0 and different densities ρL0

Fig. 12 Evolution of classical moduli versus normalized network density ρL0 in both affine (ADR) and non-affine (NADR)
deformation regimes with lb/L0 = 2 and lb/L0 = 2 × 10−6, respectively

The elastic modulus A11 shows a linear dependence on network density ρ in the affine regime and a
nonlinear dependence on ρ in the non-affine regime, as shown in Fig. 11. The transition from the non-affine to
the affine regime occurs later for lower densities. A similar effect of network density on the evolution of the
couple-stress moduli is observed, and the bending moduli increases with network density over all the range
of densities. As with the case of classical moduli, we observe that the affine regime is reached at an early
stage for high densities. In order to refine these tendencies, we record in the following section the evolution
of the classical and couple-stress moduli versus normalized network density, in both the affine and non-affine
regimes.

5.2 Effect of network density ρ

We evaluate the classical and non-classical moduli versus the normalized network density parameter, ρL0
(we recall that the network density is defined as the total fiber length per unit area), focusing on the affine
deformation regime. The classical moduli are linearly related to density, as shown in Fig. 12; both tensile
moduli vary linearly with respect to density with a similar slope, which is higher than the slope of the linear
evolution of the shear and biaxial moduli versus density.

We also evaluate the relation between classical moduli and the normalized network density for small values
of lb/L0 (NADR) and observe a nonlinear relation between the two. In this regime too, the biaxial and shear
moduli are lower than the tensile moduli. We observe that the classical moduli are proportional to ρ6 over all
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Fig. 13 Variation of couple-stress moduli versus normalized network density ρL0 in both affine (ADR) and non-affine (NADR)
deformation regimes with lb/L0 = 2 and lb/L0 = 2 × 10−6, respectively

Fig. 14 Variation of lm/L0 versus normalized window size L/L0 in both affine (ADR) and non-affine (NADR) deformation
regimes with lb/L0 = 2 and lb/L0 = 2 × 10−6, respectively

range of densities for lb/L0 = 2 × 10−6. Similar plots of the bending moduli of the couple-stress continuum
versus normalized network density are obtained in both affine (ADR) and non-affine (NADR) deformation
regimes, as shown in Fig. 13.

5.3 Effect of window size L

The dependence of the classical moduli on the size of the model is discussed in detail in [18]. The size effect
is associated with the randomness of the structure and the stochasticity of the deformation field. Since higher
spatial fluctuations are observed in NADR as compared to ADR, the size effect shall be more pronounced in
the NADR regime. This trend is indeed observed for the classical moduli and a method to predict the size for
which a model becomes representative (size effect free) for any value of the model parameters (ρ, lb) has been
proposed in [18]. In the present study, we use this method and consider only models of size L large enough to
avoid the size effect of the classical moduli. For such networks, we inquire whether the couple-stress moduli
are affected by the size of the model.

The micropolar bending lengths quantify the extent of microstructural interactions due to fiber bending, at
the mesoscopic level of description. The mesoscopic bending length lm defined in Eq. (23) is shown to increase
linearly with the window size, in both the affine and non-affine regimes, as illustrated in Fig. 14, while keeping
the normalized network density constant ρL0 = 25. Thus, size effects scale linearly with the window size and
cannot be eliminated in both affine and non-affine deformation regimes
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6 Conclusion and future directions

Random fibrous networks define the microstructure of many artificial or biological materials, including paper,
biological gels and collagenous networks forming biological tissues. It is challenging to identify an effective
constitutive law for such materials due to the complex fiber–fiber interactions and the additional length scales
introduced due to the network structure. This motivates the search for suitable effective continuum substitution
media, with effective mechanical properties related to the microstructural parameters in a quantitative manner.
The mechanics of generalized continua have been considered in this contribution to analyze the mechanical
response of two-dimensional random fibrous media, accounting for microstructural and scale effects. Effective
couple-stress continuummodels have been constructed numerically, and the classical and couple-stress moduli
have been identified by equating the strain energy evaluated numerically over differentwindows of analyses and
the strain energy of the homogeneous couple-stress substitution medium. The influence of important network
parameters, namely the fiber bending length, network density and size of WOA, on the computed effective
mechanical moduli has been analyzed.

The network deforms non-affinely for low values of the fiber bending length lb and affinely for high values
of lb. The classical and couple-stress moduli are proportional to E f A for higher lb, hence the deformation is
dominated by fiber stretch, whereas these moduli are proportional to E f I for lower lb, showing a predominant
bending deformation mode. The computations have highlighted a strong size effect, which seem to be unavoid-
able for such random fibrous media whatever the fiber length (relative to window size). This could mean that a
more refined model than couple-stress theory is needed to capture the complex state of deformation and stress
within the network.

Such homogenized-based enhanced continuum models developed at the mesoscopic scale of windows
of analysis pave the way toward efficient numerical simulations of the mechanical response of stochastic
fibrous structures submitted to complex loadings. Future developments shall include the consideration of large
deformations leading to effective hyperelastic models and a viscoelastic behavior of fibers.
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