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Abstract Various engineering systems exploit the conversion between electromagnetic and mechanical work.
It is important to compute this coupling accurately, and we present a method for solving the governing equa-
tions simultaneously (at once) without a staggering scheme. We briefly present the theory for coupling the
elecgoverning equations as well as the variational formulation that leads to the weak form. This weak form
is nonlinear and couples various fields. In order to solve the weak form, we use the finite element method in
space and the finite difference method in time for the discretization of the computational domain. Numerical
problems are circumvented by selecting the field equations carefully, and the weak form is assembled using
standard shape functions. In order to examine the accuracy of the method, for the case of a linear elastic
material under small deformations, we present and use an analytic solution. Comparison of the computation
to the closed-form solution shows that the computational approach is reliable and models the jump of the
electromagnetic fields across the interface between two different materials.

Keywords Mechanics · Electromagnetism · Finite element method

1 Introduction

Engineering applications, for example micro-electro-mechanical systems (MEMS), generate mechanical work
as a consequence of the applied electromagnetic fields, or vice versa. Thismechanism is used inmany devices, a
typical application is a vibrating smartphone.We aim at an accurate simulation of this mechanism by involving
the correct coupling between mechanics and electromagnetism. As easily stated, the correct coupling is quite
challenging and there is a long debate in the literature known as the Abraham–Minkowski controversy.
In simpler words, we fail to know the correct modeling of the interaction between electromagnetism and
mechanics. There exists no consensus in the scientific community, see for example [8,11,26,34,38]. We will
use a possible modeling scenario and emphasize that different choices are admissible as well.

Computation of electromagnetism is actively discussed in the literature. Starting with [37,41],Maxwell’s
equations are solved by using finite element methods with mixed elements. Different strategies are developed
as in [12,13], [18, Sect. 17], [22,31]. Several strategies denote the lack of a general approach for solving
electromagneto-mechanics problems. Mixed elements are useful to circumvent numerical problems. However,
their generalization to multiphysics problems is very challenging. There exist various element types [6], and
it is not clear, which type works fine for a specific type of application. Often, we simply do not know how to
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choose the suitable mixed element. Therefore, some alternatives are emerging that employ alternative methods
as in [19,20,24,40,45]. A finite element method is applied in [2, Chap.3] by using “standard” continuous
Galerkin elements. The most remarkable benefit of this approach relies on the use of standard elements such
that an extension to multiphysics problem is straightforward.

Commercial softwares use staggered schemes for solving coupledproblems.Astaggered scheme is effective
and reliable, if the coupling between the fields is small. Multiphysics simulations—in the case of a strong
coupling—necessitates a monolithic solution procedure, in other words, the governing equations need to be
solved at once. There are various procedures and computational strategies for solving applications, which
make use of the conversion between electric and mechanical work as in [5,23,48]. Especially for MEMS, even
structural properties can be incorporated [7,16,17]. In such a complex model, corresponding material models
are characterized by several material parameters, for a discussion of their determination, see [15,35,39,46]. For
transient systems, computational implementation of an electromagneto-mechanical problem is also discussed
in the literature; there are various techniques to obtain a robust strategy as in [1,40]. For a detailed review
about computational methods, we refer to [10,28,47].

In thisworkwe follow the theory and the computational strategy as in [4]. First, we briefly present the theory.
There are open questions in developing a successful coupling between mechanics and electromagnetism. We
will point out the key issues and generate the governing equations for a specific case of an application, where
a steel sphere deforms under an externally applied magnetic field. Secondly, we compute the solution of this
application. The coupling between mechanics and electromagnetism is bidirectional, and its quantification
depends on the definition of the electromagnetic force. Thirdly, for this simple geometry, we will obtain a
closed-form solution by following [42]. We exploit this analytic solution in order to examine the validity of
the computational approach. All computations are established by using open-source packages and the codes
are made publicly available in [3] under the GNU public license as in [25].

2 Governing equations for the theory of electromagnetism with deforming solids

The objective is to compute the displacement u in m, the electric field E in V/m, and the magnetic flux (area
density) B in T as vector functions in space x ∈ R

3 and time t ∈ [0, tend]. All these fields are (indirectly)
measurable quantities. We assume a priori an isothermal system such that the temperature deviation from the
reference state is neglected. For various applications, especially in the case of small elastic deformations, this
assumption is applicable. Moreover, the displacement will be small such that we neglect geometric nonlin-
earities. Thus, x indicates the particle and this configuration is called the Lagrangean frame in continuum
mechanics. In other words, x denotes the position of a particle in a reference frame, mostly chosen as the
initial state. Hence, other common names are initial configuration or placement. The assumption of small
deformations is used in two ways. First, the transformation of electromagnetic fields to the reference frame
is circumvented. This point is crucial as there is no consensus in the scientific community on the transforma-
tion properties for electromagnetic fields between the current and the reference frame. Secondly, neglecting
the geometric nonlinearities and choosing a linear elastic material model lead to a linear partial differential
equation for the displacement field. An analytic solution of such a field equation is possible, depending on the
problem.

All fields are expressed in Cartesian coordinates; we mostly use the index notation with indices i, j, k, l
going from 1 to 3 in R3 with Einstein’s summation convention over repeated indices, and ,i is used for partial
derivatives in xi . By using the Faraday law and the motivation as in [36, Chap.9], we obtain twoMaxwell
equations that incorporate the electric field and the magnetic flux. Their solution is possible by the electric
potential φ in V and the magnetic potential A in Tm with the following ansatz functions:

Ei = −φ,i − ∂Ai

∂t
, Bi = εi jk Ak, j , (1)

where the Levi-Civita symbol, εi jk , is used that is the permutation symbol in Cartesian coordinates. Instead
of computing the electromagnetic fields E and B, we will compute the electromagnetic potentials φ and A
that lead to the electric field and the magnetic flux in post-processing. These four ansatz functions in Eq. (1)
introduce two relations in order to define the six electromagnetic fields E and B in R

3 uniquely. These two
relations are the rate of the electric potential and divergence of the magnetic potential. As they can be chosen
arbitrarily, this is called gauge freedom. Their choice affects the electromagnetic potentials; however, not the
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measurable electromagnetic quantities. As also suggested in [9], for the sake of the numerical robustness, we
use the Lorenz gauge:

∂φ

∂t
= −c2Ai,i , with c2 = 1

μ0ε0
(2)

being the square of the speed of light in the vacuum, c, and the universal constants:

ε0 = 8.85 × 10−12 As/(Vm) , μ0 = 12.6 × 10−7 Vs/(Am). (3)

A particle with an electric charge in C has a mass in kg as well. Therefore, we introduce mass density ρ in
kg/m3 and specific charge z in C/kg in order to write out the balance of electric charge:

∂ρz

∂t
+ Ji,i = 0, (4)

with an electric current (area) density J in A/m2 to be defined. By using an analog argumentation as before
and introducing the so-called charge potential D in C/m2 and the current potential H in A/m, we obtain the
followingMaxwell equations:

ρz = Di,i ,
∂Dj

∂t
= ε jkl Hl,k − J j . (5)

These fields are related to the measurable fields by the experimentally verified Maxwell–Lorentz aether
relations:

Di = ε0Ei , Hi = 1

μ0
Bi . (6)

These relations hold universally in inertial frames, i.e., for any matter or even without (in vacuum). The
charge and current potentials are caused by moving charges. Charge can be decomposed into free charge and
bound charge. The free charges are, e.g., valence electrons moving in macroscopic distances. Bound charges
are bound to the molecular configuration, and they move in atomic distances. These phenomena happen in
different length scales such that we decompose the total charge potential, D, into free charge potential, D,
and bound charge potential, P , as well as the total current potential, H , into free current potential, H, and
bound current potential,MMM , additionally, in analogous way the total electric current into free and bound terms
as follows:

Di = Di − Pi , Hi = Hi + Mi ,

Ji = J fr.

i + ∂Pi
∂t

+ εi jkMk, j . (7)

The electric current J fr. is the effective free electric current. Since we have the Maxwell–Lorentz aether
relations as in Eq. (6), either the free charge and current potentialsD,HHH, or the so-called electric and magnetic
polarizations, P ,MMM , need to be defined by appropriate constitutive equations.

For the computation of the electric potential, φ, we use Eqs. (4) and (5)1. For obtaining the magnetic
potential, A, after a straightforward derivation incorporating Eqs. (5)2 and (2), we obtain

ε0
∂2Ai

∂t2
− 1

μ0
Ai,kk − Ji = 0, (8)

see [2, Sect. 3.2] for a detailed derivation. We model the electromagnetic potentials as smooth functions.
However, the electric and magnetic polarizations have jumps on the interface between different materials—the
effect of this is also observed in the resulting electromagnetic field, i.e., in the derivatives of the potentials. By
neglecting surface charges and currents, we obtain

�ni Pi � = 0 , �εi jkn jMk� = 0, (9)

where the jump brackets indicate the differences between the limiting values from both sides of an interface.
The surface normal, ni , as well as the Levi-Civita symbol, εi jk , we will take out of the jump brackets since
they are continuous functions. These jump conditions are going to be used in the variational formulation.

In order to compute the displacement field, u, the balance of linear momentum is used,

ρ
∂2ui
∂t2

− σ j i, j − ρ fi = Fi , (10)
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where the mass density, ρ in kg/m3, is constant (in time) and given a priori; the stress tensor, σ in N/m2, has
to be defined by a constitutive equation; the specific force, f in N/kg, is due to gravitation and its numerical
value is given. From the balance on singular surfaces (without mass), we obtain the continuity of stress tensor
along the surface normal. Mechanical momentum has a production term, an electromagnetic force density, FFF ,
generated by the electromagnetic field. Therefore, mechanical momentum is not a conserved quantity. In a
formal way, we can write the following relation:

∂Gi

∂t
= m ji, j − Fi , (11)

for any tensor of rank, herein FFF . We realize that GGG has the unit of momentum and m has the unit of stress.
We need to define the electromagnetic momentum, GGG , and then choose the electromagnetic stress, m, and the
electromagnetic force density, FFF , in a way that Eq. (11) is satisfied. This approach is very useful in order to
classify the ambiguity about the “proper choice” of the electromagnetic momentum. Hence, this strategy is
used by many scientific groups, see for example [32, Eq. (15)], [30, Chap.1], [14, Chap.XIV], [27, Chap.8],
[33, Sect. 3.3]. Unfortunately, the correct choice of the electromagnetic momentum is unknown, for various
possibilities we refer to [8,11,26,34,38]. A detailed discussion is found in [21] as well as in [44]. A thorough
investigation of different possible choices can be found in [43]. Nevertheless, by inserting the identity in
Eq. (11) into Eq. (10), we obtain the balance of total momentum:

ρ
∂2ui
∂t2

+ ∂Gi

∂t
− (

σ j i + m ji
)
, j − ρ fi = 0 , n j �σ j i + m ji � = 0, (12)

where the first two terms are the rate of the total momentum and σ j i + m ji is the total momentum flux. Total
momentum is a conserved quantity since no production terms arise. In order to complete the definition, we
need to choose an electromagnetic momentum. We use the following electromagnetic momentum:

Gi = (D × B)i , (13)

which is called Minkowski’s momentum. After using the Maxwell equations and Maxwell–Lorentz
aether relations, we obtain the following electromagnetic stress and force density:

m ji = −1

2
δ j i (HkBk + DkEk) + Hi B j + Dj Ei ,

Fi = ρzEi + εi jk J j Bk − εi jk
∂Pj

∂t
Bk − εi jk Pj

∂Bk

∂t
. (14)

It can be noted that these definitions are not unique, even though the momentum density is fixed. It is always
possible to move parts of the force to the stress, and vice versa. After choosing the electromagnetic momentum,
the production term in Eq. (10) can be exchanged by Eq. (11) such that no production terms arise for the total
momentum density, which is the mechanical momentum and the electromagnetic momentum. Hence, the total
momentum is a conserved quantity.

Summing up, we employ the primitive variables {u, φ, A} that need to satisfy Eqs. (5), (8), (9), (10) called
the governing equations:

ρ
∂2ui
∂t2

− σ j i, j − ρ fi = Fi ,
∂Di,i

∂t
+ Ji,i = 0 , ε0

∂2Ai

∂t2
− 1

μ0
Ai,kk − Ji = 0,

ni �Pi � = 0 , εi jkn j �Mk� = 0 , n j �σ j i � = −n j �m ji �, (15)

with Eqs. (2), (7), (14)2. We rewrite Eq. (14)2 by using the Maxwell equation (7)3, and tensor identities, as
follows

Fi = ρzEi + εi jk J j Bk − εi jk
∂Pj

∂t
Bk − εi jk Pj

∂Bk

∂t
= Dj, j Ei + εi jk J

fr.

j Bk + εi jkε jlmMm,l Bk − εi jk Pj
∂Bk

∂t
.

(16)
After defining σ , J fr., P ,MMM , we can solve the governing equations.

For a special case of a polarized but conducting isotropic material, i.e., no piezoelectric or piezomagnetic
character is present because of the crystallographic structure, the linear constitutive equations are as follows:

σi j = Ci jklεkl , εi j = u(i, j) = 1

2

(
ui, j + u j,i

)
, Ci jkl = λδi jδkl + μδikδil + μδilδ jk,
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Pi = ε0χ
elEi , Mi = χmag

μmag
Bi , J fr.

i = J fr.

i + ρzfr.vi ,

ρzfr. = Di,i , J fr.

i = ςEi , Ei = Ei + εi jkv j Bk , vi = ∂ui
∂t

, (17)

where we have neglected a possible magnetoelectric coupling as well as employed a linearized strain measure
as a consequence of the small displacements. We refer to the thermodynamical formulation in [4] for deducing
these equations. Herein, all material parameters are constant: the electric susceptibility, χ el, the magnetic
susceptibility,χmag, the permeabilityμmag = μrμ0, with the relative permeability,μr = χmag+1, themechanical
moduli λ, μ, as well as the electric conductivity, ς . The permittivity ε0 and permeability μ0 of the vacuum are
universal constants.

3 Generating the weak form

The governing equations (15) need to be satisfied in every point locally such that we can use the so-called
weighted residuals in a domain � with its boundary ∂�. The domain can be chosen as the whole continuum
body or also only a part of it. By choosing the domain a finite size element and approximating unknowns
{u, φ, A} as expanded with form (shape) functions in this domain, we implement the finite element method.
We emphasize that we choose in each element � to fulfill the weighted residuals with functions expanded
in a Hilbertian Sobolev space such that their differentiability and square integrability is assured by using
“standard” linear Lagrange form functions:

V =
{
{u, φ, A} ∈ [H1(�)]7 : {u, φ, A}

∣∣
∣
∂�

= given

}
, (18)

for 3 displacements and 4 electromagnetic potentials in 3D space. Especially in electromagnetism, this choice
is uncommon; however, we emphasize that we solve the electromagnetic potentials instead of electromagnetic
fields and employ the Lorenz gauge. As a consequence, no numerical problems arise even in the case of using
standard elements.

In order to generate the weighted residuals, the right-hand side is subtracted from the left-hand side and
then multiplied by the corresponding test function. Equations (15)1,3 are rank one tensor equations, hence
vector-valued test functions are employed. Equation (15)2 is a rank zero tensor equation, the chosen test
function is scalar. As usual in Galerkin’s approach, we use the same space for expanding the unknowns as
well as their test functions. For reducing the differentiability condition, we use partial integration on all terms
including derivatives of second order and obtain the following weak forms in every finite element,

Fele
u =

∫

�

(
ρ

∂2ui
∂t2

δui + σ j iδui, j − ρ fiδui − Fiδui

)
dV −

∫

∂�

n jσ j iδui dA,

Fele
φ =

∫

�

(
− ∂Di

∂t
δφ,i − J fr.

i δφ,i − εi jkMk, jδφ,i

)
dV +

∫

∂�

ni
(∂Di

∂t
+ J fr.

i + εi jkMk, j

)
δφ dA,

Fele
A =

∫

�

(
ε0

∂2Ai

∂t2
δAi + 1

μ0
Ai, jδAi, j − J fr.

i δAi − ∂Pi
∂t

δAi + εi jkMkδAi, j

)
dV

+
∫

∂�

n j

( 1

μ0
Ai, j + εi jkMk

)
δAi dA. (19)

All these forms are valid within a single finite element in a material. The whole computational domain pos-
sesses various materials. If we sum over all finite elements within the domain, the materials properties are
discontinuous at some element surfaces, we insert the jump conditions as in Eq. (15). We emphasize that all
unknowns are continuous, even across any interface, ∂�I , between different materials. On the boundary of the
domain, the values of the unknowns are given by Dirichlet boundary conditions such that the test functions
vanish. For the time discretization, we use the finite difference method and obtain the unknowns in a list of
instants, t = {0,
t, 2
t, 3
t, . . . }, by using a time step, 
t . The time step is constant and has to be cho-
sen small enough such that the Newton–Raphson iteration converges to the solution. We apply an Euler
backwards scheme in time and acquire

Fu =
∑

ele

∫

�

(
ρ
ui − 2u0i + u00i


t2
δui + σ j iδui, j − ρ fiδui − Fiδui

)
dV +

∫

∂�I
n j �m ji �δui dA,
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Fig. 1 Computational domain consisting of a steel sphere (orange), embedded in air (transparent, gray) (color figure online)

Fφ =
∑

ele

∫

�

(
− (Di − D0

i )δφ,i − 
t J fr.

i δφ,i − 
tεi jkMk, jδφ,i

)
dV

+
∫

∂�I

tni

(
�J fr.

i � + εi jk�Mk, j �
)
δφ dA,

FA =
∑

ele

∫

�

(
ε0

Ai − 2A0
i + A00

i


t2
δAi + 1

μ0
Ai, jδAi, j − J fr.

i δAi − Pi − P0
i


t
δAi + εi jkMkδAi, j

)
dV,

(20)

discrete in time, where (·)0 denotes the numerical value that was computed at the last instant, t − 
t . All the
integral forms are brought to the same unit of energy such that we can sum them up, F = Fu + Fφ + FA and
set the objective to determine the variables satisfying the weak form F .

4 Application

Consider an isotropic and in each aspect linear material that is modeled by the constitutive equations (17).
To demonstrate, we use the parameters for steel. As the geometry, a sphere (of steel) is considered, which
is embedded in an outer sphere (of air), as seen in Fig. 1. The radius of the steel sphere is R = 0.1m, and
of the outer embedding air sphere it is 1m. In the analytic solution, the outer radius is set to infinity to
construct a perfect exterior domain. For the numerical solution, ten times the radius of the steel sphere is
sufficient, in practice, for approximating the boundary as a far-field boundary. An external, homogeneous
magnetic field is set as the far-field condition, with magnitude B0. Since the air is not polarized, we can also
define H0 = H0 = μ−1

0 B0, in the z direction. No exterior pressure nor any magnetic distortion due to the
surroundings are considered. We present the analytical solution in the following for determining the accuracy
of the numerical model.

4.1 Analytical reference problem

In order to test the numerical scheme, a closed-form solution to the aforementioned application is developed.
The electric polarization, P , and the effective current, JJJ fr., are set to zero. Also, there are no free charges in the
body. The constitutive equations (17) are used. As the constitutive laws are not coupled in this problem, it is
possible to separate the involved mechanical and electromagnetic parts of the problem. The magnetic problem
is solved first, and, using the obtained results, the electromagnetic force distribution is determined which is
needed to obtain the displacement field for the static problem. The analytic solution of the presented problem
is adapted from [42], where the derivation is shown in a detailed manner. Here, we explain the key points and
give a brief overview of the method.

By using all simplifications, it is possible to introduce a scalar potential for the magnetic field because the
curl of the free current potential vanishes. This fact is seen by starting with Eq. (5)2 and inserting Eq. (7) for
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obtaining the so-called material Maxwell’s equations. As both the free current density as well as the time
derivative of the free charge potential vanish, we realize that the curl of the free current potential has to be zero
as well. In the end, we obtain

∇ × H = 0. (21)

Furthermore, the free current potential Hi is decomposed into the distortion field Ĥi (due to the magnetic
properties of the sphere) and the external field H0

i as follows

Hi = Ĥi + H0
i . (22)

In order to satisfy Eq. (21), we use a distortion field as Ĥi = −VM
,i by a scalar potential VM. As the magnetic

flux must be solenoidal, Laplace equation is obtained,


VM = 0, (23)

for VM—valid both inside as well as outside of the sphere. Normal continuity of the magnetic flux density
and tangential continuity of the free current potential can also be denoted in terms of the potential. We start
with Eq. (9) and use Eq. (17)4,5 and Hi = μ−1

mag Bi such that we obtain

�ε0χ
elEi � = 0 ,

�
1

μmag
εi jkn jHk

�

= 0. (24)

Thus, we obtain the following governing equations:

�VM� = 0, and ni �μr V
M
,i � = niH

0
i �μr �. Also, lim

r→∞ VM = 0 (25)

to ensure that the magnetic field converges to the external field H0
i . Outside of the sphere, the relative perme-

ability is set to one as for vacuum, or, in good approximation, for air. In the following, μr refers to the value of
the steel sphere. Due to the azimuthal symmetry of the problem, we introduce a spherical coordinate system,
(r, ϑ, ϕ), where r denotes the distance to the origin, ϑ is the azimuthal angle, and ϕ gives the polar angle as
follows:

r = ‖xi‖ =
√

(x21 + x22 + x23 ) , ϑ = arccos

(
x3

‖xi‖
)

, ϕ = arctan

(
x2
x1

)
. (26)

The corresponding base vectors read er , eϑ , eϕ . The solution of the Laplace equation can be expressed in
spherical coordinates by

VM(r̃ , ϑ) =
∞∑

n=0

(
anr̃

n + bnr̃
−(n+1)

)
Pn(cosϑ). (27)

In this series, Pn are Legendre polynomials and r̃ = r/R is the dimensionless radial coordinate. By imposing
a finiteness condition on VM and by exploiting the limiting boundary condition, two functions are found for the
potential: one that is valid within the sphere, VM/I, and one that is valid outside of it, VM/O. The coefficients
are readily found by exploiting the jump conditions. Since the series degenerate in each domain and we obtain

VM/I = μr − 1

μr + 2
H0Rr̃ cosϑ, and VM/O = μr − 1

μr + 2
H0Rr̃

−2 cosϑ. (28)

Hence, the fields B andH are determined by using Ĥi = −VM
,i as well as by Eqs. (6), (7). We emphasize that

both B and H are homogeneous and constant fields within the sphere. For example, the magnetic flux reads
with respect to the physical basis of spherical coordinates in both domains,

BI = 3μr
2+μr

μ0H0(cosϑer − sin ϑeϑ) = 3μr
2+μr

μ0H
0ez,

BO= 1
2+μr

μ0H0

((
2(μr − 1)r̃−3 + 2 + μr

)
cosϑer +

(
(μr − 1)r̃−3 − 2 − μr

)
sin ϑeϑ

)
.

(29)

With these closed-form results, the electromagnetic force is determined. For the chosen Minkowski force
model, the regular electromagnetic force density reads in this steady-state problem

Fi = mi j, j = 0, (30)
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min

max

(a) (b)

Fig. 2 Qualitative representations of the magnetic flux density and the resulting electromagnetic surface force distribution of
the spherical reference problem. Colors indicate the magnitudes of the respective fields. The images are adapted from [42]. a
Magnetic flux density BBB. b Surface force FFF (I ) (color figure online)

as the electromagnetic stress tensor is constant within the sphere due to the remarks of the last paragraph. Even
though the regular force density vanishes, this is not the case on the singular surface,

FFF (I ) = n · �m� = (n × �MMM �) × 〈B〉 = 9
2

1
(2+μr )2

μ0H
2
0[(μ2

r − 1) sin2ϑer + 2μr (μr − 1) cosϑ sin ϑeϑ ].
(31)

This force density acts on the surface of the sphere. The static momentum balance is solved within the sphere,
using this force density as a boundary condition. The magnetic flux density of the problem and the resulting
surface force distribution are visualized in Fig. 2.

For the static problem, the deformation due to the electromagnetic force is to be determined; gravitational
body forces are neglected. As there is no regular electromagnetic force density, the momentum balance within
the sphere domain reduces to the homogeneous Navier equations:

(λ + μ)u j, j i + μui, j j = 0. (32)

For the case of azimuthal symmetry, this equation was analytically solved by Hiramatsu and Oka in [29]
by using series expansion. For the interior of a sphere, their solution for the physical components of the
displacement field reads

ur (r̃ , ϑ) = R
∞∑

n=0

[

−n λ
μ

+ n − 2

2(2n + 3)
Anr̃

n+1 + nBnr̃
n−1

]

Pn(ξ), (33a)

uϑ(r̃ , ϑ) = R
∞∑

n=1

[

− (n + 3) λ
μ

+ n + 5

2(n + 1)(2n + 3)
Anr̃

n+1 + Bnr̃
n−1

]
dPn(ξ)

dϑ
, (33b)

and, in this problem, uϕ = 0 due to the symmetry of the electromagnetic loading. In the latter equations, we
have substituted ξ = cosϑ for the Legendre polynomials Pn(ξ). Their solution for the physical components
of the Cauchy stress reads

σrr (r̃ , ϑ) = μ

∞∑

n=0

[
− (n2 − n − 3) λ

μ
+ (n + 1)(n − 2)

2n + 3
Anr̃

n + 2n(n − 1)Bnr̃
n−2

]
Pn(ξ), (34a)

σϑϑ(r̃ , ϑ) = μ

∞∑

n=0

[
(n + 3) λ

μ
− n + 2

2n + 3
Anr̃

n + 2nBnr̃
n−2

]
Pn(ξ)



Verification of deforming polarized structure computation 701

+ μ

∞∑

n=2

[
− (n + 3) λ

μ
+ n + 5

(n + 1)(2n + 3)
Anr̃

n + 2Bnr̃
n−2

]
d2Pn(ξ)

dϑ2 , (34b)

σϕϕ(r̃ , ϑ) = μ

∞∑

n=0

[
(n + 3) λ

μ
− n + 2

2n + 3
Anr̃

n + 2nBnr̃
n−2

]
Pn(ξ)

+ μ

∞∑

n=1

[
− (n + 3) λ

μ
+ n + 5

(n + 1)(2n + 3)
Anr̃

n + 2Bnr̃
n−2

]
dPn(ξ)

dϑ
cot(ϑ), (34c)

σrϑ(r̃ , ϑ) = μ

∞∑

n=1

[
− n(n + 2) λ

μ
+ n2 + 2n − 1

(n + 1)(2n + 3)
Anr̃

n + 2(n − 1)Bnr̃
n−2

]
dPn(ξ)

dϑ
, (34d)

σrϕ(r̃ , ϑ) = σϑϕ(r̃ , ϑ) = 0. (34e)

This solution satisfies the Navier equations. The coefficients An and Bn are determined from the singular
momentum balance of interfaces, which reads in this problem

n j �σ j i � = −F (I )

i ⇒ n jσ j i = F (I )

i , (35)

as any exterior pressure is neglected. We use the convention that a jump bracket is evaluated as outside value
subtracted by the inner value. Explicitly, one finds two non-trivial relations to be fulfilled,

σrr (r̃ = 1, ϑ) = F (I )
r (ϑ),

σrϑ(r̃ = 1, ϑ) = F (I )

ϑ (ϑ).
(36)

It can be seen that σrr depends on theLegendre polynomials Pn(ξ); the shear stress σrϑ depends on derivatives
of these polynomials, dPn(ξ)/dϑ. Therefore, the radial surface force is expanded in Pn(ξ) and the polar surface
force is expanded in dPn(ξ)/dϑ. Then, the coefficients are obtained algebraically and one finds that only few
coefficients, An and Bn , remain,

A0 = μ0H
2
0

μ
Â0 , A2 = μ0H

2
0

μ
Â2 , B2 = μ0H

2
0

μ
B̂2 ,

Â0 = a
λ
μ

+ 2
3

, Â2 = 21b − 42c

19 λ
μ

+ 14
, B̂2 = (8 λ

μ
+ 7)b + 3 λ

μ
c

38 λ
μ

+ 28
, (37)

with

a = 3
μ2
r − 1

(2 + μr )2
, b = −3

μ2
r − 1

(2 + μr )2
, c = −3

μr (μr − 1)

(2 + μr )2
, (38)

we refer to [42, Sect. 4.4] for their detailed derivation. Thus, the displacements read

ur (r̃ , ϑ) = μ0H
2
0R

μ

[
1
3 Â0 +

(
2B̂2 − 1

7
λ
μ
Â2r̃

2
)
P2(ξ)

]
r̃ ,

uϑ(r̃ , ϑ) = μ0H
2
0R

μ

[
B̂2 − 1

42

(
5 λ

μ
+ 7

)
Â2r̃

2
]
r̃
dP2(ξ)

dϑ
. (39)

The second Legendre polynomial and its derivative,

P2(ξ) = 1

2

(
3ξ2 − 1

)
,

dP2(ξ)

dϑ
= −3ξ

√
1 − ξ2, (40)

indicate that there is only a radial displacement since the derivative vanishes effected by ξ = cos(θ = π/2) = 0
along x-axis and ξ = cos(θ = 0) = 1 along z-axis. The deformed form of the body is determined and
qualitatively illustrated in Fig. 3. The physical components of the stress follow as

σrr (r̃ , ϑ) = μ0H
2
0

[ (
2
3 + λ

μ

)
Â0 +

(
4B̂2 + 1

7
λ
μ
Â2r̃

2
)
P2(ξ)

]
, (41a)
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min

max

Fig. 3 Visualization of the surface displacement of the spherical reference problem.The color of the arrows indicates themagnitude
of the displacements. The dashed line shows, qualitatively, the deformed form of the body. The image is adapted from [42] (color
figure online)

σϑϑ(r̃ , ϑ) = μ0H
2
0

[ (
2
3 + λ

μ

)
Â0 +

(
4B̂2 + 5

7
λ
μ
Â2r̃

2
)
P2(ξ) +

(
2B̂2 −

(
1
3 + 5

21
λ
μ

)
Â2r̃

2
) d2P2(ξ)

dϑ2

]
,

(41b)

σϕϕ(r̃ , ϑ) = μ0H
2
0

[ (
2
3 + λ

μ

)
Â0 +

(
4B̂2 + 5

7
λ
μ
Â2r̃

2
)
P2(ξ) +

(
2B̂2 −

(
1
3 + 5

21
λ
μ

)
Â2r̃

2
)
cot ϑ

dP2(ξ)

dϑ

]
,

(41c)

σrϑ(r̃ , ϑ) = μ0H
2
0

[
2B̂2 −

(
1
3 + 8

21
λ
μ

)
Â2r̃

2
]dP2(ξ)

dϑ
. (41d)

When the displacement of the numerical solution matches the analytic solution, the stress distribution will be
accurate as well. Therefore, we concentrate on a comparison between magnetic flux and displacement in the
following.

4.2 Computation

For the finite element analysis, we use the same geometry and find the steady-state solution by computing the
weak form in Eq. (20). We neglect the inertial terms in the balance of linear momentum as well as gravitational
body force. For the electromagnetic fields, we use the more general form as in the weak form. In order to
obtain a constant magnetic flux within the surrounding air, we employ the following boundary condition for
A leading to a constant magnetic flux along x3 as follows:

Ai =
⎛

⎝
0

μ0H0x1
0

⎞

⎠ , Bi = εi jk Ak, j =
⎛

⎝
0
0

μ0H0

⎞

⎠ . (42)

Effected by this boundary condition, the model lacks symmetry planes and we have to compute the whole
spherical geometry. For the computation of displacements, the sphere has to be fixed such that any rigid
body motion is suppressed. The appropriate choice of such a boundary condition is challenging since in the
closed-form solution we do not consider this condition at all. We clamp in the middle of the steel sphere
all points within the sphere of radius RBC and present the effect in the following. As material parameters,
realistic values for steel are employed as compiled in Table 1. The geometry is preprocessed in Salome with
NetGen algorithms. The triangulation is made so that the steel sphere is composed of finer elements than the
surrounding air. A cut view of the mesh is shown in Fig. 4. The computation is implemented in Python with
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Table 1 Material constants used in the simulation for the steel and the surrounding air

Steel Air

Mass density ρ in kg/m3 7850 1.2
Young’s modulus E in Pa 200 × 109 –
Poisson’s ratio ν 0.3 –
Modulus λ in Pa Eν

(1+ν)(1−2ν)
0.1

Modulus μ in Pa E
2(1+ν)

0.1
Electric susceptibility χ el 0 0
Magnetic susceptibility χmag 100 0
Electric conductivity ς in S/m 0 0

Fig. 4 The mesh is shown in a cut view. Within the steel sphere, the mesh is finer. Beyond the interface between the steel and air,
the element size is increasing gradually. No special refinement for the interface is used

open-source codes developed by the FEniCS project.1 Because of the high number of degrees of freedom, an
iterative solver bicgstab with a preconditioner hypre_amg has been used in parallel computation.

4.3 Comparison

Almost the same application has been analyzed by a closed-form solution as well by an FEM computation.
We consider the closed-form solution as the exact distribution, although the FEM computation incorporates
both electromagnetic potentials as vector and scalar potentials without any assumption. Technically, FEM
computation is more general; but we expect to converge toward exact solution. Hence, we set the objective as
examining the accuracy of the FEM solution by comparing it to the exact solution.We emphasize that the FEM
solution is obtained by solving the problem monolithically and transient in time by using standard linear FEM
elements. By using the Lorenz gauge, we have eliminated several numerical problems. Moreover, the use of
the hump conditions is of importance. We have used the same type of a jump condition for the numerical as
well analytic solution by assuming that the total momentum flux along the surface normal is continuous. This
assumption is taken for granted and its accuracy can only be determined by using experiments. Even though
continuous elements are employed for the electromagnetic potentials, φ, A, by employing the appropriate
jump conditions, we expect accurate representations of jumps in the electromagnetic fields, B, E.

The solution of the magnetic flux is seen in Fig. 5, on top the distribution on plane is visualized in ParaView,
on bottom the comparison is given of the vertical component along the radius by using MatPlotLib packages
from SciPy.2 The far away condition due to the domain boundary condition is fulfilled showing that 1m
surrounding air for 100mm steel sphere is admissible. Without using any special elements on the interface,
the jump of the magnetic flux is captured with a sufficient accuracy by using a relatively coarse mesh at the
interface. Moreover, the distribution from the interface to the far-field condition is captured, even though the
mesh is coarsening gradually along the radial direction. Within the sphere, only the external magnetic flux is

1 The FEniCS computing platform, https://fenicsproject.org/.
2 SciPy is a Python-based ecosystem of open-source software for science, https://www.scipy.org/.

https://fenicsproject.org/
https://www.scipy.org/
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Fig. 5 FEM results: (top) magnetic flux distribution on a cut plane with scaled arrows, (bottom) comparison of the numerical
solution along x-axis as dots to the closed-form solution along the radius at θ = π/2 as a continuous line

Fig. 6 FEM results: displacement field (scale factor: 5 × 103) of the steel and the magnetic flux on the cut shown with the same
color code as in Fig. 5

applied by the domain boundary condition and the numerical value is changed by sphere’s magnetization. The
numerical solution is adequate; but there is a mismatch caused by the employed boundary conditions for the
displacement field. The solution of the displacement field is strongly dependent on the clamped nodes within
the inner sphere of RBC.

The displacement field is solved simultaneously with the electromagnetic potentials such that the dis-
placement boundary condition affects all solutions. The order of the displacements is in the range of μm, the
result is scaled 5000 times and shown in Fig. 6. The displacement field is qualitatively correct, see Fig. 3. By
choosing Minkowski’s momentum, we obtain a shortening along the magnetic field leading to a widening
along x-axis. We present the radial component along the radius at two distinct positions of θ = {0,π/2}.
Because of the azimuthal symmetry, this comparison is sufficient for obtaining a clear picture of the accuracy.
Choosing θ = 0 corresponds to uz along z-axis. Analogously, setting θ = π/2 is ux along x-axis. Both are the
radial components such that we use Eq. (39)1 for comparison. Boundary condition’s effect is clearly shown in
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Fig. 7 Displacement field from the FEM shown as dots and the corresponding closed-form solution as continuous (red) line,
along z-axis meaning r at θ = 0. a RBC = 5mm. b RBC = 7.5mm. c RBC = 10mm (color figure online)

Figs. 7 and 8. As smaller RBC gets, the singularity at the origin becomes more dominant leading to a perturbed
solution near the boundary condition. Bigger RBC generates a more reliable result; however, in this case the
shift at the origin prevents the possible accuracy to be attained. In both cases, the numerical method converges
to the solution, we present here a comparison with the converged solutions. The boundary condition is starkly
minimalistic, in a possible experimental setup even a more complicated condition will be applied.

The radial symmetry as assumed in the closed-form solution is captured by the numerical results. The
jump on the interface is represented correctly without using any special elements or a layered mesh on the
interface, which shows the strength of the implementation of the balance equations on the singular surfaces
into the weak form.
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Fig. 8 Displacement field from the FEM shown as dots and the corresponding closed-form solution as continuous (red) line,
along x-axis denoted by r at θ = π/2. a RBC = 5mm. b RBC = 7.5mm. c RBC = 10mm (color figure online)

Conclusions

For determining the deformation of bodies due to electromagnetic fields, a monolithic numerical implementa-
tion has been examined by comparing it to a closed-form solution. Several simplifications lead to an analytic
solution for a spherical continuum body being deformed by a homogeneous magnetic field. The magnetic flux
possesses a jump between the continuum body and surrounding air. Such a jump between two materials is
challenging to calculate accurately. Instead of solving the magnetic flux directly, we introduce potentials and
solve them by using continuous elements. The derivative of the vector potential accurately represents the jump
on the interface even in the case of a relatively coarse mesh on the interface. By using Lorenz gauge as well as
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jump conditions, we have obtained the weak form that is computed by using standard finite elements. Without
using any special elements, we have shown fairly accurate results for a magnetically polarized material in a
constant external magnetic flux being deformed by the electromagnetic stress.
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