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Abstract A model of nonlinearly elastic surfaces composed of continuously distributed embedded fibers is
formulated. This takes account of the elastic resistance of the fibers to extension, bending and twist. Twist is
regarded as being kinematically independent of surface deformation, just as the twist in a spatial Kirchhoff
rod is independent of the deformation of the curve of the rod.
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1 Introduction

The mechanics of fiber-reinforced plates and shells has recently received renewed attention [1–5] from the
perspective of the theory of elastic surfaces. In these works the fibers constituting the shell are regarded as
belonging to two families of fibers forming a continuously distributed network over the surface; these are
regarded as spatial rods that are orthogonal, straight and untwisted in the reference configuration. Upon the
introduction of certain constraints, the model is reduced to a special form in which the constitutive functions
depend only on the first and second gradients of the surface deformation, culminating in a strain-gradient theory
of elastic shells. Such constraints are appropriate in the case of a lattice in which the constituent fibers are
pinned at their points of intersection so as to pivot about the evolving surface normal. Detailed discussions may
be found in [1–5], and extensions to accommodate dynamics and vibrations are given in [4]. The constrained
theory also models fabrics in which the fibers of the yarn have elliptical or rectangular cross sections; in this
case the geometry of the fibers of the woven fabric precludes independent fiber rotations at their points of
mutual contact. However, in a fabric consisting of fibers having circular cross sections, it is conceivable that
the fibersmay pivot freely about their respective tangent directions while remaining congruent to the deforming
surface. This implies that fiber twist cannot be determined by surface deformation, but rather by a rotation
field, one for each fiber family. To cover this case, a more general model of the Cosserat type is required [6,7],
the development of which is the objective of the present work.

To this end the fibers are regarded as continuously distributed spatial rods of the Kirchhoff type in which
the kinematics are based on a position field and an orthonormal triad field [8,9]. Variation of the triad along
the length of a fiber accounts for flexure and twist, while the deformation of the underlying surface generates
fiber stretches and fiber shear. We generalize the considerations of [1–5] by allowing the fibers to form a
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nonorthogonal grid in the reference placement and to be bent and twisted in their natural configurations. We
also relax the constraints on the fiber rotations to require only that the fibers remain embedded in the surface
as it deforms, while allowing them to twist independently of the surface deformation.

As a prelude to our main development, in Sect. 2 we summarize the equilibrium theory of Kirchhoff rods,
using an appropriate version of the virtual-work principle [10–13]. This serves as a guide for the construction,
in Sect. 3, of the proposed shell model. Section 4 is devoted to a discussion of the global balances of force and
moment emerging from the virtual-work statement. In contrast to the situation in conventional elasticity, these
global balances are found to be necessary, but not sufficient, for equilibrium. Finally, in Sect. 5 we apply the
shell model to the solution of an example in which an initially plane, rectangular net of fibers is mapped to a
helicoidal surface.

Concerning notation, we treat Latin indices, taking values in {1, 2, 3}, as being Cartesian in nature and
thus make no distinction between co- and contravariance. However, this distinction is maintained for variables
bearing Greek indices ranging over {1, 2}. Repeated indices are summed over their range.

Some elements of the theory described here have been discussed in [14,15], and attention is confined in
this work to the equilibrium theory.

2 Kirchhoff’s theory for spatial rods

In Kirchhoff theory the rod is regarded as a spatial curve endowed with an elastic energy density, per unit
initial length, that depends on the curvature and twist of the rod. According to the derivation from conventional
three-dimensional nonlinear elasticity given in [8], this theory also accommodates small axial strain along the
rod, although this effect is suppressed in derivations based on asymptotic analysis or the method of gamma
convergence. We include it here, however. Further, we forego any discussion of the connection between
Kirchhoff theory and three-dimensional elasticity and simply regard the rod as a directed curve [9] in which
certain a priori constraints are imposed. It is possible, of course, to base a rod theory on the general Cosserat
theory of directed curves, but this requires additional constitutive data and so, for the sake of simplicity, we
do not pursue such a development here.

2.1 Kinematics

The basic kinematic variables in the theory are a (deformed) position field r(s), where s ∈ [0, l] and l is the
length of the rod in a reference configuration, and a right-handed, orthonormal triad {di (s)} in which d3 = d,
where d is the unit vector defined by

r′(s) = λd, and λ = ∣
∣r′(s)

∣
∣ (1)

is the stretch of the rod. Thus d3 is the unit tangent to the rod in a deformed configuration, and dα (α = 1, 2)
span its cross-sectional plane at arclength station s.

A central aspect of the Kirchhoff theory is the stipulation that each cross section deforms as a rigid disk,
the rigid deformation varying from one section to another. Accordingly, there is a rotation field R(s) such that
di = RDi , where Di (s) are the values of di (s) in a reference configuration. Using the representation Di ⊗Di
for the three-dimensional identity, we infer that

R = di ⊗ Di . (2)

The curvature and twist of the rod are embodied in the derivatives d′
i (s), where

d′
i = R′Di + RD′

i . (3)

Let {Ei } be a fixed right-handed background frame. Then Di (s) = A(s)Ei for some rotation field A, yielding

d′
i = Wdi = w × di , (4)

where
W = R′Rt + RA′AtRt (5)

is a skew tensor andw is its axial vector. If the rod is straight and untwisted in the reference configuration; i.e.,
if D′

i = 0, then we have simply W = R′Rt .
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2.2 Strain energy function

We assume the strain energy S stored in a segment [l1, l2] ⊂ [0, l] of a rod of length l to be expressible in the
form

S =
∫ l2

l1
Uds, (6)

whereU, the strain energy per unit length, is a function of the list {R,R′, r′}, possibly depending explicitly on
s. Explicit s-dependence may arise from the initial curvature or twist of the rod, or from possibly nonuniform
material properties.

We require U to be Galilean invariant and thus stipulate that its values be unaffected by the substitution
{R,R′, r′} → {QR,QR′,Qr′}, where Q is an arbitrary uniform rotation. Because U is defined pointwise, to
derive a necessary condition we may choose the particular rotationQ = Rt|s and conclude thatU is determined
by the list {RtR′,Rtr′}. This list is easily shown to be Galilean invariant, and so our necessary condition is also
sufficient. It is equivalent to {RtWR − A′At

,λD}, where D = D3 and RtWR − A′At is a Galilean-invariant
measure of the relative flexure and twist of the rod due to deformation. Here D and A′At are independent of
the deformation and serve to confer an explicit s-dependence on the strain energy function. Accordingly, we
write U = U (RtWR,λ; s).

We observe that
RtWR = Wi jDi ⊗ D j , with Wi j = di · Wd j = di · d′

j . (7)

Assuming the explicit s-dependence to be due solely to the initial geometry of the rod in the manner described
above, we then have

U = W (λ, κ − κ̄), (8)

where κ(= κiDi ) is the axial vector of RtWR; i.e.,
κi = 1

2ei jkWkj , (9)

and where κ̄(= κ̄iDi ) is the axial vector of A′At ; i.e.,
κ̄i = 1

2ei jkDk · D′
j . (10)

Here ei jk is the Levi-Civita permutation symbol (e123 = +1, etc.), κ3 is the twist of the rod, and κα are the
curvatures.

2.3 Variational theory

Although the equilibrium equations of the Kirchhoff theory are well known and easily derived from elementary
considerations, for our present purposes it is instructive to derive them from a variational argument. Thus let
ε ∈ (−ε0, ε0) be a parameter and consider the configuration defined by r∗(s; ε) and d∗

i (s; ε), with [cf. (1)]

(r∗)′ = λ∗d∗, λ∗ = ∣
∣(r∗)′

∣
∣ , (11)

where r∗(s; 0) = r(s) and d∗
i (s; 0) = di (s). We take the state defined by ε = 0 to be an equilibrium

configuration.
We assume, for ε close to zero, that

r∗(s; ε) = r(s) + εu(s) + o(ε),

d∗
i (s; ε) = di (s) + εḋi (s) + o(ε), (12)

where superposed dots identify ε-derivatives, evaluated at ε = 0; thus, u = ṙ. The associated strain energy is

S∗ =
∫ l2

l1
W (κ∗ − κ̄, λ∗)ds = S + ε Ṡ + o(ε), (13)

where

Ṡ =
∫ l2

l1
(Wλλ̇ + μi κ̇i )ds, (14)
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with
μi = ∂W/∂(κi − κ̄i ) and Wλ = ∂W/∂λ, (15)

is the first variation of the energy.
Let

R∗(s; ε) = d∗
i (s; ε) ⊗ Di (s). (16)

Then,
ḋi = a × di , (17)

where a(s) is the axial vector of the skew tensor ṘRt . Let a(S) = λ̇; i.e.,
λ∗(s; ε) = λ(s) + εa(s) + o(ε). (18)

On combining these formulae we have
Ṡ = I [a, a], (19)

where

I [a, a] =
∫ l2

l1
(Wλa + μ · a′)ds, (20)

with
μ = μidi . (21)

It follows from (7) and (9) that

κ̇i = 1
2ei jk(ḋk · d′

j + dk · ḋ′
j )

= 1
2ei jk[a × dk · d′

j + dk · (a′ × d j + a × d′
j )], (22)

in which the terms involving a cancel; one of the e − δ identities then yields

κ̇i = di · a′. (23)

Further, from (1) we have that
r′ · dα = 0 (24)

for α = 1, 2. To accommodate these constraints in the variational formulation we introduce the augmented
energy

S̄ = S +
∫ l2

l1
f αr′ · dαds, (25)

where f α(s) are Lagrange multipliers. This is an extension of the actual energy from the class of deformations
defined by the constraints to arbitrary deformations.

We propose that equilibrium of the configuration corresponding to ε = 0 is equivalent to the virtual-work
equality

(S̄)· = P, (26)

where P is the virtual power of the loads, the form of which is made explicit below.
First, we observe that variations with respect to the Lagrange multipliers simply return the constraints

as the relevant Euler–Lagrange equations; thus, we do not make these explicit. Further, the stationarity of S̄
with respect to arbitrary variations implies stationarity with respect to variations satisfying the constraints;
this in turn ensures that Ṡ = P—and hence equilibrium—for the actual constrained problem. Conversely, if
the Euler–Lagrange equations and natural boundary conditions for S̄ are satisfied, which are necessary and
sufficient for (26) against arbitrary variations, then (26) is satisfied by constrained variations in particular, and
this ensures equilibrium.

Proceeding to the examination of (26), we have

I [a, a] +
∫ l2

l1
f α(u′ · dα + r′ · a × dα)ds = P, (27)

which is equivalent to
∫ l2

l1
(f · u′ + μ · a′ + a · f × r′)ds = P, (28)
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where
f = Wλd + f αdα. (29)

This in turn is equivalent to

(f · u + μ · a) |l2l1 −
∫ l2

l1
{u · f ′ + a · (μ′ − f × r′)}ds = P, (30)

which implies that the virtual power is expressible in the form

P = (t · u + c · a) |l2l1 +
∫ l2

l1
(u · g + a · m)ds, (31)

in which t and c represent forces and couples acting at the ends of the segment and g and m are force and
couple distributions over the interior.

By the fundamental lemma, the Euler equations holding at points in the interior of the rod are

f ′ + g = 0 and μ′ + m + r′ × f = 0, (32)

and the endpoint conditions are
f = t and μ = c, (33)

provided that neither position nor section orientation is assigned at the endpoints. These are the equilibrium
conditions of classical rod theory [8,9] in which f and μ, respectively, are the cross-sectional force and
moment transmitted by the segment (s, l] on the part [0, s]. From (29) we have the interpretation of the
Lagrange multipliers f α as transverse shear forces acting on a fiber cross section.

Other boundary conditions are, of course, possible. For example, if the tangent direction d is assigned at
a boundary point, then its variation a × d vanishes there, leaving a = αd in which α is arbitrary. In this case
(30) and (31) furnish the boundary condition

μ · d = c, (34)

in which c = c · d is the twisting moment applied at the boundary.

3 An elastic surface formed by two families of Kirchhoff rods

3.1 Kinematics

We construct a model of elastic surfaces formed by two families of Kirchhoff rods of the kind considered in
the foregoing. The rods, or fibers, are regarded as being continuously distributed, so that every material point
of the surface, ω say, lies at the intersection of two rods, one from each family. Thus, let {li } and {mi } be triads
of orthonormal vectors associated with the two fiber families; these are the surface analogues of the triad {di }
discussed above. Their pre-images on a reference surfaceΩ are {Li } and {Mi }. The various triads are regarded
as functions of (convected) surface coordinates θα;α = 1, 2 and r(θα) is the position field on ω. We take
l(= l3) andm(= m3) to be the unit tangents to the fiber trajectories on ω; the unit tangents to the fibers on Ω
are L(= L3) and M(= M3). Accordingly, by analogy with (1) we have [16]

λl = Lαr,α and μm = Mαr,α, (35)

where λ andμ are the fiber stretches. Here Lα and Mα are the contravariant components ofL andM onΩ , and
the derivatives on the right-hand side of these equations are directional derivatives along the fiber trajectories
on Ω . Hence the constraints (cf. (24))

Lαr,α · lβ = 0 and Mαr,α · mβ = 0, (36)

associatedwith the fact that the fiber ‘cross sections’ remain orthogonal to their tangents as the surface deforms.
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3.2 Strain energy

To accommodate these constraints we introduce augmented energy (cf. (25))

S̄ = S +
∫

Π

[

f β

(l)lβ · Lαr,α + f β

(m)mβ · Mαr,α

]

da, (37)

whereΠ ⊂ Ω is an arbitrary simply connected subregion ofΩ; f β

(l) and f β

(m) are Lagrange multipliers defined
on Ω; and

S =
∫

Π

Wda (38)

is the strain energy, in which W, the strain energy per unit area of Ω , is presumed to depend on the surface
metric aαβ = r,α · r,β and the fiber curvature-twist vectors κ l = κ(l)iLi and κm = κ(m)iMi , defined (cf. (7)
and (9)) by

κ(l)i = 1
2ei jkW(l)k j and κ(m)i = 1

2ei jkW(m)k j , (39)

with
W(l)k j = lk · Lαl j,α and W(m)k j = mk · Mαm j,α. (40)

We assume that W depends on the surface metric via the fiber stretches λ and μ and the fiber shear angle
γ , defined by

sin γ = l · m. (41)

In particular, we note the connection [16]
λμ |cos γ | = J, (42)

where
J = √

a/e, (43)

in which a = det(aαβ) and e is the value of a on Ω, and we take the strain energy to be given by the function

W (λ, μ, J, κ l − κ̄ l , κm − κ̄m), (44)

where
κ̄ l = κ̄(l)iLi and κ̄m = κ̄(m)iMi , (45)

with
κ̄(l)i = 1

2ei jkLk · LαL j,α and κ̄(m)i = 1
2ei jkMk · LαM j,α. (46)

3.3 Variational theory

As in the case of a single rod, we suppose that equilibrium of a configuration defined by {r, li ,mi } is expressed
by the virtual-work statement

(S̄)· = P (47)

for arbitrary Π ⊂ Ω in which P is the virtual power of the loads, the form of which will be deduced in what
follows.

Proceeding, we compute the variation

Ẇ = σαβaβ · u,α + μ(l)i κ̇(l)i + μ(m)i κ̇(m)i , (48)

where aβ = r,β ,
σαβ = ∂W/∂aαβ + ∂W/∂aβα, (49)

μ(l)i = ∂W/∂(κ(l)i − κ̄(l)i ) and μ(m)i = ∂W/∂(κ(m)i − κ̄(m)i ), (50)

and where
σαβaβ = WλL

αl + WμM
αm + JWJaα (51)
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for energies of form (44), in which aα are the duals to the aα on the tangent planes of ω. This follows from
the variational forms of (35); i.e.,

Lαu,α = λ̇l + λl̇ and Mαu,α = μ̇m + μṁ, (52)

together with
J̇/J = aα · u,α. (53)

Using (23) in the forms

κ̇(l)i = li · Lαal,α and κ̇(m)i = mi · Mαam,α, (54)

where al and am are the virtual fiber rotations defined by

l̇i = al × li and ṁi = am × mi , (55)

we find that

(S̄)· =
∫

Π

(Nα · u,α + Lαμl · al,α + Mαμm · am,α)da

+
∫

Π

(al · fl × Lαr,α + am · fm × Mαr,α)da, (56)

where
Nα = JWJaα + Lαfl + Mαfm, μl = μ(l)i li and μm = μ(m)imi (57)

with
fl = Wλl + f β

(l)lβ and fm = Wμm + f β

(m)mβ. (58)

Finally, an application of Stokes’ theorem leads to

(S̄)· =
∫

∂Π

Nανα · uds +
∫

∂Π

(Lαμl · al + Mαμm · am)ναds

−
∫

Π

{

u · Nα|α + al · [(Lαμl)|α − fl × Lαr,α]

+am · [(Mαμm)|α − fm × Mαr,α]
}

da, (59)

where να are the covariant components of the exterior unit normal to ∂Π, and Nα|α, etc., is the covariant
divergence on Ω defined by

Nα|α = e−1/2(e1/2Nα),α (60)
with e the determinant of the surface metric on Ω .

In view of (47) and (56) we conclude that the virtual power of the loads is expressible in the form

P =
∫

Π

g · uda +
∫

Π

(ml · al + mm · am)da +
∫

∂Π

t · uds +
∫

∂Π

(cl · al + cm · am)ds, (61)

where g is a distributed force acting on the surface andml andmm are distributed moments acting on the fibers,
all per unit area of Ω; and t is the traction and cl and cm are couples applied to the fibers, per unit arclength
of the boundary. The fundamental lemma then yields

Nα|α + g = 0, (62)

(Lαμl)|α + ml + Lαr,α × fl = 0 and (Mαμm)|α + mm + Mαr,α × fm = 0 (63)

on Ω , whereas
t = Nανα, cl = (L · ν)μl and cm = (M · ν)μm (64)

in which the left-hand sides are assigned at points of the boundary where r, {li } or {mi }, respectively, are not
assigned. These conditions may be compared to (32) and (33), and alternative boundary conditions, such as
the analogues of (34), may be easily derived.

Distributed twisting moments l · ml and m · mm may arise, for example, from friction generated as the
fibers pivot about their respective tangents independently of the underlying surface deformation. However,
by confining attention to a single surface deformation field, we have effectively precluded the possibility of
relative slipping of the fibers. This reflects the tacit assumption that sufficient friction is available to suppress
slipping. The present model may be generalized to accommodate this effect, however; see [17] for relevant
developments.
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4 Global balances of force and moment

In conventional elasticity the local equilibrium equations are equivalent, granted suitable regularity, to global
balances of force andmoment for arbitrary subdomains of the body. The latter also follow from the virtual-work
principle when restricted to rigid-body virtual displacements. To explore the consequences of the virtual-work
statement with respect to such displacements in the present setting, we consider rigid-body deformations

r∗(θα; ε) = Q(ε)r(θα) + b∗(ε), l∗i (θα; ε) = Q(ε)li (θα), m∗
i (θ

α; ε) = Q(ε)mi (θ
α), (65)

where Q(ε) and b∗(ε), respectively, are one-parameter families of rotations and displacements, with Q(0) =
I—the three-dimensional identity—and b∗(0) = 0. The associated variations, evaluated at the equilibrium
state ε = 0, are

u(θα) = ω × r(θα) + b, l̇i (θα) = ω × li (θα) and ṁi (θ
α) = ω × mi (θ

α), (66)

where ω is the axial vector of the fixed skew tensor Ω = Q̇(0) and b is a fixed vector. Accordingly, the virtual
fiber rotations are equal and uniform: al = am = ω.

Because the strain energy is invariant under such deformations, and assuming the constraints to be in force,
we have (S̄)· = 0 and virtual-work statement (47) reduces to P = 0; i.e.,

b ·
(∫

Π

gda +
∫

∂Π

tds
)

+ ω ·
{∫

Π

(r × f + m)da +
∫

∂Π

(r × t + c)ds
}

= 0, (67)

in which b and ω are arbitrary, and
m = ml + mm, c = cl + cm, (68)

are the net distributed moment and edge couple, respectively. Hence the global force and moment balances
∫

Π

gda +
∫

∂Π

tds = 0 and
∫

Π

(r × g + m)da +
∫

∂Π

(r × t + c)ds = 0. (69)

Using (62) we find that
∫

Π

gda +
∫

∂Π

tds = −
∫

Π

Nα|αda +
∫

∂Π

Nαναds, (70)

which vanishes by virtue of Stokes’ theorem; accordingly, (69)1 is identically satisfied. Further, from (63) and
(68)1,

m = −μα|α − aα × fα, (71)

where
μα = Lαμl + Mαμm and fα = Lαfl + Mαfm (72)

are couple-stress and fiber-stress vectors. Accordingly, with (62),

r × g + m = −μα|α − (r × Nα)|α + aα × (Nα − fα). (73)

Similarly, (64) and (68)2 combine to give

r × t + c = (r × Nα + μα)να, (74)

and we conclude, with (73), that
∫

Π

(r × g + m)da +
∫

∂Π

(r × t + c)ds =
∫

Π

JWJaα × aαda. (75)

Here aα × aα = aα × aβaαβ , where aαβ is the symmetric dual metric on ω. Thus, the right-hand side vanishes
and (69)2 reduces to an identity.

We conclude that the global force and moment balances are consequences of general variational statement
(47). The converse is not true, however, as (71) does not yield (63) or (64). This state of affairs is to be expected,
as (62)–(64) follow by imposing (47) for arbitrary variations, whereas special (i.e., rigid-body) variations were
used to derive the global force and moment balances. Consequently, in contrast to the situation in conventional
elasticity theory, global balances of force and moment are necessary, but not sufficient, for equilibrium in the
sense of (47).
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5 Example: bending and twisting of a rectangular strip to a helicoid

Consider the rectangular strip defined by l1 ≤ x ≤ l2, −h ≤ y ≤ h, where l1,2 and h are positive constants
and x, y are Cartesian coordinates on a plane. We take this strip to be the reference configuration of the elastic
surface with fibers lying parallel to the coordinate axes; i.e., L = i and M = j, the unit vectors aligned with
the coordinate directions. The fibers are straight and untwisted in this configuration (κ̄ l = κ̄m= 0), and we
consider strain energy functions of the form

W = w(λ,μ, J ) + 1
2k[κ(l)ακ(l)α + κ(m)ακ(m)α] + 1

2 k̄
(

τ 2l + τ 2m
)

, (76)

where k and k̄ are the fiber flexural and torsional rigidities, assumed to be common to the two fiber families,
and τl = κ(l)3 and τm = κ(m)3 are the fiber twists. This energy is appropriate for fibers of circular cross section
that are straight and untwisted in their natural states [8]. Constitutive equations (50) furnish the fiber couple
vectors

μl = kl × Lαl,α + k̄τl l and μm = km × Mαm,α + k̄τmm, (77)

with Lα = δα
1 and Mα = δα

2 ; δ
α
β being the usual Kronecker delta.

We take the convected coordinates to be θ1 = x and θ2 = y, and consider the deformation

r(x, y) = r(x)er (θ(y)) + βθ(y)k; θ(y) = αy, r ′(x) > 0, (78)

where k = i × j is the unit normal to the reference plane, er (θ) = cos θ i+ sin θ j is a unit vector directed along
a ray θ = const., and α and β are positive constants. The deformed surface is a helicoid on which the fibers
x = const. are helices of constant pitch and the fibers y = const. are their straight orthogonal trajectories.
We readily compute

a1 = r ′er and a2 = α(reθ + βk), (79)

where eθ = e′
r (θ) = k × er . From (35) it then follows that

λ = r ′, μ = α

√

r2 + β2, l = er and m = (α/μ)(reθ + βk). (80)

Accordingly, the fiber stretches and J = λμ depend only on x , while l is a function only of y. Equations (77)
furnish

μl = k̄τler and μm = k̄τmm + km × m,y, where m,y = (−α2/μ)rer . (81)

We seek a solution in which the transverse shear forces f α
(l) and f α

(m) acting on the fibers vanish together
with the distributed couples ml and mm . In these circumstances eqs. (63) reduce to

μl,x = 0 and μm,y = 0, (82)

or
τl,xer = 0 and k̄(τm,ym + τmm,y) + km × m,yy = 0, (83)

yielding τl,x = 0 and τm,y = 0—implying that a given fiber is uniformly twisted along its length—together
with

α2r
μ

(

k α2β
μ

− k̄τm
)

er = 0, (84)

which furnishes the twist
τm(x) = kα2β/k̄μ(x). (85)

The fiber stretch μ(x) is determined by solving (62). Using (57) and

aα = lαl + mαm, (86)

which follow from the orthonormality of {l,m} in the present context, together with λlα = Lα andμmα = Mα ,
which follow from (35), we find that

Nα = (wλ + μwJ )L
αl + (wμ + λwJ )M

αm (87)

and that (62) reduces to

(wλ + μwJ ),x l + (wμ + λwJ ),ym + (wμ + λwJ )m,y = 0, (88)
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assuming the distributed force g = 0. With our previous results this may be further reduced to

[(wλ + μwJ ),x − α2r
μ

(wμ + λwJ )]l + (wμ + λwJ ),ym = 0, (89)

and we conclude that

(wλ + μwJ ),x = α2r
μ

(wμ + λwJ ) and (wμ + λwJ ),y = 0. (90)

Because the stretches depend only on x, the second result reduces to an identity if thematerial is uniform (w
not explicitly dependent on x or y), whereas the first reduces to a nonlinear second-order ordinary differential
equation for r(x), which may be solved in principle once the function w is specified explicitly.

Concerning edge conditions, on the edge x = l2 we have the traction

t2(y) = (wλ + μwJ )|l2er (αy). (91)

The traction at the opposite edge x = l1 is

t1(y) = −(wλ + μwJ )|l1er (αy). (92)

Specification of these tractions provides data for the integration of the equation for r(x). In this specification
it is necessary that

∣
∣t1,2(y)

∣
∣ be uniform. The solution determines the tractions at the edges y = ±h:

t±(x) = ±(wμ + λwJ )m(x,±h), (93)

where
m(x,±h) = (α/μ){reθ (±αh) + βk}. (94)

The solution r(x) also determines the twist τm(x) in accordance with (80)2 and (85), which generates the
couples

cm = ±μm (95)

at the edges y = ±h; these contain both bending and twisting components. The couple at the edge x = l2 is
the pure twisting moment

cl(y) = k̄τl(y)er (αy), (96)

specification of which yields the twist τl(y) throughout the sheet. Finally, the couple acting at x = l1 is−cl(y).
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