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Abstract In order to get detailed information about the mechanical behavior of pantographic elementary
substructure and elements, small-scale specimens were sintered using polyamide powder, constituted by three
orthogonal pairs of beams interconnected through pivots forming pantographic cells. Themechanical properties
of interconnecting pivots and constituting beams are investigated by comparing experimental evidence with an
enhanced Piola–Hencky model. The careful agreement between experimental and predicted results allows us
to estimate: (i) the macro-shear stiffness of interconnecting pivots (corresponding to micro-torsional stiffness),
(ii) extensional stiffness and (iii) bending stiffness of constituting beams.

Keywords Pantographic sheets · Discrete models · Nonlinear analysis

1 Introduction

Pantographic sheets have been primarily studied in the recent past few years, see e.g., [1–7], for their relevant
technical applications. A key characteristic of these sheet structures is their capability to extend the elastic range
of the used material to strain values close to 1. From the viewpoint of mathematical modeling, the mechanical
behavior of these structures can be investigated via, broadly speaking, the following three approaches, each
one having its own peculiarities and strengths:
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Fig. 1 Mini pantographic lattice: three-dimensional rendering

1. continuum, see, e.g., [8–27];
2. discrete, see, e.g., [28,29];
3. experimental using the potentialities of 3D printing process, see [30].

In addition, very recently, a comparison of the three aforementioned approaches have been initiated, see [31–
33],where continuumanddiscretemodels have been compared and their results validated byusing experimental
results. We remark that until some years ago, a large part of the published technical articles were devoted to
continuum models which in order to treat problems of practical interest have to be discretized in any case.

Common to both continuum and discrete investigation approaches, there is the necessity to estimate the
constitutive parameters relevant to the two kinds of models. There have been few attempts relative to the
passage between the constitutive parameters for continuum and discrete models, or vice versa, as reported
in [34–38]. Nevertheless, a satisfactory response to the following question remains to be given: how we can
estimate the constitutive parameters for a continuum or discrete model starting from the results of physical
experiments?

In order to proceed in the study of pantographic structures, and in particular to optimize their properties to
particular applications, it is needed to identify the mechanical properties of each of its elementary components.
Indeed, the overall properties of considered metamaterial depend on their geometric microstructure but also
on the mechanical properties of their elementary constituents.

Such constituents are the interconnecting pivots and the beams that form the two fibers constituting the
cell of the pantographic sheet (see the three-dimensional rendering reported in Fig. 1). The technical drawing
shown in Fig. 2 furnishes the geometric data which characterize the mini pantograph. In addition, the micro-
beams have a square cross section with side equal to 1 mm and the pivots are cylinders having height equal to
2 mm and circular cross section with a diameter of 0.9 mm.

The printed pantographic sheet along with left and right support are displayed in Fig. 3 at the beginning of
the traction test by using the device ElectroForce 3200 (Bose, now TA Instruments). A load cell with capacity
±22 N, a measurement uncertainty of 0.1% and precision of 0.001 N was used for force measurement, while
the displacement was measured with the in-built transducer with a range±6.5 mm, a measurement uncertainty
of 0.1% and precision 0.001 mm.

Indeed, every pantographic substructure which we consider here one can distinguish mainly three defor-
mation mechanisms: bending of beam segments of fibers, their extension and micro-torsion of interconnecting
pivots. We neglect torsion deformability of the micro-beams and the flexural deformability of the pivots since
both their sections have been designed to minimize those contributions in comparison with those considered
as shown by the various experimental observations.

The problem which we address here is to determine experimentally:

(i) the macro-shear stiffness of interconnecting pivots (corresponding to micro-torsional stiffness) which are
built as cylinders mechanically linking the two families of crossing fibers;
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Fig. 2 Mini pantographic lattice: dimensioned drawing (in millimeters)

Fig. 3 Mini pantographic lattice in the testing machine

(ii) extensional stiffness of every beam segment of fiber mechanically linking the closest pairs of nodes,
characterized as the sites where the pivots are located;

(iii) bending stiffness of aforementioned beam segments.

We believe, on the basis of observed breaking and failure phenomena, that the description of these three
deformation mechanisms will also be useful to accurately describe the rupture mechanisms of pantographic
sheets.

In the next sections, we first sketch an enhanced Piola–Hencky discrete model which is able to predict,
when a suitable choice of its own constitutive parameters is used, the results of the physical experiment with
a good degree of accuracy paying a reduced computational cost. Successively, we present and discuss some
experimental results on the sheet formed by three orthogonal pairs of beams interconnected through pivots
forming pantographic cells and their comparison with the results obtained by means of the enhanced Piola–
Hencky discrete model. Finally, we sketch some concluding remarks along with some future challenges to
tackle in future works.

2 Model and numerical aspects

2.1 Refined Piola–Hencky discrete model

A refinement of a completely discrete model for pantographic sheets (which undergo large displacements) has
been previously introduced in [28] and exercised for several load conditions, see e.g., [31,32,39], and fiber
orientations, see [33]. This refined model was conceived to improve the description of the strain energy related
to the bending of themicro-beams. For the considered substructures, indeed, it is evident that the beam segment
of fibers do bend between two nodes and that it is not possible to describe properly the corresponding bending
energy solely with a elastic joint in correspondence of the pivot positions. The simplest way, if one wants to
avoid the introduction of (more or less sophisticated) beam elements, is to introduce additional elastic joints
between those already specified. In the jargon of finite elements this corresponds, roughly, to the so-called
h-refinement.

By referring to Fig. 4 where three elastic joints (distinguished with a black bullet) are considered, namely
Pj−1, Pj and Pj+1 in the reference position (on the top) and by p j−1, p j and p j+1 in the actual position (on
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Fig. 4 Kinematic of a discrete beam model: reference (on the top) and current configuration (on the bottom)
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Fig. 5 Kinematic of the enhanced discrete beam model: reference (on the top) and current configuration (on the bottom)

the bottom), the bending strain energy contribution related to the elastic joint Pj is worth

Eb = b (cosβ + 1) , (1)

being b the bending stiffness of the elastic joints and β the angle between the rigid links p j−1–p j and p j–
p j+1. The cosine of the angle β, which expresses the bending strain, can be easily computed, by means of the
Carnot’s theorem, making use of the coordinates of p j−1, p j and p j+1, which is particularly effective when
large displacements are considered.

A refined representation of the bending strain energy can be obtained by adding further elastic joints among
those already mentioned, see Fig. 5, where these additional joints are represented as hollow bullets. In this
way, we have also to consider the bending contributions related to the elastic joints both between Pj−1 and
Pj and between Pj and Pj+1 (in Fig. 5, we have considered the case of three additional elastic joints between
Pj−1–Pj and Pj–Pj+1) whose energy can be computed by using the same formula already introduced in
Eq. (1) (In Fig. 5, we named as γ the angle, in the actual configuration, between the rigid links sharing the
considered elastic joint).

The strain energy of the pantographic sheet model has to be completed adding, firstly, the stretching
contribution of each micro-beam, as follows:

Ea = 1

2
a (� − �0)

2 , (2)

where � and �0 are the length of the micro-beam in the current and reference configuration, respectively, and
a is its axial stiffness. In addition, we have to consider the shearing energy (for the two fibers which share the
same pivot) stored as torsional energy in the small cylinders which connect non-parallel fibers (see Fig. 6),
this energy can be written as:

Es = 1

2

4∑

q=1

s
(
σq − π

2

)2
, (3)

where s is the shear stiffness of the considered elastic joint and σq the angle between two rigid links, in the
actual position, in the qth quadrant (q = 1, ..., 4) (see Fig. 6 on the left). It is noted that, in this paper, we only
consider the case of pantographic sheets with orthogonal fibers, although, see [33], it is convenient to remove
this assumption.

The same expression for the shear energy can be used for the case of external pivots (those numbered with
4, 5, 7 and 8 in Fig. 7) only taking into account that in this case there is only one angle to consider (see again
the sketch reported on the right part of Fig. 6).
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Fig. 6 Kinematic for internal, on the left, and external, on the right, pivots (reference and current configurations are depicted by
using dashed and continuous lines, respectively)
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Fig. 7 Plane pantographic sheet model highlighting pivots

2.2 Numerical aspects: the arc-length method

The three strain energies immediately above described are the only quantities necessary to reconstruct the
complete equilibrium path, that is the set of pairs {λi ,ui } where λi is a scalar parameter which control
the external actions, i.e., load or given displacements, and ui is the vector which collects the Lagrangian
parameters which completely define the deformation, that is the displacements of elastic joints from the
reference configuration. The strain energy of the whole pantographic structure E can be obtained simply by
summing its elementary contributions using the elementary contributions given by (1), (2) and (3).

Since in thisworkwe only consider problemswhere there are no external loads but only given displacements
described by the form λū being ū a vector which collects the given displacements, therefore, the stationarity
condition of the potential energy provides the nonlinear system of equations to solve:

s(u, λū) = ∇E = 0, (4)

being s(u, λū) the reaction depending both from the free displacements collected in u and the given displace-
ments λū. We remark that the reaction s can be obtained by assembling elementary contributions se defined
as

se = dEe

due
, (5)

being Ee the elementary contribution to the strain energy (stretching, bending and shearing) and ue the vector
which collects the displacements of the nodes which contribute to the elementary strain energy, e.g., if the
bending strain energy is considered,ue collects the six displacements correspondent to three consecutive nodes.

In order to sketch a simple step-by-step strategy able to evaluate a point of the equilibrium path starting
from the knowledge of the previous point, we need also the gradient of the reaction s, in other words the tangent
stiffness matrix K:

K = ∇s = ds
du

. (6)
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We remark that: (i) the given displacement λū has to be treated as known; therefore, K has the dimensions
coherent with u; (ii) exactly as for the reaction s, the tangent stiffness matrix can be computed by assembling
elementary contributions.

The solution of the nonlinear system of Eq. (4) can be found using a step-by-step algorithm based on the
Newton’s scheme. If the pair {λ1,u1} belongs to the equilibrium path, therefore its rest is zero, a nearby equi-
librium point {λ2,u2} can be computed bymeans of the iterative scheme based on the first-order approximation
of the rest, in much more simple terms á la Newton:

�u := u2 − u1 = −K−1s (u1, (λ1 + �λ)ū) , (7)

where �λ = λ2 − λ1.
It is well known that Newton’s scheme fails when the tangent stiffnessmatrix becomes singular and that this

drawback can be overcome, using exactly the same tools already introduced, by using an arc-length strategy
based on the Riks’ idea [40]. Arc-length method was surely a keynote as proved by many papers populating
technical references concerning changes, more or less important, of the same idea, see, for a comparison among
different versions, the review paper [41]. In brief, the equilibrium curve is recovered using as parameter its
arc-length and, therefore, no convergence problem arises when K becomes singular. A detailed description of
an efficient implementation of the arc-length scheme can be found in [42] for problems which have to treat
with limit points, e.g., to compute the limit load in perfect plasticity. In the following, we describe solution
strategy for the case of given displacements since technical references treat almost exclusively problems with
assigned external forces. Furthermore, we discuss some modifications devoted to improve the computational
efficiency of the code.

The key point of the Riks’ arc-length method is to describe the equilibrium curve using as parameter
its arc-length (to describe the curve) instead of the non-dimensional given displacement λ and, therefore, to
proceed for a fixed arc-length. Obviously, since we add a new unknown quantity (the arc-length parameter)
a new equation has to be added. There are many possible choices which render the algorithm more or less
complicated. The natural choice is to find the solution on the circle having as radius the arc-length even if
this choice does not produce the faster algorithm. Much more simple to code, and more efficient from the
computational point of view, is to impose a sort of orthogonality between the extrapolation and the correction
that, in other words, is an approximate way to impose that the arc-length is constant.

The rest of the equilibrium equation (4), which should be zero when the convergence is achieved, can be
written as:

s
(
u1 + �u + u̇, λ1 + �λ + λ̇

) ≈ 0, (8)

being λ̇ and u̇ the needed corrections to the extrapolations λ1 + �λ and u1 + �u. Equation (8), using the
analogous of Eq. (7), gives the free displacements corrections

u̇ = −K−1s
(
u1 + �u, (λ1 + �λ + λ̇)ū

)
, (9)

where the tangent stiffness matrix related to the free displacements K is computed for u + �u.
In order to make equal the number of equations to those of unknowns, we have to write one more equation

which expresses the imposed constraint. A suitable, and general, form for this constraint is the following:

�uTCu̇ + γ�λλ̇ = 0, (10)

where the matrix C and the scalar γ can to be opportunely chosen in order, for example, to accelerate the
convergence or to simplify the necessary calculations. We stress that the condition (10) is rather general and
can be interpreted as a sort of orthogonality condition between extrapolation, i.e., the pair (�λ,�u), and
correction, i.e., the pair (λ̇, u̇).

Straightforward calculations, using Eq. (10), allows to compute

λ̇ = �uTCK−1s (u1 + �u, (λ1 + �λ)ū)

γ�λ − �uTCK−1�s
, (11)

where

�s =
s
(
u + �u, (λ + �λ + λ̃)ū

)
− s (u + �u, (λ + �λ)ū)

λ̃
. (12)
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Now, in order to obtain a specific algorithm, we have to select C and γ . A desirable choice is the pair
C = K and γ = 0 since it produces a simple expression for the correction. In formula, the corresponding
expression for λ̇ becomes

λ̇ = −�uT s (u1 + �u, (λ1 + �λ)ū)

�uT�s
, (13)

whereas u̇ can easily be computed by using Eq. (9).
In order to complete the algorithm sketched in the immediate foregoing, it is necessary to define the first

extrapolation at the beginning of each step. The simplest way is to define it on the basis of the previous steps.
Using the terminology already introduced, we can compute

�λ = m(λ1 − λ0),

�u = m(u1 − u0),
(14)

where the coefficient m is tailored to modify the arc-length during the step-by-step procedure: increasing
the step-length in the part of the curve which does not present particular problem (weakly nonlinear), and
decreasing it in the part of the curve which require more care (strongly nonlinear). A simple formula for the
coefficient m is given as

m = 1 − rl − nl
rl + nl

, (15)

and it is able to modify the arc-length on the basis of the number of required rl and needed nl loops necessary
to reach the convergence of the scheme. At the first step, we can set m = 1 and fix the value of �λ, defining
implicitly the desired arc-length, and compute the corresponding value of �u.

3 Experimental results and parameter identification

We assume here that all the corresponding structural elements constituting the substructures used in the
experiments are identical in their mechanical and geometrical properties. This can be confirmed by the visual
measurements performed on the specimens before and after rupture. Furthermore, the repeatability of the
results obtained with different specimens and the authors’ experience with the 3D printing process confirm
this assumption.

The considered substructures have 7 pivots, four of which have, in considered measurements, exactly the
same mechanical role (see Fig. 7). These pivots are those placed at the external free nodes of the pantograph
(nodes 4, 5, 7 and 8). The central pivot, node 6, is the one which is twisted the most and the two remaining
pivots, 3 and 9, have the twist angle partially blocked by the clamping of the extremities of interconnected
beams.

The beam segment of fibers are undergoing large displacements and deformations and a fully nonlinear
description of their mechanical behavior is demanded. The parameters to be identified are therefore:

(i) those characterizing the micro-twist (that is the macro-shear) at the interconnecting pivots;
(ii) those characterizing the bending of the beam segment of fibers, distinguished into interconnecting nodal

and intermediate nodal rotational stiffnesses;
(iii) those characterizing the extension of the beam segment of fibers.

We start by assuming that the deformation energy is quadratic in the nonlinear deformation measures char-
acterizing each introduced rotational and extensional stiffnesses. We assume the geometric data reported in
Sect. 1. Furthermore, we set for the maximum displacement on one of the shorter side of the pantographic
sheet, in the direction of the longer side, equal to 12 mm which is the same values adopted in the experimental
test.

Four pictures of the experimental test are shown in Fig. 8 for the non-dimensional given displacement λ
varying from 0, at the beginning of the test, to 1 in correspondence of the given displacement of 12 mm.

During the physical experiment, the reaction force R was measured corresponding to the given displace-
ment. Figure 9 reports, besides the measured force R, two fits using quadratic and cubic interpolation laws. The
plot shows that, although cubic interpolation follows closely the experimental curve, quadratic interpolation
is not so far from the cubic one.
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(a) λ = 0.25

(b) λ = 0.5

(c) λ = 0.75

(d) λ = 1

Fig. 8 Physical experiment: deformation varying the non-dimensional given displacement parameter λ
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Fig. 9 Measured global structural reaction R and its fittingwith a quadratic and a cubic law vs.non-dimensional given displacement
λ

To replicate the results of the experiment reported in the foregoing, we performed a series of numerical
simulations using the enhanced Piola–Hencky model described in Sect. 2. The values for the stiffness param-
eters necessary to completely describe the discrete model, that is a, b and s for axial, bending and shearing
stiffness, respectively, have to be properly identified in order to follow closely the results of the experiment:
in practice, the deformations for one or more fixed value of λ and/or the force–displacement curve.

As first estimate, we considered the stiffnesses deriving from the De Saint Venant problem (which are
rigorously valid only for the linear case). In formulae
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Fig. 10 Comparison for the computed and measured global force R obtained estimating a, b and s from Y = 1700 MPa

a =Y A

�
,

b =
(
1 − �

L

)
Y I

�
,

4s =GIp
�p

,

(16)

where Y and G are the Young’s and the shear moduli of the polyamide, respectively; A and I are the area and
the inertia of the cross section, L the total length of the micro-beam, and � is the length of each one of the
segment of the micro-beam (between two elastic joints). The coefficient 1− �/L take into account the number
of elastic joints used to model the bending strain energy.

The Young’s modulus Y and the Poisson’s ratio ν of the polyamide used in 3D printing process can
be extracted from the technical specifications from the polyamide following EN ISO 527 which suggests
Y = 1700 MPa and ν = 0.4.1

Since the printing process could influence, rather significantly, the constitutive parameters of the polyamide
we were prepared to revise, even strongly, the initial estimates. However, we start our simulations computing
an initial estimate of a, b and s using (16) with Y = 1700 MPa and ν = 0.4. Simple calculations give
a = 369.9 N/mm, b = 23.12 Nmm and s = 4.888 Nmm. With these values of the stiffnesses, we compute the
global structural reaction R(λ) curve. The comparison between the computed and measured curve is reported
in Fig. 10.

Figure 10 shows without doubt the stiffnesses of the discrete model cannot be computed using (16) or,
alternatively, that the Young’s modulus is lower than the used value, i.e., 1700 MPa. For this reason, we
considered the identification of the stiffness parameters of the discrete model using the methods described, for
example, in [43]. The simpler way is to consider

χ = ‖x j − x̄ j‖2 = min (17)

where x j and x̄ j are, for example, the position of the j th pivots computed from the numerical model and
from the physical experiment, respectively, for a fixed value of λ. Alternatively, we can identify the stiffness
parameters minimizing the distance from the equilibrium curve computed by means of the numerical model
and from the experiment where, this time, x j and x̄ j points of the equilibrium curve computed by the numerical
simulation and from the experiment.

A first attempt to estimate the correct value of a, b and s can be pursued scaling the three stiffnesses by
the same number or, in other words, to scale the Young’s modulus Y in such a way that the global structural
reaction R computed and measured for λ = 1 be the same. The values of the stiffnesses which ensures this

1 See https://www.shapeways.com/rrstatic/material_docs/mds-strongflex.pdf.

https://www.shapeways.com/rrstatic/material_docs/mds-strongflex.pdf
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Fig. 11 Comparison for the computed and measured global force R obtained estimating a, b and s from Y = 85.53 MPa
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Fig. 12 Abacus to identify the stiffnesses a, b and s: global structural reaction R vs. the non-dimensional given displacement λ

result are a = 18.61 N/mm, b = 1.163 Nmm and s = 0.2459 Nmm corresponding to a Young’s modulus
Y = 85.53 MPa.

Although the global structural reaction R is now the same for λ = 1, the computed and measured curves
are somewhat different and therefore the ratios among a, b and s have to be changed. This goal can be achieved
by a black-box procedure which optimizes the stiffnesses to minimize the discrepancy between measured and
computed curves. However, it is interesting, in itself, a simple parametric study of the R(λ)-curve varying the
stiffnesses a, b and s, in other words the kind of abacus, in logarithmic scale, reported in Fig. 12. From the
plots, we deduce that:

1. the value of R computed for λ = 1 is strongly related to a;
2. the stiffness b shift the plot upward leaving the slope of the first part of the graph unaltered, the slope of

the second part of the curve becomes less accentuated when b increases;
3. the stiffness s, beyond to shift upward the curves (like b), makes the whole curve flat.

With the guidelines briefly depicted in the foregoing, it is simple, by using very few iterations to reach a set
of stiffnesses a, b and s which produces a remarkable fitting of the experimental curve. We report in Fig. 13
the R − λ curve obtained with the stiffnesses a = 6.5 N/mm, b = 2.0 Nmm and s = 2.2 Nmm which now
shows a good agreement with the experimental one reported in black.

In order to show how the strain energy is split in the axial Ea , bending Eb and shear Es parts, we report in
Fig. 14 the three energy components, when λ increases, for the same set of stiffnesses.
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Fig. 13 Comparison between physical experiment (in black) and numerical simulation (in red) for the global structural reaction
R vs. the non-dimensional given displacement λ for the set a = 6.5 N/mm, b = 2.0 Nmm and s = 2.2 Nmm
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Fig. 14 Split of strain energy in its extensional Ea , bending Eb and shear Es vs. the non-dimensional given displacement λ for
the set a = 6.5 N/mm, b = 2.0 Nmm and s = 2.2 Nmm

Furthermore, Fig. 15 reports the history of the deformation for λ equal to 0.25, 0.5, 0.75 and 1. Color map
describes the strain energy density on the micro-beams.

We remark that the deformations do not perfectly overlap the pictures taken during the physical experiment.
More precisely, comparing the pictures shown in Fig. 8 and the numerical simulations reported in Fig. 15,
it seems than the deformations corresponding to λ = 0.75 and λ = 1 in the physical experiment are more
marked. Obviously, it is possible, changing the set of stiffnesses, to overlap precisely the deformation for an
assigned value of λ, but in this case the fit of the R(λ)-curve becomes less accurate. This lack of accuracy in
the reconstruction of the deformation could be related both to the accuracy of the experiment measurements
and to the numerical model which is based on well-determined choices on the energy forms which may be not
adequate to this kind of problems.

4 Concluding remarks and future challenges

In the previous sections, we sketched a methodology which could be used and also formalized to identify the
constitutive parameters of a discrete model capable to predict, with a good agreement, experimental results.
The choice of considering a three cell only pantographic sheet was illuminating since permitted to study a
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Fig. 15 History of deformation for the set of stiffnesses a = 6.5 N/mm, b = 2.0 Nmm and s = 2.2 Nmm for different value of
the non-dimensional given displacement λ (color map shows the strain energy density level)

very simple problem and to reach some guidelines that can be used in a fruitful way to analyze more complex
problems. In addition, we stress that the results obtained by using the identification procedure tuned for
the enhanced Piola–Hencky numerical model could be transferred to pantographic sheets analyzed by using
continuum models such as reported in [9].

Finally, we report in the list below some future challenges:

1. we only considered the elastic regime, this could be a straightjacket in the case of repeated cyclic loading
process that has to be removed introducing some rate dependent constitutive equations and corresponding
extra constitutive parameters;

2. even if the experimental set up has very high performances, its elongation is insufficient to achieve rupture
see [44]); we will change the geometry of the pantographic substructure, for instance changing the fibers’
angle, in order to lead to rupture the specimens in the available range of imposed displacements; similarly
we can change the beam spacing or the beam sections;

3. up to now we considered the stiffnesses of the enhanced Piola–Hencky model invariable on the whole
pantographic sheet; this hypothesis could be removed without particular computational costs to consider
the study of pantographic sheet with defects, see the attempt reported in [45], or for trying to optimize the
stiffnesses of the parts, micro-beams and pivots, which constitute the pantographic sheets;

4. some technical applications clearly require the extension of this study to the dynamic case since the
hypothesis of quasi-static application of external loads or given displacements is no longer enough to
describe some kind of behavior, see [46,47] for a prime on this topic;

5. in some discussions, initiated during Euromech Colloquia 562 and 563, see [48,49] and continued in many
informal meeting and workshop organized inM&MOCSCenter,2 the following conjecture has been stated:
also the problems formulated by means of discrete Hencky-type mechanical models can exploit advanced
interpolation techniques. In particular, it seems suggestive and promising the adaptation of B-splines and
NURBS interpolation methods. To our knowledge, the first occurrence in computational mechanics of the
methods of B-splines was in [50]; however, the theory of B-splines has been incorporated in the theory of
NURBS and the most popular references for these methods are [51,52]. On the other hand, the peculiar
method developed in [53,54] seem to us most appropriate in the application which we have in mind;

6. the revival of Piola–Hencky-type models suggests that a revisitation of the method of statistical mechanics
could be very fruitful. We are aware of the fact that in statistical mechanics, a crucial role is played by
temperature. Of course, this is not the case in the mechanical systems we are studying here. However,

2 http://memocs.univaq.it/?page_id=154 and M&moCS Youtube Channel.

http://memocs.univaq.it/?page_id=154
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already Piola, see [10,55] considered Hencky-type discrete models as a fundamental microscopic model
from which generalized continua could be deduced. The methods of Piola were based on the assumption
that molecules or material particles had dimensions much larger that true atoms (in the sense of Avogadro).
This seems to be the multi-scale situations in which we find ourselves in the present context. The adapted
methods of statistical mechanics (also for modeling foams) seem to be already available, and we hope to
be able to use them in future developments [56–58];

7. peridynamics, the newly developed continuum mechanics formulation, can also be considered as an alter-
native approach for the analysis of pantographic sheets, see,e.g., or [59,60].
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