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Abstract Peridynamics is a nonlocal continuum mechanical theory based on minimal regularity on the defor-
mations. Its key trait is that of replacing local constitutive relations featuring spacial differential operators with
integrals over differences of displacement fields over a suitable positive interaction range. The advantage of
such perspective is that of directly including nonregular situations, in which discontinuities in the displacement
field may occur. In the linearized elastic setting, the mechanical foundation of the theory and its mathematical
amenability have been thoroughly analyzed in the last years. We present here the extension of Peridynamics to
linearized elastoplasticity. This calls for considering the time evolution of elastic and plastic variables, as the
effect of a combination of elastic energy storage and plastic energy dissipation mechanisms. The quasistatic
evolution problem is variationally reformulated and solved by time discretization. In addition, by a rigorous
evolutive �-convergence argument we prove that the nonlocal peridynamic model converges to classic local
elastoplasticity as the interaction range goes to zero.

Keywords Peridynamics · Elastoplasticity · Variational formulation · Existence · Localization

1 Introduction

Peridynamics is a nonlocal mechanical theory based on the formulation of equilibrium systems in integral
terms instead of differential relations. Forces acting on a material point are obtained as a combined effect of
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interactions with other points in a neighborhood. This results in an integral featuring a radial weight which
modulates the influence of nearby points in terms of their distance [12].

Introduced bySilling [28], and extended in [29,30], Peridynamics is particularly suited tomodel situations
where displacements tend to develop discontinuities, such as in the case of cracks or dislocations [4,13]. In
addition, this nonlocal formulation is capable of integrating discrete and continuous descriptions, possibly
serving as a connection between multiple scales [27]. As such, it is particularly appealing in order to model
the ever smaller scales of modern technological applications [31].

The starting point of this article is the peridynamic model in linear elasticity analyzed inMengesha and
Du [20] (see also [9,21,29,30] for other related models), which we describe as follows. The elastic equilibrium
problem for a linear homogeneous isotropic body subject to the external force of density b(x) ∈ R

n can be
variationally formulated as the minimization of the purely elastic energy

Eρ(u) = β

∫
�

Dρ(u)(x)2 dx + α

∫
�

∫
�

ρ(x′−x)
(
D(u)(x, x′) − 1

n
Dρ(u)(x)

)2

dx′ dx −
∫

�

b(x) · u(x) dx

among displacements u(x) ∈ R
n from a reference configuration � ⊂ R

n , subject to boundary conditions.
Here ρ : Rn → [0,∞) is an integral kernel modeling the strength of interactions with respect to the distance
of the points x′ and x, the termD(u)(x, x′) plays the role of a nonlocal elastic strain, projected in the direction
(x′−x)/|x′−x|, namely

D(u)(x, x′) =
(
u(x′) − u(x)

) · (x′−x)

|x′−x|2 , (1.1)

and Dρ(u)(x) is a nonlocal analogue of the divergence and is given by

Dρ(u)(x) = p. v.
∫

�

ρ(x′−x)D(u)(x, x′) dx′, for a.e. x ∈ �, (1.2)

where p. v. stands for the principal value. The positive material parameters α and β are related to the shear
and bulk moduli of the material, respectively.

The main results of Mengesha and Du [20] are the following. By suitably qualifying assumptions on
the kernel ρ, the force b, and by imposing boundary conditions (see below), Eρ admits a unique minimizer
uρ . In addition, in [20] it is proved that, in the limit of vanishing interaction range, that is for ρ converging to
a Dirac delta function centered at 0, the nonlocal solutions uρ converge to the unique solution of the classical
local elastic equilibrium system, namely the minimizer of

E0(u) = λ

2

∫
�

div u(x)2 dx + μ

∫
�

|∇su(x)|2 dx −
∫

�

b(x) · u(x) dx.

The symbol ∇s stands for the linearized strain ∇su = (∇u + (∇u)	)/2, and the Lamé coefficients λ and μ
are related to α, β, and n via [20, App. A]

λ = 2β − 4α

n(n + 2)
, μ = 2α

n + 2
. (1.3)

Note thatμ > 0 and nλ+2μ > 0, making the elastic energy coercive. Indeed, calling uρ and u0 theminimizers
of Eρ and E0, respectively, the convergence of uρ to u0 follows from the �-convergence of Eρ to E0 [7,8].

The focus of this paper is on extending the elastic theory to encompass plastic effects as well. By moving
within the very same frame of classical elastoplasticity [16], one describes the plastic state of the system via
an additional internal variable, the plastic strain P ∈ R

n×n
s,d (symmetric and deviatoric tensors), and defines the

elastoplastic energy as

Fρ(u,P) = β

∫
�

Dρ(u)(x)2 dx + α

∫
�

∫
�

ρ(x′−x)
(
E(u,P)(x, x′) − 1

n
Eρ(u,P)(x)

)2

dx′ dx

+ γ

∫
�

|P(x)|2 dx −
∫

�

b(x) · u(x) dx, (1.4)
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where the nonlocal elastic strain, projected in direction (x′−x)/|x′−x|, features now the additional contribution
of the plastic strain as

E(u,P)(x, x′) =
(
u(x′) − u(x) − P(x)(x′−x)

) · (x′−x)

|x′−x|2 . (1.5)

Correspondingly, we define

Eρ(u,P)(x) = p. v.
∫

�

ρ(x′−x)E(u,P)(x, x′) dx′, (1.6)

which plays the role of a nonlocal divergence of u. Indeed, although it depends on P, one can check that such
dependence vanishes when the kernel ρ tends to the Dirac delta function at 0 as P is assumed to be deviatoric,
see Lemma 3.5.a.

With respect to the purely elastic case of Eρ , an additional γ -term is here considered. Thismodels kinematic
hardening, and γ > 0 is the corresponding hardening coefficient. Note that the whole energy Fρ is quadratic in
(u,P). This results in a linearized theory of elastoplasticity, although of a nonlocal nature. By letting the kernel
ρ tend to the Dirac delta function at 0, the model gets localized and the corresponding localized elastoplastic
energy is the classical

F0(u,P) = λ

2

∫
�

div u(x)2 dx + μ

∫
�

|∇su(x) − P(x)|2 dx −
∫

�

b(x) · u(x) dx + γ

∫
�

|P(x)|2 dx.

In particular, the nonlocal model is consistent with the classical localized theory. In fact, the elastic energy is
a function solely of the difference between displacements u(x′) − u(x) and the plastic term P(x)(x′−x). This
is completely analogous to the classical additive decomposition of strains in classical elastoplasticity and in
fact converges to it as the kernel ρ tends to the Dirac delta function at 0.

Elastoplastic evolution requires the specification of the plastic dissipation mechanism. We follow here the
classical von Mises choice: Given some yield stress σy > 0, we specify the energy dissipated in order to pass
from the plastic state P0 to P1 as

H(P1−P0) = σy

∫
�

|P1(x)−P0(x)| dx.

We let the action of the external force density b to be depending on time and correspondingly investigate
trajectories t 
→ (uρ(t),Pρ(t)) solving the quasistatic evolution system

∂uFρ(uρ(t),Pρ(t), t) = 0, (1.7)

∂ṖH(Ṗρ(t)) + ∂PFρ(uρ(t),Pρ(t), t) � 0. (1.8)

The symbol ∂ above is the subdifferential in the sense of convex analysis, and the dot in (1.8) denotes the time
derivative. Relation (1.7) corresponds to the weak formulation of the quasistatic equilibrium system. Relation
(1.8) is the plastic flow rule instead. In particular, as H is not smooth in 0, relation (1.8) is actually a pointwise
inclusion. Quasistatic evolution in the present nonlocal peridynamic elastoplastic context is then driven by the
pair of functionals (Fρ, H), whereas the choice (F0, H) corresponds to classical localized elastoplasticity.

The two main results of this paper are the following:

• (Theorem 4.1) Under suitable assumptions on the data and the kernel ρ, there exists a unique trajectory
t 
→ (uρ(t),Pρ(t)) solving the nonlocal quasistatic evolution system.

• (Theorem 4.2) If ρ converges to the Dirac delta function at 0, then the solutions t 
→ (uρ(t),Pρ(t))
converge to the unique quasistatic evolution t 
→ (u0(t),P0(t)) for local classical elastoplasticity.

As mentioned earlier, our elastoplastic model based on the functional Fρ is a natural extension of the elastic
model based on Eρ by Mengesha and Du [20] (see [2,3] for other studies on the existence of minimizers
and its relation to local elasticity). In an essential way, we also benefit from the technical tools developed in
[20], such as the functional setup (see Sect. 2), the nonlocal Korn inequality (Proposition 2.2) and its δ-uniform
version (Proposition 3.8), the L2-compactness of Sδ-bounded sequences (Proposition 3.10) and, in general,
the overall scheme of the proof of existence, uniqueness, and �-convergence (Sect. 3).

To our knowledge, this paper contributes the first variational peridynamic model including internal vari-
ables. Note that damage and plastic effects in the frame of Peridynamics have already been considered in
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[14,17] and [18], respectively. The analysis of the well-posedness of the quasistatic evolution (Theorem 4.1)
and the localization proof (Theorem 4.2) seem unprecedented out of the elastic context.

The well-posedness result is based on time discretization. After explaining the functional setup (Sect. 2),
in Sect. 3 we investigate incremental problems of the form

min
(
Fρ(u,P, ti ) + H(P−Pold)

)
,

where the previous plastic state Pold and the time ti are given. These minimization problems are proved
to be well-posed (Sect. 3.1) and to converge in the sense of �-convergence to the corresponding localized
counterparts as the kernel ρ approaches the Dirac delta function at 0 (Sect. 3.2). By passing to the limit in
the time-discretized problem as the time step goes to zero, one recovers the unique solution to the quasistatic
evolution system (Sect. 4). Such limit passage is made possible by the quadratic nature of the energy (Sect. 4.2).

The localization result is derived by applying the general theory of evolutive �-convergence for rate-
independent evolution from [24]. In particular, such possibility rests upon the �-convergence of the energies
and the specification of a recovery sequence for a suitable combination of energy and dissipation terms
(Sect. 4.3). This again crucially exploits the fact that energies are quadratic. The current peridynamic model
is hence consistent with classical localized elastoplasticity under localization.

2 Functional setup

We devote this section to presenting our assumptions and introducing some notations. In the following, we
will use lowercase bold letters for vectors in Rn and capitalized bold letters for tensors in Rn×n . In particular,
a · b is the standard scalar product. We use the symbol I for the identity, A : B = tr(A	B) for the standard
contraction product, |A|2 = A : A for the norm, and recall that an infinitesimal rigid displacement is a function
of the form x 
→ Sx + v with S ∈ R

n×n skew-symmetric and v ∈ R
n .

Let � ⊂ R
n (open, bounded and Lipschitz) be the reference configuration of the body. The state of the

medium is described by the pair (u,P), where u : �× (0, T ) → R
n is the displacement and P : �× (0, T ) →

R
n×n
s,d is the plastic strain. Here, T > 0 is a final reference time and R

n×n
s,d stands for the set of symmetric

trace-free (deviatoric) matrices, namely tr P(x, t) = 0. We also use the symbolR for the L2(�,Rn) subset of
infinitesimal rigid displacements in �. We will indicate by ‖ · ‖p the norm of any L p space on �.

Let an integral kernel ρ ∈ L1(Rn, [0,∞)) with ‖ρ‖1 = n be given. We also assume that ρ is radial and
ρ > 0 in some ball centered at the origin. We define for all (u,P) ∈ L2(�,Rn) × L2(�,Rn×n

s,d ) the quantities
D(u)(x, x′), E(u,P)(x, x′),Dρ(u)(x), and Eρ(u,P)(x) from (1.1)–(1.2) and (1.5)–(1.6) for a.e. x and x′ in �.
We can hence define the elastoplastic energy Fρ in (1.4) on the whole of L2(�,Rn) × L2(�,Rn×n

s,d ), possibly
taking the value ∞.

Note that, by Jensen’s (or Hölder’s) inequality,

Dρ(u)(x)2 ≤
∫

�

ρ(x′−x) dx′ p. v.
∫

�

ρ(x′−x)D(u)(x, x′)2 dx′

≤ n p. v.
∫

�

ρ(x′−x)D(u)(x, x′)2 dx′ for a.e. x ∈ �. (2.1)

In particular, we have thatDρ(u) ∈ L2(�) if
∫

�

∫
�

ρ(x′−x)D(u)(x, x′)2 dx′ dx < ∞.

Accordingly, we define

|u|Sρ
=

(∫
�

∫
�

ρ(x′−x)D(u)(x, x′)2 dx′ dx
)1/2

, ‖u‖Sρ
=

(
‖u‖22 + |u|2Sρ

)1/2
,

and the space
Sρ(�) = {

u ∈ L2(�,Rn) : |u|Sρ
< ∞}

.

It is immediate to see that |·|Sρ
is a seminorm and ‖·‖Sρ

is a norm in Sρ(�). In fact, Sρ(�) is a separable
Hilbert space, as shown in [20, Th. 2.1]. It was proved in [10, Lemma 2] that |u|Sρ

= 0 if and only if u ∈ R.
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In the following, we will impose homogeneous Dirichlet boundary conditions on u by asking the displace-
ment u to belong to the closed subspace V of L2(�,Rn) given by

V = {
u ∈ L2(�,Rn) : u = 0 a.e. in ω

}
,

where ω ⊂ � is a measurable subset with nonempty interior such that �\ω is Lipschitz. With this choice, it
is proved in [10] that V ∩ R = {0} so that (nonnull) infinitesimal rigid-body motions are ruled out; see also
[11,15].

Although we stick with this choice of V in the following, let us mention that other boundary conditions
can be considered as well. Nonhomogeneous Dirichlet conditions can be easily dealt with, and we refer to [10]
for some detail concerning Neumann conditions.

As in (2.1), by Jensen’s (or Hölder’s) inequality,

Eρ(u,P)(x)2 ≤ n p. v.
∫

�

ρ(x′−x)E(u,P)(x, x′)2 dx′ for a.e. x ∈ �. (2.2)

In addition, since

D(u)(x, x′) = E(u,P)(x, x′) + P(x)(x′−x) · (x′−x)
|x′−x|2 , a.e. x, x′ ∈ �, (2.3)

we also have the bounds

D(u)(x, x′)2 ≤ 2
(
E(u,P)(x, x′)2 + |P(x)|2)

and, hence,∫
�

∫
�

ρ(x′−x)D(u)(x, x′)2 dx′ dx ≤ 2
∫

�

∫
�

ρ(x′−x)E(u,P)(x, x′)2 dx′ dx + 2n
∫

�

|P(x)|2 dx. (2.4)

In view of (2.1), (2.2), and (2.4), we have that the elastoplastic energy Fρ(u,P) is finite in (u,P) ∈
L2(�,Rn) × L2(�,Rn×n

s,d ) if and only if
∫

�

∫
�

ρ(x′−x)E(u,P)(x, x′)2 dx′ dx < ∞.

Accordingly, we define

|(u,P)|Tρ
=

(∫
�

∫
�

ρ(x′−x)E(u,P)(x, x′)2 dx′ dx
)1/2

, ‖(u,P)‖Tρ
=

(
‖u‖22 + ‖P‖22 + |(u,P)|2Tρ

)1/2

and the space

Tρ(�) =
{
(u,P) ∈ L2(�,Rn) × L2(�,Rn×n

s,d ) : |(u,P)|Tρ
< ∞

}
.

It is easy to see that |·|Tρ
is a seminorm and ‖·‖Tρ

is a norm in Tρ(�). We have, in fact, the following result.

Lemma 2.1 We have that Tρ(�) = Sρ(�) × L2(�,Rn×n
s,d ), and the norm ‖·‖Tρ

is equivalent to the product

norm in Sρ(�) × L2(�,Rn×n
s,d ). In addition, Tρ(�) is a separable Hilbert space.

Proof By the triangle inequality,

|(u,P)|Tρ
≤ |(u, 0)|Tρ

+ |(0,P)|Tρ
= |u|Sρ

+ |(0,P)|Tρ
and |u|Sρ

= |(u, 0)|Tρ
≤ |(u,P)|Tρ

+ |(0,P)|Tρ
.

Now, |E(0,P)(x, x′)| ≤ |P(x)| for a.e. x, x′ ∈ �, so |(0,P)|2Tρ
≤ n‖P‖22. This shows the equivalence of norms.

Finally, Tρ(�) is a separable Hilbert space because so is Sρ(�) (see [20, Th. 2.1]). ��
For future reference, recall that the proof of Lemma 2.1 has shown that

|u|Sρ
≤ |(u,P)|Tρ

+ √
n‖P‖2 and |(u,P)|Tρ

≤ |u|Sρ
+ √

n‖P‖2. (2.5)

A crucial tool in the following is the nonlocal Korn inequality, which we take from [20, Prop. 2.7].
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Proposition 2.2 (Nonlocal Korn inequality) There exists C > 0 such that ‖u‖22 ≤ C |u|2Sρ
for all u ∈ V .

It is important to remark that the assumption that ρ is strictly positive near the origin is essential in
Proposition 2.2. Otherwise, the nonlocal Poincaré inequality can fail (see a counterexample in [1, Remark
6.20]) and consequently, so can the nonlocal Korn inequality.

The following result is proved in [19, Lemma 2.1] (see also [20, Eq. (15)]).

Lemma 2.3 There exists C > 0 such that for all u ∈ H1(�,Rn),

|u|2Sρ
≤ C n

∥∥∇su
∥∥2
2 .

We remark that the constant C in Lemma 2.3 does not depend on ρ.

3 Incremental problem

Let us now turn our attention to the incremental elastoplastic problem. Given the plastic strain Pold ∈
L2(�,Rn×n

s,d ), it consists in finding

(u,P) ∈ Q = V × L2(�,Rn×n
s,d )

that minimizes the incremental functional

Fρ(u,P) + H(P − Pold). (3.1)

In this sectionwe prove thewell-posedness of the incremental problem (Sect. 3.1) aswell as the convergence
of its solutions the solution of its local counterpart as δ → 0 (Sect. 3.2).

In order to possibly apply the direct method to the incremental problem (3.1), the coercivity of Fρ will be
instrumental. We check it in the following.

Lemma 3.1 (Coercivity of the energy) There exists c > 0 such that for all (u,P) ∈ Q,

Fρ(u,P) ≥ c‖(u,P)‖2Tρ
− 1

c
.

Proof Assume with no loss of generality that (u,P) ∈ Tρ . For any 0 < η < 1 we have

(
E(u,P)(x, x′) − 1

n
Eρ(u,P)(x)

)2

≥ (1 − η)E(u,P)(x, x′)2 − (η−1 − 1)
1

n2
Eρ(u,P)(x)2, (3.2)

for a.e. x, x′ ∈ �. On the other hand, thanks to (2.3) we have

Eρ(u,P)(x) = Dρ(u)(x) − p. v.
∫

�

ρ(x′−x)
P(x)(x′−x) · (x′−x)

|x′−x|2 dx′.

In fact,

p. v.
∫

�

ρ(x′−x)
P(x)(x′−x) · (x′−x)

|x′−x|2 dx′ =
∫

�

ρ(x′−x)
P(x)(x′−x) · (x′−x)

|x′−x|2 dx′

since ∣∣∣∣
∫

�

ρ(x′−x)
P(x)(x′−x) · (x′−x)

|x′−x|2 dx′
∣∣∣∣ ≤

∫
�

ρ(x′−x)dx′|P(x)| ≤ n|P(x)|.

Therefore, ∣∣Eρ(u,P)(x)
∣∣ ≤ ∣∣Dρ(u)(x)

∣∣ + n |P(x)| .
Consequently,

Eρ(u,P)(x)2 ≤ 2Dρ(u)(x)2 + 2n2 |P(x)|2 , ‖Eρ(u,P)‖22 ≤ 2‖Dρ(u)‖22 + 2n2‖P‖22
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and ∫
�

∫
�

ρ(x′−x)Eρ(u,P)(x)2 dx ≤ n
∥∥Eρ(u,P)

∥∥2
2 ≤ 2n‖Dρ(u)‖22 + 2n3‖P‖22. (3.3)

Therefore, by (3.2) and (3.3) we have
∫

�

∫
�

ρ(x′−x)
(
E(u,P)(x, x′) − 1

n
Eρ(u,P)(x)

)2

dx′dx

≥ (1 − η)|(u,P)|2Tρ
− (η−1 − 1)

2

n

(‖Dρ(u)‖22 + n2‖P‖22
)
. (3.4)

On the other hand, for any η1 > 0 we have that
∣∣∣∣
∫

�

b · u dx
∣∣∣∣ ≤ ‖b‖2‖u‖2 ≤ ‖b‖22

2η1
+ η1‖u‖22

2
. (3.5)

Using (3.4) and (3.5), we find that

Fρ(u,P) ≥
[
β − 2

n
α(η−1 − 1)

]
‖Dρ(u)‖22 + α(1 − η)|(u,P)|2Tρ

+ [
γ − 2n(η−1 − 1)

] ‖P‖22 − η1

2
‖u‖22 − 1

2η1
‖b‖22.

Choosing 0 < η < 1 such that

β − 2

n
α(η−1 − 1) ≥ 0 and γ − 2n(η−1 − 1) > 0,

we have that inequality

Fρ(u,P) ≥ c
(
|(u,P)|2Tρ

+ ‖P‖22
)

− η1

2
‖u‖22 − 1

2η1
‖b‖22 (3.6)

is proved for some c > 0. By Proposition 2.2 and estimate (2.5), we have

‖u‖22 ≤ C |u|2Sρ
≤ 2C

(
|(u,P)|2Tρ

+ n‖P‖22
)

≤ 2nC
(
|(u,P)|2Tρ

+ ‖P‖22
)

,

so
c

2

(
|(u,P)|2Tρ

+ ‖P‖22
)

+ c

2

(
|(u,P)|2Tρ

+ ‖P‖22
)

≥ c

2

(
|(u,P)|2Tρ

+ ‖P‖22
)

+ c

4nC
‖u‖22. (3.7)

Using (3.6) and (3.7) we obtain

Fρ(u,P) ≥ c

2

(
|(u,P)|2Tρ

+ ‖P‖22
)

+ c

4nC
‖u‖22 − η1

2
‖u‖22 − 1

2η1
‖b‖22.

Choosing η1 > 0 so that

c

4nC
− η1

2
> 0

we prove the estimate of the statement. ��
The semicontinuity of the second term of Fρ will ensue from the following control on the projected stress.

Lemma 3.2 (Projected stress control) The transformation Tρ that assigns each (u,P) to the map

(x, x′) 
→ ρ(x′−x)
1
2

[
E(u,P)(x, x′) − 1

n
Eρ(u,P)(x)

]

is linear and bounded from Tρ(�) to L2(�×�). Moreover, there exists C > 0, not depending on ρ, such that
for all (u,P) ∈ Tρ(�),

∥∥Tρ(u,P)
∥∥
L2(�×�)

≤ C |(u,P)|Tρ(�) .
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Proof The operators E and Eρ are clearly linear, and, hence, so is Tρ . The operator

(x, x′) 
→ ρ(x′−x)
1
2 E(u,P)(x, x′)

is bounded simply because
∫

�

∫
�

ρ(x′−x)E(u,P)(x, x′)2 dx′ dx = |(u,P)|2Tρ
.

Analogously, the operator

(x, x′) 
→ ρ(x′−x)
1
2Eρ(u,P)(x)

is bounded because, thanks to (2.2),∫
�

∫
�

ρ(x′−x)Eρ(u,P)(x)2 dx′ dx ≤ n
∫

�

Eρ(u,P)(x)2 dx ≤ n2|(u,P)|2Tρ
.

This concludes the proof. ��

3.1 Well-posedness of the incremental problem

A key feature of the energy functional Fρ is its strict convexity, which delivers the existence and uniqueness
of minimizers.

Proposition 3.3 (Strict convexity of Fρ) The functional Fρ is strictly convex in (V ∩ Sρ) × L2(�,Rn×n
s,d ).

Proof The operators Dρ and Tρ (see Lemma 3.2) are linear, which readily implies that Fρ is convex. Let
(u1,P1), (u2,P2) ∈ (V ∩ Sρ) × L2(�,Rn×n

s,d ) and λ ∈ (0, 1) satisfy

Fρ(λ(u1,P1) + (1 − λ)(u2,P2)) = λFρ(u1,P1) + (1 − λ)Fρ(u2,P2).

Since the norms in L2(�,Rn×n
s,d ) and in L2(� × �) are strictly convex, we find that P1 = P2 a.e. and

Tρ(u1,P1) = Tρ(u2,P2) a.e. Calling v = u1 − u2, we infer that v ∈ V and Tρ(v, 0) = 0. Thus, |v|Sρ
= 0,

so, by Proposition 2.2, v = 0 and, hence, u1 = u2 a.e. ��
Theorem 3.4 (Well-posedness of the incremental problem) Let Pold ∈ L2(�,Rn×n

s,d ) be given. Then there
exists a unique minimizer of (u,P) 
→ Fρ(u,P) + H(P−Pold) in Q.

Proof Call Gρ : Q → R∪{∞} the functionGρ(u,P) = Fρ(u,P)+H(P−Pold). By Lemma 2.1, it is enough
to show existence and uniqueness of minimizers of Gρ in (V ∩ Sρ) × L2(�,Rn×n

s,d ). (Recall that Fρ = ∞
if u /∈ Sρ .) By Lemma 3.1, Gρ is bounded from below, so it admits a minimizing sequence {(u j ,P j )} j∈N in
(V ∩ Sρ) × L2(�,Rn×n

s,d ). By Lemma 3.1 again, {(u j ,P j )} j∈N is bounded in Tρ . By Lemma 2.1, {u j } j∈N
is bounded in Sρ and {P j } j∈N is bounded in L2(�;Rn×n

s,d ). As V is a closed subspace of L2(�,Rn), it is

also a closed subspace of Sρ . Therefore, there exists (u0,P0) ∈ (V ∩ Sρ) × L2(�,Rn×n
s,d ) such that, for a

subsequence (not relabeled), u j ⇀ u0 in Sρ and P j ⇀ P0 in L2(�,Rn×n
s,d ) as j → ∞.

Bound (2.2) tells us that Eρ is a linear bounded operator from Tρ to L2(�). Having in mind that D(u) =
E(u, 0) and Dρ(u) = Eρ(u, 0), we obtain that the operator Dρ : Sρ → L2(�) is linear and bounded. By
Lemma3.2, themap Tρ defined therein is linear and bounded.Altogether,Gρ is the sumof continuous functions
with respect to the strong topology of Sρ × L2(�,Rn×n

s,d ). On the other hand, thanks to Proposition 3.3, Gρ

is strictly convex as a sum of the strictly convex function Fρ and the convex function (u,P) 
→ H(P−Pold).
Consequently, Gρ is lower semicontinuous with respect to the weak topology of Sρ × L2(�,Rn×n

s,d ). Thus,

Gρ(u0,P0) ≤ lim inf
j→∞ Gρ(u j ,P j )

and, hence, (u0,P0) is a minimizer of Gρ . The uniqueness of minimizers is an immediate consequence of the
strict convexity of Gρ . ��
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3.2 Localization limit

We shall now check that, as ρ tends to the Dirac delta function at 0, the unique solution (uδ,Pδ) of the nonlocal
incremental problem (3.1) converges to the unique solution of the incremental problem for local classical
linearized elastoplasticity. To this aim, let us specify that the local elastoplastic energy F0 : Q → R ∪ {∞} is
given by

F0(u,P) =β

∫
�

div u(x)2 dx + α n
∫

�

−
∫
Sn−1

(
(∇u(x) − P(x))z · z − 1

n
div u(x)

)2

dHn−1(z) dx

−
∫

�

b(x) · u(x) dx + γ

∫
�

|P(x)|2 dx

= λ

2

∫
�

div u(x)2 dx + μ

∫
�

|∇su(x) − P(x)|2 dx −
∫

�

b(x) · u(x) dx + γ

∫
�

|P(x)|2 dx

for u ∈ H1(�,Rn), and F0(u,P) = ∞ otherwise. The numbers λ,μ are given by (1.3). Correspondingly, the
local incremental elastoplastic problem reads as follows: Given the previous plastic strain Pold ∈ L2(�,Rn×n

s,d )
find (u,P) ∈ Q minimizing

F0(u,P) + H(P−Pold). (3.8)

The proof of existence and uniqueness of the minimizer (u,P) ∈ (V ∩ H1(�,Rn)) × L2(�,Rn×n
s,d ) is

standard.
We start by computing the �-limit of the functional Fδ as ρ tends to the Dirac delta function at 0 [7,8].

The precise assumptions of the family of kernels {ρδ}δ>0 ⊂ L1(Rn, [0, ∞)) with ‖ρδ‖1 = n are as follows:
Each ρδ is radial, i.e., there exists ρ̄δ : [0,∞) → [0,∞) such that ρδ(x) = ρ̄δ(|x|); moreover,

the map (0,∞) � r 
→ r−2ρ̄δ(r) is decreasing, (3.9)

and lim
δ→0

∫
Rn\B(0,r)

ρδ(x) dx = 0 for all r > 0. (3.10)

This set of assumptions (or a slight variant of it) is typical in the analysis of the convergence from a nonlocal
functional to a local one; see [5,6,20,25,26]. For ease of notation, in the following the subscript ρ used in the
previous sections in Fρ ,Dρ , Eρ , Tρ and so on is replaced by the subscript δ, meaning that the kernel involved
is ρδ .

In this section we prove the �-convergence of Fδ to F0 as δ → 0 in L2(�,Rn) × L2(�,Rn×n
s,d ) endowed

with the strong topology in L2(�,Rn) and theweak topology in L2(�,Rn×n
s,d ), or, equivalently, in H1(�,Rn)×

L2(�,Rn×n
s,d ) endowed with the weak topology.

First, we show that Eδ(u,P) is an approximation of div u.

Lemma 3.5 (Convergence of the divergence) Let u ∈ H1(�,Rn) and P ∈ L2(�,Rn×n
s,d ). The following hold:

a) Eδ(u,P) → div u as δ → 0 in L2(�).
b) For each δ > 0 let uδ ∈ L2(�,Rn) and Pδ ∈ L2(�,Rn×n

s,d ). Assume uδ → u in L2(�,Rn) and Pδ ⇀ P
in L2(�,Rn×n

s,d ) as δ → 0. Suppose further that supδ>0 |uδ|Sδ
< ∞. Then Eδ(uδ,Pδ) ⇀ div u as δ → 0

in L2(�).

Proof We start with a). For each δ > 0 we define the operator Pδ : L2(�,Rn×n
s,d ) → L2(�) by

Pδ(P)(x) =
∫

�

ρδ(x′ − x)
P(x)(x′ − x) · (x′ − x)

|x′ − x|2 dx′, a.e. x ∈ �.

Clearly, we have
Eδ(u,P) = Dδ(u) − Pδ(P). (3.11)

It was proved in [20, Lemma 3.1] thatDδ(u) → div u in L2(�) as δ → 0. We shall show thatPδ(P) → 0 in
L2(�). We can express, for a.e. x ∈ �,

Pδ(P)(x) =
∫

�−x
ρδ(x̃)

P(x)x̃ · x̃
|x̃|2 dx̃, (3.12)
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so
|Pδ(P)(x)| ≤ n |P(x)| . (3.13)

Now let A ⊂⊂ � and let 0 < r < dist(A, ∂�). Note that B(0, r) ⊂ � − x for any x ∈ A. By (3.12) and
Lemma A.2, we have, for a.e. x ∈ A,

Pδ(P)(x) =
∫

(�−x)\B(0,r)
ρδ(x̃)

P(x)x̃ · x̃
|x̃|2 dx̃,

so

|Pδ(P)(x)| ≤
∫
Rn\B(0,r)

ρδ(x̃) dx̃ |P(x)|

and, consequently, ∫
A
Pδ(P)(x)2 dx ≤

(∫
Rn\B(0,r)

ρδ(x̃) dx̃
)2

‖P‖22 . (3.14)

Thanks to (3.10), we obtain that Pδ(P) → 0 in L2(A) as δ → 0. Now, bound (3.13) implies that the family
{Pδ(P)2}δ>0 is equiintegrable, so in fact Pδ(P) → 0 in L2(�) as δ → 0.

Now we show b). In [20, Lemma 3.6] it was proved that Dδ(uδ) ⇀ div u in L2(�) as δ → 0. Thanks to
(3.11), it remains to show thatPδ(Pδ) ⇀ 0 in L2(�), and for this we will show that {Pδ(Pδ)}δ>0 is bounded
in L2(�) and that Pδ(Pδ) → 0 in L2

loc(�).
Let δ > 0. Thanks to (3.13) we have |Pδ(Pδ)| ≤ n |Pδ|, so {Pδ(Pδ)}δ>0 is bounded in L2(�). Now let

A ⊂⊂ � and let 0 < r < dist(A, ∂�). By (3.14) we have that

∫
A
Pδ(Pδ)(x)2 dx ≤

(∫
Rn\B(0,r)

ρδ(x̃) dx̃
)2

‖Pδ‖22 .

Using (3.10) and the fact that {Pδ}δ>0 is bounded in L2(�,Rn×n), we conclude that Pδ(Pδ) → 0 in L2(A)
as δ → 0, which finishes the proof. ��

As a preparation for the �-limit Fδ → F as δ → 0, we start with the pointwise limit.

Proposition 3.6 (Pointwise convergence of Fδ) Let u ∈ H1(�,Rn) and P ∈ L2(�,Rn×n
s,d ). Then

lim
δ→0

Fδ(u,P) = F0(u,P).

Proof Obviously, we only have to show that

lim
δ→0

∫
�

Dδ(u)(x)2 dx =
∫

�

div u(x)2 dx (3.15)

and

lim
δ→0

∫
�

∫
�

ρδ(x′−x)
(
E(u,P)(x, x′) − 1

n
Eδ(u,P)(x)

)2

dx′ dx

= n
∫

�

−
∫
Sn−1

(
(∇u(x) − P(x))z · z − 1

n
div u(x)

)2

dHn−1(z) dx. (3.16)

As mentioned in Lemma 3.5, the limitDδ(u) → div u in L2(�) as δ → 0 was shown in [20, Lemma 3.1], so
we have equality (3.15).

We divide the proof of (3.16) in two steps, according to the regularity of u and P.
Step 1 We assume additionally that u ∈ C1(�̄,Rn) and P ∈ C(�̄,Rn×n

s,d ).

Since u ∈ C1(�̄,Rn), there exists an increasing bounded function σ : [0,∞) → [0,∞) with

lim
t→0

σ(t) = 0 (3.17)
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such that for all x, x′ ∈ �,
∣∣∇u(x′) − ∇u(x)

∣∣ ≤ σ(|x′−x|).
As � is a Lipschitz domain, a standard result shows that there exists c ≥ 1 such that for all x, x′ ∈ �, we have

∣∣u(x′) − u(x)
∣∣ ≤ c ‖∇u‖∞

∣∣x′−x
∣∣ (3.18)

and
∣∣u(x′) − u(x) − ∇u(x)(x′−x)

∣∣ ≤ |x′−x|c σ(|x′−x|).
For simplicity of notation, we relabel c σ as σ and, hence, assume that for all x, x′ ∈ �,

∣∣u(x′) − u(x) − ∇u(x)(x′−x)
∣∣ ≤ |x′−x|σ(|x′−x|). (3.19)

Note that (3.18) implies that ∣∣E(u,P)(x, x′)
∣∣ ≤ c ‖∇u‖∞ + ‖P‖∞ . (3.20)

Now we show that

lim
δ→0

∫
�

∫
�

ρδ(x′−x)

[(
E(u,P)(x, x′) − 1

n
Eδ(u,P)(x)

)2

−
(
E(u,P)(x, x′) − 1

n
div u(x)

)2
]
dx′ dx = 0.

(3.21)
We have∣∣∣∣∣

∫
�

∫
�

ρδ(x′−x)

[(
E(u,P)(x, x′) − 1

n
Eδ(u,P)(x)

)2

−
(
E(u,P)(x, x′) − 1

n
div u(x)

)2
]
dx′ dx

∣∣∣∣∣
= 1

n2

∣∣∣∣
∫

�

∫
�

ρδ(x′−x) (div u(x) − Eδ(u,P)(x))
(
2n2E(u,P)(x, x′) − Eδ(u,P)(x) − div u(x)

)
dx′ dx

∣∣∣∣

≤ 1

n2

(∫
�

∫
�

ρδ(x′−x) (div u(x) − Eδ(u,P)(x))2 dx′ dx
) 1

2

×
(∫

�

∫
�

ρδ(x′−x)
(
2n2E(u,P)(x, x′) − Eδ(u,P)(x) − div u(x)

)2
dx′ dx

) 1
2

.

Thanks to (2.2) and (3.20), the second term of the right-hand side is bounded by a constant times

‖∇u‖∞ + ‖P‖∞ ,

while the first term tends to zero as δ → 0 thanks to Lemma 3.5. Thus, limit (3.21) is proved.
Now we show

lim
δ→0

∫
�

∫
�

ρδ(x′−x)

[(
E(u,P)(x, x′) − 1

n
div u(x)

)2
]
dx′ dx

= n
∫

�

−
∫
Sn−1

(
(∇u(x) − P(x))z · z − 1

n
div u(x)

)2

dHn−1(z) dx. (3.22)

We express
∫

�

∫
�

ρδ(x′−x)E(u,P)(x, x′)2 dx′ dx

=
∫

�

∫
�

ρδ(x′−x)
(

(∇u(x) − P(x))(x′−x) · (x′−x)
|x′−x|2

)2

dx′ dx +
∫

�

∫
�

ρδ(x′−x)C(x, x′) dx′ dx (3.23)
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with

C(x, x′) =
(
u(x′) − u(x) − ∇u(x)(x′−x)

) · (x′−x)

|x′−x|2

×
((

u(x′) − u(x) − ∇u(x)(x′−x)
) · (x′−x)

|x′−x|2 + 2
(∇u(x) − P(x))(x′−x) · (x′−x)

|x′−x|2
)

.

We have, thanks to (3.19),

|C(x, x′)| ≤ σ(|x′−x|) (‖σ‖∞ + 2‖∇u‖∞ + 2‖P‖∞) ,

so for a.e. x ∈ �,∣∣∣∣
∫

�

ρδ(x′−x)C(x, x′) dx′
∣∣∣∣ ≤ (‖σ‖∞ + 2‖∇u‖∞ + 2‖P‖∞)

∫
�−x

ρδ(x̃) σ (|x̃|) dx̃ (3.24)

and, for any r > 0,∫
�−x

ρδ(x̃) σ (|x̃|) dx̃ dx ≤
∫
Rn

ρδ(x̃) σ (|x̃|) dx̃ ≤ nσ(r) + ‖σ‖∞
∫
Rn\B(0,r)

ρδ(x̃) dx̃. (3.25)

Bounds (3.24) and (3.25), as well as properties (3.10) and (3.17), imply that

lim
δ→0

∫
�

∫
�

ρδ(x′−x)C(x, x′) dx′ dx = 0. (3.26)

Now let A ⊂⊂ � be measurable and 0 < r < dist(A, ∂�). Then, for any x ∈ A,
∫

�

ρδ(x′−x)
(

(∇u(x) − P(x))(x′−x) · (x′−x)
|x′−x|2

)2

dx′

=
[∫

B(0,r)
+

∫
(�−x)\B(0,r)

]
ρδ(x̃)

(
(∇u(x) − P(x))x̃ · x̃

|x̃|2
)2

dx̃, (3.27)

with, thanks to Lemma A.2,
∫
B(0,r)

ρδ(x̃)
(

(∇u(x) − P(x))x̃ · x̃
|x̃|2

)2

dx̃ =
∫
B(0,r)

ρδ(x̃) dx̃ −
∫
Sn−1

((∇u(x) − P(x))z · z)2 dHn−1(z) (3.28)

and ∣∣∣∣∣
∫

(�−x)\B(0,r)
ρδ(x̃)

(
(∇u(x) − P(x))x̃ · x̃

|x̃|2
)2

dx̃

∣∣∣∣∣ ≤ 2
(‖∇u‖2∞ + ‖P‖2∞

) ∫
Rn\B(0,r)

ρδ(x̃) dx̃. (3.29)

Note that bound (3.20) implies that the family of functions

x 
→
∫

�

ρδ(x′−x)E(u,P)(x, x′)2 dx′

is equiintegrable in � for δ > 0. Hence, property (3.10), together with bound (3.29) and equalities (3.27)–
(3.28), shows that

lim
δ→0

∫
�

∫
�

ρδ(x′−x)
(

(∇u(x) − P(x))(x′−x) · (x′−x)
|x′−x|2

)2

dx′ dx

= n
∫

�

−
∫
Sn−1

((∇u(x) − P(x))z · z)2 dHn−1(z) dx,

which, together with (3.23) and (3.26), implies

lim
δ→0

∫
�

∫
�

ρδ(x′−x)E(u,P)(x, x′)2 dx′ dx = n
∫

�

−
∫
Sn−1

((∇u(x) − P(x))z · z)2 dHn−1(z) dx. (3.30)
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Now we express∫
�

∫
�

ρδ(x′−x)E(u,P)(x, x′) div u(x)dx′ dx

=
∫

�

∫
�

ρδ(x′−x)
(∇u(x) − P(x))(x′−x) · (x′−x)

|x′−x|2 div u(x) dx′ dx +
∫

�

∫
�

ρδ(x′−x)B(x, x′) dx′ dx

(3.31)

with

B(x, x′) =
(
u(x′) − u(x) − ∇u(x)(x′−x)

) · (x′−x)

|x′−x|2 div u(x).

We have, thanks to (3.19),

|B(x, x′)| ≤ σ(|x′−x|)‖ div u‖∞.

An analogous reasoning to that of (3.24), (3.25), and (3.26) leads to

lim
δ→0

∫
�

∫
�

ρδ(x′−x)B(x, x′) dx′ dx = 0. (3.32)

Now let A ⊂⊂ � be measurable and 0 < r < dist(A, ∂�). Then, for any x ∈ A,
∫

�

ρδ(x′−x)
(∇u(x) − P(x))(x′−x) · (x′−x)

|x′−x|2 div u(x) dx′

=
[∫

B(0,r)
+

∫
(�−x)\B(0,r)

]
ρδ(x̃)

(∇u(x) − P(x))x̃ · x̃
|x̃|2 div u(x) dx̃, (3.33)

with, thanks to Lemma A.2,∫
B(0,r)

ρδ(x̃)
(∇u(x) − P(x))x̃ · x̃

|x̃|2 div u(x) dx̃ =
∫
B(0,r)

ρδ(x̃) dx̃ −
∫
Sn−1

(∇u(x) − P(x))z · z div u(x) dHn−1(z)

(3.34)
and∣∣∣∣

∫
(�−x)\B(0,r)

ρδ(x̃)
(∇u(x) − P(x))x̃ · x̃

|x̃|2 div u(x) dx̃

∣∣∣∣ ≤ ‖ div u‖∞ (‖∇u‖∞ + ‖P‖∞)

∫
Rn\B(0,r)

ρδ(x̃) dx̃.

(3.35)
Note that bound (3.20) implies that the family of functions

x 
→
∫

�

ρδ(x′−x)E(u,P)(x, x′) div u(x) dx′

is equiintegrable in � for δ > 0. Hence, property (3.10), together with bound (3.35) and equalities (3.33)–
(3.34), shows that

lim
δ→0

∫
�

∫
�

ρδ(x′−x)
(∇u(x) − P(x))(x′−x) · (x′−x)

|x′−x|2 div u(x) dx′ dx

= n
∫

�

−
∫
Sn−1

(∇u(x) − P(x))z · z dHn−1(z) div u(x) dx,

which, together with (3.31) and (3.32), implies

lim
δ→0

∫
�

∫
�

ρδ(x′−x)E(u,P)(x, x′) div u(x) dx′ dx = n
∫

�

−
∫
Sn−1

(∇u(x) − P(x))z · z dHn−1(z) div u(x) dx.

(3.36)
Now let A ⊂⊂ � be measurable and 0 < r < dist(A, ∂�). Then, for any x ∈ A,

∫
�

ρδ(x′−x) div u(x)2 dx′ =
[∫

B(0,r)
+

∫
(�−x)\B(0,r)

]
ρδ(x̃) div u(x)2 dx̃, (3.37)
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with ∣∣∣∣
∫

(�−x)\B(0,r)
ρδ(x̃) div u(x)2 dx̃

∣∣∣∣ ≤ ‖ div u‖2∞
∫
Rn\B(0,r)

ρδ(x̃) dx̃. (3.38)

Note that the bound ∫
�

ρδ(x′−x) div u(x)2 dx′ ≤ n‖ div u‖2∞
implies that the family of functions

x 
→
∫

�

ρδ(x′−x) div u(x)2 dx′

is equiintegrable in � for δ > 0. Hence, property (3.10), together with bound (3.38) and equality (3.37) show
that

lim
δ→0

∫
�

∫
�

ρδ(x′−x) div u(x)2 dx′ dx = n
∫

�

div u(x)2 dx, (3.39)

Equalities (3.30), (3.36), and (3.39) show (3.22), while (3.22) and (3.21) yield (3.16) and complete the
proof of this step.

Step 2 Now we just assume u ∈ H1(�,Rn) and P ∈ L2(�,Rn×n
s,d ), as in the statement. Let ε > 0, and let

ū ∈ C1(�̄,Rn) and P̄ ∈ C(�̄,Rn×n
s,d ) be such that

‖ū − u‖H1 ≤ ε and
∥∥P̄ − P

∥∥
2 ≤ ε.

This is possible since Rn×n
s,d is a subspace of Rn×n .

Now, consider Lemma 3.2 and the operator defined therein, which we call Tδ in order to underline
the dependence on δ. By Lemmas 2.1, 3.2, and 2.3 there exists C > 0 independent of δ such that
‖Tδ(v,Q)‖L2(�×�) ≤ C

(‖v‖H1 + ‖Q‖2
)
for all v ∈ H1(�,Rn) and Q ∈ L2(�,Rn×n

s,d ). Then,

∣∣∣∣∣
∫

�

∫
�

ρδ(x′−x)

[(
E(ū, P̄)(x, x′) − 1

n
Eδ(ū, P̄)(x)

)2

−
(
E(u,P)(x, x′) − 1

n
Eδ(u,P)(x)

)2
]
dx′ dx

∣∣∣∣∣
=

∣∣∣∥∥Tδ(ū, P̄)
∥∥2
L2(�×�)

− ‖Tδ(u,P)‖2L2(�×�)

∣∣∣ ≤ ∥∥Tδ(ū − u, P̄ − P)
∥∥
L2(�×�)

∥∥Tδ(ū + u, P̄ + P)
∥∥
L2(�×�)

≤ 4C2 ε
(
ε + ‖u‖H1 + ‖P‖2

)
.

This concludes the proof. ��
Lemma 3.7 (Convergence of Fδ along smooth sequences) Let A ⊂ � be a Lipschitz domain. For each δ > 0
let uδ,u ∈ C1( Ā,Rn), Pδ,P ∈ C( Ā,Rn×n

s,d ) and dδ ∈ C( Ā) satisfy

uδ → u in C1( Ā,Rn), Pδ → P in C( Ā,Rn×n
s,d ), and dδ → div u in C( Ā) as δ → 0.

Then

lim
δ→0

∫
A

∫
A

ρδ(x′−x)
(
E(uδ,Pδ)(x, x′) − dδ(x)

)2 dx′ dx

= n
∫
A

−
∫
Sn−1

((∇u(x) − P(x)) z · z − div u(x))2 dHn−1(z) dx.

Proof We have

(E(uδ,Pδ) − dδ))
2 − (E(u,P) − div u)2 = [E(uδ − u,Pδ − P) + div u − dδ] [E(uδ + u,Pδ + P) − dδ − div u] .

We now use estimates (3.20) to infer that

lim
δ→0

∥∥(E(uδ,Pδ) − dδ)
2 − (E(u,P) − div u)2

∥∥∞ = 0.
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Then, by uniform convergence and equality (3.16) we conclude

lim
δ→0

∫
A

∫
A

ρδ(x′−x)
(
E(uδ,Pδ)(x, x′) − dδ(x)

)2 dx′ dx

= lim
δ→0

∫
A

∫
A

ρδ(x′−x)
(
E(u,P)(x, x′) − div u(x)

)2 dx′ dx

= n
∫
A

−
∫
Sn−1

((∇u(x) − P(x)) z · z − div u(x))2 dHn−1(z) dx,

as desired. ��
The following nonlocal Korn inequality of [20, Lemma 4.4], with a constant independent of δ, is essential

in the proof of the �-convergence.

Proposition 3.8 (Uniform nonlocal Korn inequality) Let {ρδ}δ>0 be a family of kernels satisfying (3.9)–(3.10).
Then there exist C > 0 and δ0 > 0 such that for all 0 < δ < δ0 and u ∈ V ∩ Sδ(�),

‖u‖22 ≤ C |u|2Sδ
.

With Proposition 3.8 at hand, we can show the following coercivity bound for Fδ .

Lemma 3.9 (Uniform coercivity of the energy) Let {ρδ}δ>0 be a family of kernels satisfying (3.9)–(3.10).
Then there exist c > 0 and δ0 > 0 such that for all 0 < δ < δ0 and (u,P) ∈ (V ∩ Sδ(�)) × L2(�,Rn×n

s,d ),

Fδ(u,P) ≥ c‖(u,P)‖2Tδ
− 1

c
.

Proof We repeat the proof of Lemma 3.1 until (3.6): We then find that there exists c1 > 0 such that for all
δ > 0, all (u,P) ∈ Tδ , and all η > 0,

Fδ(u,P) ≥ c1
(
|(u,P)|2Tδ

+ ‖P‖22
)

+ c1
(
|(u,P)|2Tδ

+ ‖P‖22
)

− η

2
‖u‖22 − 1

2η
‖b‖22.

By Proposition 3.8 and estimate (2.5), there exist C > 0 and δ0 > 0 such that for all 0 < δ < δ0,

‖u‖22 ≤ C |u|2Sδ
≤ 2nC

(
|(u,P)|2Tδ

+ ‖P‖22
)

.

Putting together both inequalities, we find that

Fδ(u,P) ≥ c1
(
|(u,P)|2Tδ

+ ‖P‖22
)

+
( c1
2nC

− η

2

)
‖u‖22 − 1

2η
‖b‖22.

Choosing η > 0 such that

c1
2nC

− η

2
> 0

concludes the proof. ��
We present the fundamental compactness result of [20, Prop. 4.2].

Proposition 3.10 (Compactness). Let {ρδ}δ>0 be a sequence of kernels satisfying (3.9)–(3.10). Let {uδ}δ>0 be
a sequence in L2(�,Rn) satisfying

sup
δ>0

‖uδ‖Sδ
< ∞.

Then there exists a decreasing sequence δ j → 0 and a u ∈ L2(�,Rn) such that uδ j → u in L2(�,Rn).
Moreover, for any such sequence and any such u we have that u ∈ H1(�,Rn).

We now have all ingredients to prove the�-limit result. As usual, we divide it into three parts: compactness,
lower bound, and upper bound. We label the sequences with δ, the same parameter of Fδ , and, of course, it is
implicit that δ → 0.
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Theorem 3.11 (�-convergence of the energy) Let Vδ = (V ∩ Sδ) × L2(�,Rn×n
s,d ).

a) Let (uδ,Pδ) ∈ Vδ satisfy supδ Fδ(uδ,Pδ) < ∞. Then there exists (u,P) ∈ H1(�,Rn) × L2(�,Rn×n
s,d )

such that, for a subsequence, uδ → u in L2(�,Rn) and Pδ ⇀ P in L2(�,Rn×n
s,d ).

b) Let (uδ,Pδ) ∈ Vδ and (u,P) ∈ H1(�,Rn) × L2(�,Rn×n
s,d ) satisfy uδ → u in L2(�,Rn) and Pδ ⇀ P

in L2(�,Rn×n
s,d ). Then

F0(u,P) ≤ lim inf
δ→0

Fδ(uδ,Pδ).

c) Let (u,P) ∈ (V ∩ H1(�,Rn)) × L2(�,Rn×n
s,d ). Then for each δ there exists (uδ,Pδ) ∈ Vδ such that

F0(u,P) = lim
δ→0

Fδ(uδ,Pδ).

Proof Part (a). By Lemma 3.9, the set {‖(u,P)‖2Tδ
}δ>0 is bounded. We then apply Proposition 3.10 to find the

existence of u, and the boundedness of {Pδ}δ>0 in L2(�,Rn×n
s,d ) for the existence of P.

Part b). Clearly,

‖P‖22 ≤ lim inf
δ→0

‖Pδ‖22 and lim
δ→0

∫
�

b(x) · uδ(x) dx =
∫

�

b(x) · u(x) dx.

Moreover, as mentioned in Lemma 3.5, it was proved in [20, Lemma 3.6] that Dδ(uδ) ⇀ div u in L2(�) as
δ → 0, so ‖ div u‖22 ≤ lim infδ ‖Dδ(uδ)‖22. Hence, we are left to the analysis of the remaining term.

Let {ϕr }r>0 be the family of mollifiers defined in Appendix A. Let A ⊂⊂ � be a Lipschitz domain, and
let 0 < r < dist(A, ∂�). By Lemma A.1,

∫
A

∫
A

ρδ(x−x′)
(
E(ϕr � uδ, ϕr � Pδ)(x, x′) − 1

n
ϕr � Eδ(uδ,Pδ)(x)

)2

dx′ dx

≤
∫

�

∫
�

ρδ(x−x′)
(
E(uδ,Pδ)(x, x′) − 1

n
Eδ(uδ,Pδ)(x)

)2

dx′ dx. (3.40)

Call ur = ϕr � u and Pr = ϕr �P. Standard properties of mollifiers show that ϕr � uδ → ur in C1( Ā,Rn) and
ϕr � Pδ,r → Pr in C( Ā,Rn×n

s,d ) as δ → 0. Using also Lemma 3.5, we find that ϕr � Eδ(uδ,Pδ) → div ur in
C( Ā) as δ → 0. Thus, letting δ → 0 in (3.40) and using Lemma 3.7, we obtain

n
∫
A

−
∫
Sn−1

(
(∇ur (x) − Pr (x)) z · z − 1

n
div ur (x)

)2

dHn−1(z) dx

≤ lim inf
δ→0

∫
�

∫
�

ρδ(x′−x)
(
E(uδ,Pδ)(x, x′) − 1

n
Eδ(uδ,Pδ)(x)

)2

dx′ dx. (3.41)

Again, standard properties of mollifiers show that ∇ur → ∇u in L2(A,Rn×n) and a.e., and Pr → P in
L2(A,Rn×n

s,d ) and a.e., as r → 0. We then let r → 0 and apply dominated convergence in (3.41) to get

n
∫
A

−
∫
Sn−1

(
(∇u(x) − P(x))z · z − 1

n
div u(x)

)2

dHn−1(z) dx

≤ lim inf
δ→0

∫
�

∫
�

ρδ(x′−x)
(
E(uδ,Pδ)(x, x′) − 1

n
Eδ(uδ,Pδ)(x)

)2

dx′ dx. (3.42)

Finally, we send A ↗ � and use monotone convergence in (3.42) to obtain

n
∫

�

−
∫
Sn−1

(
(∇u(x) − P(x))z · z − 1

n
div u(x)

)2

dHn−1(z) dx

≤ lim inf
δ→0

∫
�

∫
�

ρδ(x′−x)
(
E(uδ,Pδ)(x, x′) − 1

n
Eδ(uδ,Pδ)(x)

)2

dx′ dx.

Part c). This follows from Proposition 3.6 by taking (uδ,Pδ) = (u,P). ��
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We are now ready to present the small-horizon convergence result for the incremental problem.

Corollary 3.12 (Convergence to the local incremental problem)LetPold ∈ L2(�,Rn×n
s,d ) be given and (uδ,Pδ)

be the solution of the nonlocal incremental problem (3.1). Then (uδ,Pδ) → (u0,P0) with the respect to the
strong × weak topology in Q, where (u0,P0) ∈ (V ∩ H1(�,Rn)) × L2(�,Rn×n

s,d ) is the solution of the local
incremental problem (3.8).

Proof For each δ > 0 we have

Fδ(uδ,Pδ) + H(Pδ − Pold) ≤ Fδ(u0,P0) + H(P0 − Pold),

so by Proposition 3.6, supδ>0 Fδ(uδ,Pδ) < ∞. By Theorem 3.11, the sequence (uδ,Pδ) is precompact in the
strong × weak topology in Q. Thus, one is left to prove the �-convergence of Fδ + H(·−Pold) as δ → 0.
The �-lim inf follows from the �-convergence of Fδ in Theorem 3.11 as H is independent of δ and lower
semicontinuous. The existence of a recovery sequence follows by pointwise convergence: See Proposition 3.6.
��

4 Quasistatic evolution

Assume now that the body force b depends on time, namely let b ∈ W 1,1(0, T ; L2(�;Rn)). Correspondingly,
without introducing new notation, we indicate the time-dependent (complementary) energy of the medium via
Fρ : Q × [0, T ] → R ∪ {∞} given by

Fρ(u,P, t) = β

∫
�

Dρ(u)(x)2 dx + α

∫
�

∫
�

ρ(x′−x)
(
E(u,P)(x, x′) − 1

n
Eρ(u,P)(x)

)2

dx′ dx

+ γ

∫
�

|P(x)|2 dx −
∫

�

b(x, t) · u(x) dx.

Note that boundary conditions could be taken to be time dependent as well by letting u − uDir(t) ∈ V , where
uDir(t) is given. This would originate an additional time-dependent linear term in the energy. We, however,
stick to the time-independent condition u ∈ V , for the sake of simplicity.

The quasistatic elastoplastic evolution of the medium (1.7)–(1.8) can be then specified as

∂uFρ(u(t),P(t), t) = 0 in S∗
ρ, (4.1)

∂ṖH(Ṗ(t)) + ∂PFρ(u(t),P(t), t) � 0 in L2(�;Rn×n
s,d ). (4.2)

We have denoted by S∗
ρ the dual of Sρ . In particular, relation (4.2) is a pointwise-in-time inclusion in

L2(�,Rn×n
s,d ).

System (4.1)–(4.2) can be made more explicit by introducing the bilinear form Bρ associated with the
quadratic part of Fρ , namely

Bρ((u,P), (v,Q)) = β

∫
�

Dδ(u)(x)Dδ(v)(x) dx

+ α

∫
�

∫
�

ρ(x−x′)
(
E(u,P)(x, x′) − 1

n
Eρ(u,P)(x)

) (
E(v,Q)(x, x′) − 1

n
Eρ(v,Q)(x)

)
dx′ dx

+ γ

∫
A
P(x) : Q(x) dx.

Making use of Bρ one can equivalently rewrite (4.1)–(4.2) as the nonlocal system

2Bρ((u(t),P(t)), (v, 0)) =
∫

�

b(x, t) · v(x) dx ∀v ∈ Sρ,

2Bρ((u(t),P(t)), (0, Ṗ(t) − w)) ≤
∫

�

σy |w(x)| dx −
∫

�

σy |Ṗ(x, t)| dx ∀w ∈ L2(�;Rn×n
s,d ).
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The quasistatic elastoplastic evolution problem consists in finding a strong (in time) solution to system
(4.1)–(4.2), starting from the initial state (u,P) ∈ (V ∩ Sρ) × L2(�,Rn×n

s,d ). We equivalently reformulate the
problem in energetic terms as that of finding quasistatic evolution trajectories (uρ,Pρ) : [0, T ] → Q such
that, for all t ∈ [0, T ],

uρ(t) ∈ Sρ and Fρ(uρ(t),Pρ(t), t) ≤ Fρ (̂u, P̂, t) + H(P̂−Pρ(t)) ∀(̂u, P̂) ∈ Q, (4.3)

Fρ(uρ(t),Pρ(t), t) + Diss[0,t](Pρ) = Fρ(uρ(0),Pρ(0), 0) −
∫ t

0

∫
�

ḃ(x, s) · uρ(x, s) dx ds, (4.4)

where the dissipation Diss[0,t](Pρ) is defined as

Diss[0,t](Pρ) = sup

{
N∑
i=1

H(Pρ(ti−1)−Pρ(ti ))

}

and the supremum is taken on all partitions {0 = t0 < t1 < · · · < tN = t} of [0, t]. The time-parametrized
variational inequality (4.3) is usually called global stability. It expresses a minimality of the current state
(uρ(t),Pρ(t)) with respect to possible competitors (̂u, P̂) when the combined effect of energy and dissipation
is taken into account. We will call all states (uρ(t),Pρ(t)) fulfilling (4.3) stable and equivalently indicate (4.3)
as (uρ(t),Pρ(t)) ∈ Sρ(t), so thatSρ(t) is the set of stable states at time t . The scalar relation (4.4) is nothing
but the energy balance: The sum of the actual and the dissipated energy (left-hand side of (4.4)) equals the
sum of the initial energy and the work done by external actions (right-hand side). Note that systems (4.1)–(4.2)
and (4.3)–(4.4) are equivalent as the energy Fρ is strictly convex (see Proposition 3.3).

This section is devoted to the study of the quasistatic evolution problem (4.3)–(4.4). In particular, we
prove that it is well-posed in Sect. 4.2 by passing to the limit into a time discretization discussed in Sect. 4.1.
Eventually, we study the localization limit as ρ converges to a Dirac delta function at 0 in Sect. 4.3

4.1 Incremental minimization

For the sake of notational simplicity, we drop the subscript ρ from (uρ,Pρ) in this subsection. Let a partition
{0 = t0 < t1 < · · · < tN = T } of [0, T ] be given, and let (u0,P0) = (u,P). The incremental minimization
problem consists in finding (ui ,Pi ) ∈ Q that minimizes

Fρ(u,P, ti ) + H(P−Pi−1) (4.5)

for i = 1, . . . , N . Owing to Theorem 3.4, the unique solution {(ui ,Pi )}Ni=0 can be found inductively on i . The
minimality in (4.5) and the triangle inequality entail that

Fρ(ui ,Pi , ti ) + H(Pi−Pi−1) ≤ Fρ (̂u, P̂, ti ) + H(P̂−Pi ) + H(Pi−Pi−1) ∀(̂u, P̂) ∈ Q. (4.6)

This proves in particular that (ui ,Pi ) is stable for all i . More precisely, (ui ,Pi ) ∈ Sρ(ti ) for all i = 1, . . . , N .
Again from minimality one has

Fρ(ui ,Pi , ti ) + H(Pi−Pi−1) ≤ Fρ(ui−1,Pi−1, ti ) = Fρ(ui−1,Pi−1, ti−1) −
∫

�

∫ ti

ti−1

ḃ(x, s) ds · ui−1(x) dx.

(4.7)
Now, the coercivity of Fρ from Lemma 3.1 implies the existence of M > 0 such that

‖(u,P)‖Tρ
≤ M

(
1 + Fρ(u,P)

)
, ∀(u,P) ∈ Q.

This and Minkowski’s inequality imply
∫

�

∫ ti

ti−1

ḃ(x, s) ds · ui−1(x) dx ≤
∥∥∥
∫ ti

ti−1

ḃ(·, s) ds
∥∥∥
L2(�)

‖ui−1‖L2(�)

≤ M
∫ ti

ti−1

∥∥ḃ(·, s)∥∥L2(�)
ds

(
1 + Fρ(ui−1,Pi−1, ti−1)

)
. (4.8)
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Fix an integer m ≤ N ; by summing (4.7) up for i = 1, . . . ,m, we get

Fρ(um,Pm, tm) +
m∑
i=1

H(Pi−Pi−1) ≤ Fρ(u,P, 0) −
m∑
i=1

∫
�

∫ ti

ti−1

ḃ(x, s) ds · ui−1(x) dx, (4.9)

while using (4.8) we get

Fρ(um,Pm, tm) +
m∑
i=1

H(Pi−Pi−1) ≤ Fρ(u,P, 0) + M ‖ḃ‖L1(0,T ;L2(�;Rn))

+ M
m∑
i=1

∫ ti

ti−1

∥∥ḃ(·, s)∥∥L2(�)
ds Fρ(ui−1,Pi−1, ti−1).

With the discrete Gronwall’s inequality, we deduce that

Fρ(um,Pm, tm) +
m∑
i=1

H(Pi−Pi−1) ≤ C, (4.10)

where C depends on Fρ(u,P, 0) and ‖ḃ‖L1(0,T ;L2(�;Rn)) but not on the time partition. In particular, the incre-
mental minimization problem delivers a stable approximation scheme. This could additionally be combined
with a space discretization as well.

4.2 Well-posedness of the quasistatic evolution problem

The aim of this subsection is to check the following well-posedness result.

Theorem 4.1 (Well-posedness of the quasistatic evolution problem) Let b ∈ W 1,1(0, T ; L2(�;Rn)) and
(u,P) ∈ Sρ(0). Then there exists a unique quasistatic evolution t 
→ (uρ(t),Pρ(t)).

Proof This well-posedness argument is quite standard, for the energy Fρ is quadratic and coercive. Indeed, the
statement follows from [23, Thm. 3.5.2] where one finds quasistatic evolutions by passing to the limit in the
time-discrete solution of the incremental problem (4.5) as the fineness of the partition goes to 0. Assume for
simplicity such partitions to be uniform and given by t Ni = iT/N (nonuniform partitions can be considered
as well) and define (uN ,PN ) : [0, T ] → Q to be the backward-in-time piecewise constant interpolant of the
solution of the incremental problem (4.5) on the partition.

Bound (4.10) and the coercivity of Fρ from Lemma 3.1 entail that ‖(uN ,PN )‖Tρ
and Diss[0,T ](PN ) are

bounded independently of N . This allows for the application of the Helly’s selection principle [23, Thm.
2.1.24] which, in combination with Lemma 3.9 and Proposition 3.10, entails that (uN ,PN ) converges to (u,P)
with respect to the strong × weak topology of Q, for all times.

The global stability (u(t),P(t)) ∈ Sρ(t) for all t ∈ [0, T ] follows by passing to the lim sup in (4.6) by
means of the so-called quadratic trick, see [23, Lem. 3.5.3]: Let (̂u, P̂) ∈ Q be given, and define (̂uN , P̂N ) =
(uN (t Ni ) + û − u(t),PN (t Ni ) + P̂ − P(t)). By using the short-hand notation Bρ(u,P) for Bρ((u,P), (u,P)),
from the fact that (uN (t),PN (t)) ∈ Sρ(t Ni ) for t ∈ (t Ni−1, t

N
i ] we deduce that

0 ≤ Fρ (̂uN , P̂N , t Ni ) − Fρ(uN (t),PN (t), t Ni ) + H(P̂N−PN (t))

= Bρ (̂u − u(t), P̂ − P(t)) + 2Bρ

(
(uN (t),PN (t)), (̂u−u(t), P̂−P(t))

)

−
∫

�

b(x, t Ni ) · (̂u(x) − u(x, t)) dx + H(P̂−P(t)). (4.11)

Take now the limit for N → ∞ in (4.11) and obtain

0 ≤ Bρ (̂u − u(t), P̂ − P(t)) + 2Bρ

(
(u(t),P(t)), (̂u − u(t), P̂ − P(t))

)

−
∫

�

b(x, t) · (̂u(x) − u(x, t)) dx + H(P̂−P(t))

= Fρ (̂u, P̂, t) − Fρ(u(t),P(t), t) + H(P̂−P(t)).
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Since the latter holds for all (̂u, P̂) ∈ Q, we have proved that (u(t),P(t)) ∈ Sρ(t).
Inequality ‘≤’ in (4.4) follows by passing to the lim inf as N → ∞ in (4.9). The opposite inequality

is a consequence of the already checked global stability, see [23, Prop. 2.1.23]. Eventually, uniqueness is a
consequence of the strict convexity of Fρ . ��

4.3 Localization limit

The aim of this subsection is to investigate the localization limit for ρ converging to a Dirac delta function at 0.
Replace ρ by ρδ fulfilling assumptions (3.9)–(3.10) of Sect. 3.2, and use δ as subscript instead of ρ wherever
relevant. Define

S0 = {u ∈ H1(�,Rn) : u = 0 on ω}.
We shall check that the quasistatic evolution (uδ,Pδ) for the nonlocal model converges to the unique solution
(u0,P0) of the classical local elastoplastic quasistatic problem

∂uF0(u0(t),P0(t), t) = 0 in S∗
0 , (4.12)

∂ṖH(Ṗ0(t)) + ∂PF0(u0(t),P0(t), t) � 0 in L2(�;Rn×n
s,d ). (4.13)

In analogy with (4.1)–(4.2), one can rewrite (4.12)–(4.13) via the bilinear form B0

B0
(
(u,P), (v,Q)

) = β

∫
�

div u(x) div v(x) dx

+ αn
∫

�

−
∫
Sn−1

(
(∇u(x) − P(x))z · z − 1

n
div u(x)

)(
(∇v(x) − Q(x))z · z − 1

n
div v(x)

)
dHn−1(z) dx

+ γ

∫
�

P(x) : Q(x) dx

as

2B0((u0(t),P0(t)), (v, 0)) =
∫

�

b(x, t) · v(x) dx ∀v ∈ S0, (4.14)

2B0((u0(t),P0(t)), (0, Ṗ0(t) − w)) ≤
∫

�

σy |w(x)| dx −
∫

�

σy |Ṗ0(x, t)| dx ∀w ∈ L2(�;Rn×n
s,d ). (4.15)

By recalling the expression for the Lamé coefficients (1.3) the latter can be equivalently restated in the classical
form

∫
�

�(x, t) : ∇sv(x) dx =
∫

�

b(x, t) · v(x) ∀v ∈ V, for a.e. t ∈ (0, T ), (4.16)

u(t) = 0 on ∂� \ ω, for a.e. t ∈ (0, T ), (4.17)

� = λ tr
(∇su − P

) + 2μ
(∇su − P

)
a.e. in � × (0, T ), (4.18)

σy∂|Ṗ| + 2γP � � a.e. in � × (0, T ), (4.19)

P(0) = P0 a.e. in �. (4.20)

Relations (4.12) or (4.14) correspond to the quasistatic equilibrium system (4.16) and the corresponding
boundary condition (4.17). Note that, since �\ω is Lipschitz, condition (4.17) can be also read as u(t)|ω ∈
H1
0 (ω,Rn). The isotropicmaterial response is encoded by the constitutive relation (4.18) for the stress�. (Note,

however, that isotropy is here assumed for the sake of definiteness only, for the analysis covers anisotropic
cases with no change.) The plastic flow rule (4.13) or (4.15) corresponds to (4.19), to be considered together
with initial condition (4.20). Recall that problem (4.16)–(4.20) (equivalently systems (4.12)–(4.13) or (4.14)–
(4.15) along with initial conditions) admits a unique strong solution in time [16], which is indeed a quasistatic
evolution in the sense of (4.3)–(4.4) [23, Sec. 4.3.1].
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Theorem 4.2 (Convergence of quasistatic evolutions) Let b ∈ W 1,1(0, T ; L2(�;Rn)) and (uδ,Pδ) ∈ Sδ(0)
be such that (uδ,Pδ) → (u0,P0) with respect to the strong × weak topology of Q and Fδ(uδ,Pδ, 0) →
F0(u0,P0, 0). Then, the unique quasistatic evolution of the nonlocal problem (uδ,Pδ) converges to (u0,P0)
with respect to the strong×weak topology of Q, for all times, where (u0,P0) is the unique quasistatic evolution
of local elastoplasticity.

Proof This argument follows along the general lines of [24, Thm. 3.8] and hinges on identifying a suitable
mutual recovery sequence for the functionals Fρ and H .

The energy balance (4.4) at level ρ, the uniform coercivity of Fρ from Lemma 3.9, and the fact that
ḃ ∈ L1(0, T ; L2(�,Rn)) entail that supt∈[0,T ] ‖(uδ,Pd)‖Tδ

and Diss[0,T ](Pδ) are bounded independently of
δ. By using the generalized Helly’s selection principle [24, Thm. A.1], Lemma 3.9, and Proposition 3.10 one
extracts a (non-relabeled) subsequence converging to (u0,P0) strongly×weakly in Q for all times. By passing
to the lim inf as δ → 0 in the energy balance (4.4), as Fδ → F0 in the �-convergence sense (Theorem 3.11)
one finds that

F0(u0(t),P0(t), t) + Diss[0,t](P0) ≤ F0(u0(0),P0(0), 0) −
∫ t

0

∫
�

ḃ(x, s) · u0(x, s) dx ds, (4.21)

which is the upper energy estimate. Moreover, the initial values of (u0,P0) can be computed as

(u0(0),P0(0)) = lim
δ→0

(uδ(0),Pδ(0)) = lim
δ→0

(uδ,Pδ) = (u0,P0),

where the limit is strong × weak in Q.
We now need to check that (u0,P0) is globally stable for all times, namely (u0(t),P0(t)) ∈ S0(t) for

all t ∈ [0, T ], where the latter set of stable states is defined starting from the energy F0. This is obtained by
exploiting once again the quadratic nature of the energy via the quadratic trick. As (uδ(t),Pδ(t)) ∈ Sδ(t) for
all t ∈ [0, T ], for any (̂uδ, P̂δ) ∈ Q one has that

0 ≤ Fδ (̂uδ, P̂δ, t) − Fδ(uδ(t),Pδ(t), t) + H(P̂δ−Pδ(t))

= Bδ (̂uδ, P̂δ) − Bδ(uδ(t),Pδ(t)) −
∫

�

b(x, t) · (̂uδ − uδ(t)) dx + H(P̂δ−Pδ(t)). (4.22)

Let the competitors (̂u0, P̂0) ∈ Q be given, and assume for the time being that (̂u0 − u0(t), P̂0 − P0(t)) ∈
C∞(�̄;Rn × R

n×n
s,d ). Insert the mutual recovery sequence

(̂uδ, P̂δ) = (
uδ(t) + û0 − u0(t),Pδ(t) + P̂0 − P0(t)

)

into (4.22) getting

0 ≤ Bδ

(̂
u0 − u0(t), P̂0 − P0(t)

) −
∫

�

b(x, t) · (̂u0(x) − u0(x, t)) dx

+ H(P̂0−P0(t)) + 2Bδ

(
(uδ(t),Pδ(t)),

(̂
u0−u0(t), P̂0−P0(t)

))
. (4.23)

We aim now at passing to the limit as δ → 0 in (4.23). The first two terms in the right-hand side converge by
Proposition 3.6, and the dissipation term is independent of δ. One can hence use Lemma B.1 for the last term
and conclude that

0 ≤ B0
(̂
u0 − u0(t), P̂0 − P0(t)

) −
∫

�

b(x, t) · (̂u0(x) − u0(x, t)) dx

+ H(P̂0−P0(t)) + 2B0
(
(u0(t),P0(t)),

(̂
u0 − u0(t), P̂0 − P0(t)

))
= F0(̂u0, P̂0, t) − F0(u0(t),P0(t), t) + H(P̂0−P0(t)).

The stability of (u0(t),P0(t)) is hence checked against all competitors with (̂u0 − u0(t), P̂0 − P0(t)) in
C∞(�̄;Rn × R

n×n
s,d ). In order to conclude for the global stability of (u0(t),Q0(t)) at time t one has now to

argue by approximation. Let a general competitor (̂u0, P̂0) ∈ Q with û0 ∈ H1(�,Rn) be given, and choose
a sequence (̂u0 j , P̂0 j ) ∈ Q such that (̂u0 j , P̂0 j ) → (̂u0, P̂0) strongly in H1(�,Rn) × L2(�,Rn×n

s,d ) and
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(̂u0 j − u0(t), P̂0 j − P0(t)) ∈ C∞(�̄;Rn × R
n×n
s,d ). As F0 and H are continuous with respect to the strong

topology in H1(�,Rn) × L2(�,Rn×n
s,d ) and L2(�,Rn×n

s,d )2, respectively, one gets

0 ≤ lim
j→∞

(
F0(̂u0 j , P̂0 j , t) − F0(u0(t),P0(t), t) + H(P̂0 j−P0(t))

)

= F0(̂u0, P̂0, t) − F0(u0(t),P0(t), t) + H(P̂0−P0(t))

which proves (u0(t),Q0(t)) ∈ S0(t). Eventually, global stability allows to recover the opposite estimate to
(4.21) as in [23, Prop. 2.1.23].

We have hence proved that (u0,P0) is a quasistatic evolution of the local elastoplastic problem. As F0 is
strictly convex, such solution is unique and convergence holds for the whole sequence. ��
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Appendix A: Auxiliary results

We collect here some auxiliary results that have been used in the paper. Let ϕ ∈ C∞
c (Rn) satisfy suppϕ ⊂

B(0, 1), ϕ ≥ 0, and
∫
Rn ϕ dx = 1. For each r > 0, define the function ϕr ∈ C∞

c (Rn) as ϕr (x) = r−nϕ(x/r).
Define �r = {x ∈ � : dist(x, ∂�) > r}. As usual, given a function u : � → R its mollification ϕr � u :
�r → R is defined as

(ϕr � u)(x) =
∫
B(0,r)

ϕr (z) u(x − z) dz.

For vector-valued functions, the mollification is defined componentwise.
The following result was used in Sect. 3.2.

Lemma A.1 (Energy decreases by mollification) Let (u,P) ∈ Tρ(�). Let A ⊂⊂ � be measurable, and let
0 < r < dist(A, ∂�). Then

∫
A

∫
A

ρ(x−x′)
(
E(ϕr � u, ϕr � P)(x, x′) − 1

n
ϕr � Eρ(u,P)(x)

)2

dx′ dx

≤
∫

�

∫
�

ρ(x−x′)
(
E(u,P)(x, x′) − 1

n
Eρ(u,P)(x)

)2

dx′ dx.

Proof For each x, x′ ∈ A,

E(ϕr � u, ϕr � P)(x, x′) − 1

n
ϕr � Eρ(u,P)(x) =

∫
B(0,r)

ϕr (z)
(
E(u,P)(x − z, x′−z) − 1

n
Eρ(u,P)(x − z)

)
dz,

so, by Jensen’s inequality,
(
E(ϕr � u, ϕr � P)(x, x′) − 1

n
ϕr � Eρ(u,P)(x)

)2

≤
∫
B(0,r)

ϕr (z)
(
E(u,P)(x − z, x′−z) − 1

n
Eρ(u,P)(x − z)

)2

dz.

Therefore,
∫
A

∫
A

ρ(x−x′)
(
E(ϕr � u, ϕr � P)(x, x′) − 1

n
ϕr � Eρ(u,P)(x)

)2

dx′ dx

≤
∫
B(0,r)

ϕr (z)
∫

�r

∫
�r

ρ(x−x′)
(
E(u,P)(x − z, x′−z) − 1

n
Eρ(u,P)(x − z)

)2

dx′ dx dz.



Quasistatic elastoplasticity via Peridynamics 1177

But, for each z ∈ B(0, r),

∫
A

∫
A

ρ(x−x′)
(
E(u,P)(x − z, x′−z) − 1

n
Eρ(u,P)(x − z)

)2

dx′ dx

=
∫
A−z

∫
A−z

ρ(x−x′)
(
E(u,P)(x, x′) − 1

n
Eρ(u,P)(x)

)2

dx′ dx

≤
∫

�

∫
�

ρ(x−x′)
(
E(u,P)(x, x′) − 1

n
Eρ(u,P)(x)

)2

dx′ dx,

so
∫
B(0,r)

ϕr (z)
∫
A

∫
A

ρ(x−x′)
(
E(u,P)(x − z, x′−z) − 1

n
Eρ(u,P)(x − z)

)2

dx′ dx dz

≤
∫

�

∫
�

ρ(x−x′)
(
E(u,P)(x, x′) − 1

n
Eρ(u,P)(x)

)2

dx′ dx,

and the proof is concluded. ��
We now show an elementary calculation of some integrals in a ball, where we exploit that the kernel is radial.

Lemma A.2 (Radially symmetric kernels) Let ρ ∈ L1
loc(R

n), and let ρ̄ : [0,∞) → [0,∞) be such that
ρ(x) = ρ̄(|x|) for a.e. x ∈ R

n. Let r > 0. The following hold:

a) Let f ∈ L∞
loc(R

n) be positively homogeneous of degree 0. Then
∫
B(0,r)

ρ(x) f (x) dx =
∫
B(0,r)

ρ(x) dx −
∫
Sn−1

f (z) dHn−1(z).

b) Let A ∈ R
n×n. Then

∫
B(0,r)

ρ(x)
Ax · x
|x|2 dx = 1

n

∫
B(0,r)

ρ(x) dx trA.

Proof We start with a). We use the coarea formula and the homogeneity of f to find that
∫
B(0,r)

ρ(x) f (x) dx =
∫ r

0
ρ̄(s)

∫
∂B(0,s)

f (x) dHn−1(x) ds =
∫ r

0
sn−1 ρ̄(s) ds

∫
Sn−1

f (z) dHn−1(z).

The above formula applied to the constant function f = 1 shows that
∫
B(0,r)

ρ(x) dx = Hn−1(Sn−1)

∫ r

0
sn−1 ρ̄(s) ds.

Putting the two formulas together concludes the proof of a).
For part b), we apply a) to the function f (x) = 1

|x|2Ax · x and obtain that

∫
B(0,r)

ρ(x)
Ax · x
|x|2 dx =

∫
B(0,r)

ρ(x) dx −
∫
Sn−1

Az · z dHn−1(z).

Now let As = 1
2 (A + A	). Then Az · z = Asz · z for all z ∈ R

n and trA = trAs . Let λ1, . . . , λn be the
eigenvalues of As , let R ∈ O(n) and D ∈ R

n×n be such that As = RDR	 and D is diagonal with entries
λ1, . . . , λn . A change of variables shows that

∫
Sn−1

Asz · z dHn−1(z) =
∫
Sn−1

Dz · z dHn−1(z) =
∫
Sn−1

n∑
i=1

λi z
2
i dHn−1(z).
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Another change of variables shows that for all i ∈ {1, . . . , n},
∫
Sn−1

z2i dHn−1(z) =
∫
Sn−1

z21 dHn−1(z),

so

Hn−1(Sn−1) =
∫
Sn−1

|z|2 dHn−1(z) = n
∫
Sn−1

z21 dHn−1(z).

Thus,

−
∫
Sn−1

n∑
i=1

λi z
2
i dHn−1(z) =

n∑
i=1

λi−
∫
Sn−1

z21 dHn−1(z) = 1

n

n∑
i=1

λi = 1

n
trA,

which concludes the proof. ��

Appendix B: Convergence lemma

We present here the proof of the key convergence lemma used for passing to the limit in (4.23) in the proof of
Theorem 4.2.

Lemma B.1 (Convergence of the bilinear term) Let (uδ,Pδ) → (u0,P0) strongly × weakly in Q, (ũ, P̃) ∈
C∞(�̄;Rn × R

n×n
s,d ), and ‖(uδ,pδ)‖Tδ

be bounded independently of δ. Then

Bδ

(
(uδ,Pδ), (ũ, P̃)

) → B0
(
(u0,P0), (ũ, P̃)

)
.

Proof We aim at computing the limit of

Bδ

(
(uδ,Pδ), (ũ, P̃)

) = γ

∫
A
Pδ(x) : P̃(x) dx + β

∫
�

Dδ(uδ)(x)Dδ(ũ)(x) dx

+ α

∫
�

∫
�

ρδ(x−x′)
(
E(uδ,Pδ)(x, x′) − 1

n
Eδ(uδ,Pδ)(x)

)(
E(ũ, P̃)(x, x′) − 1

n
Eδ(ũ, P̃)(x)

)
dx′ dx.

Passing to the limit in the γ term is straightforward as Pδ ⇀ P0 in L2(�;Rn×n
s,d ). The β terms goes to the

limit as well, for we have that Dδ(uδ) ⇀ div u0 in L2(�) [20, Lemma 3.6] and Dδ(ũ) → div ũ strongly in
L2(�) [20, Lemma 3.1] (see also Lemma 3.5). We will hence focus on the α term, from which, for simplicity
of notation, we omit the parameter α:

Aδ

(
(uδ,Pδ), (ũ, p̃)

)

=
∫

�

∫
�

ρδ(x−x′)
(
E(uδ,Pδ)(x, x′) − 1

n
Eδ(uδ,Pδ)(x)

)(
E(ũ, P̃)(x, x′) − 1

n
Eδ(ũ, P̃)(x)

)
dx′ dx.

The strategy of the proof is that of decomposing Aδ in a sum of integrals and discussing the corresponding
limits separately. We proceed in subsequent steps.
Step 1 Let us start by simplifying the problem of computing the limit of Aδ by replacing Eδ(uδ,Pδ) and
Eδ(ũ, P̃) by div u0 and div ũ, respectively. In particular, within this step we aim at proving that

lim
δ→0

[
Aδ

(
(uδ,Pδ), (ũ, P̃)

) − Ãδ

(
(uδ,Pδ), (ũ, P̃);u0

)] = 0, (B.1)

where we have set

Ãδ

(
(uδ,Pδ), (ũ, P̃);u0

)

=
∫

�

∫
�

ρδ(x−x′)
(
E(uδ,Pδ)(x, x′) − 1

n
div u0(x)

)(
E(ũ, P̃)(x, x′) − 1

n
div ũ(x)

)
dx′ dx.
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In order to do so, let us write

Aδ

(
(uδ,Pδ), (ũ, P̃)

) − Ãδ

(
(uδ,Pδ), (ũ, P̃); u0

) = J 1δ + J 2δ

with

J 1δ = −1

n

∫
�

∫
�

ρδ(x−x′)
(
E(uδ,Pδ)

(
x, x′) − 1

n
Eδ(uδ,Pδ)(x)

)(
Eδ(ũ, P̃)(x) − div ũ(x)

)
dx′ dx,

J 2δ = −1

n

∫
�

∫
�

ρδ(x−x′)
(
Eδ(uδ,Pδ)(x) − div u0(x)

) (
E(ũ, P̃)(x, x′) − 1

n
div ũ(x)

)
dx′ dx

and prove that J 1δ → 0 and J 2δ → 0 as δ → 0.
As regards J 1δ , one has the bound

∣∣J 1δ
∣∣ ≤ 1

n

(∫
�

∫
�

ρδ(x−x′)
(
E(uδ,Pδ)(x, x′) − 1

n
Eδ(uδ,Pδ)(x)

)2

dx′ dx
)1/2

×
(∫

�

∫
�

ρδ(x−x′)
(
Eδ(ũ, P̃)(x) − div ũ(x)

)2 dx′ dx
)1/2

.

The first integral in the right-hand side above is bounded as ‖(uδ,Pδ)‖Tδ
is bounded, whereas the second

integral tends to 0 because of Lemma 3.5.a.
Next, we rewrite

J 2δ = −1

n

∫
�

(
Eδ(uδ,Pδ)(x) − div u0(x)

) (∫
�

ρδ(x−x′)
(
E(ũ, P̃)(x, x′) − 1

n
div ũ(x)

)
dx′

)
dx.

We have that Eδ(uδ,Pδ) ⇀ div u0 in L2(�) by Lemma 3.5.b. On the other hand, by arguing as in the proof
Proposition 3.6 one gets that the function

x 
→
∫

�

ρδ(x−x′)
(
E(ũ, P̃)(x, x′) − 1

n
div ũ(x)

)
dx′

is strongly convergent in L2(�) and J 2δ → 0 follows.
Step 2: Decomposition of Ãδ Owing to (B.1) we now argue directly on Ãδ by decomposing it as

Ãδ

(
(uδ,Pδ), (ũ, P̃); u0

) = I 1δ + I 2δ + I 3δ + I 4δ , (B.2)

where

I 1δ =
∫

�

∫
�

ρδ(x−x′) E(uδ,Pδ)(x, x′) E(ũ, P̃)(x, x′) dx′ dx,

I 2δ = −1

n

∫
�

∫
�

ρδ(x−x′) E(uδ,Pδ)(x, x′) div ũ(x) dx′ dx,

I 3δ = −1

n

∫
�

∫
�

ρδ(x−x′) div u0(x) E(ũ, P̃)(x, x′) dx′ dx,

I 4δ = 1

n2

∫
�

∫
�

ρδ(x−x′) div u0(x) div ũ(x) dx′ dx.

We discuss each of these integrals in the following steps.
Step 3 Integral I 1δ As in (2.3), we decompose the integral as I 1δ = I 11δ + I 12δ + I 13δ , where

I 11δ = −
∫

�

∫
�

ρδ(x − x′) Pδ(x)(x′−x)
|x′−x|2 · (x′−x) E(ũ, P̃)(x, x′) dx′ dx,

I 12δ =
∫

�

∫
�

ρδ(x − x′)D(uδ − u0)(x, x′) E(ũ, P̃)(x, x′) dx′ dx,

I 13δ =
∫

�

∫
�

ρδ(x − x′)D(u0)(x, x′) E(ũ, P̃)(x, x′) dx′ dx,
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and argue on each term separately.
In order to compute the limit of I 11δ , let us further decompose it as

I 11δ = I 111δ + I 112δ

= −
∫

�

∫
�

ρδ(x − x′) Pδ(x)(x′−x)
|x′−x|2 · (x′−x)

(∇ũ(x) − P̃(x))(x′−x)
|x′−x|2 · (x′−x) dx′ dx

−
∫

�

∫
�

ρδ(x − x′) Pδ(x)(x′−x)
|x′−x|2 · (x′−x)

(ũ(x′) − ũ(x) − ∇ũ(x)(x′−x))
|x′−x|2 · (x′−x) dx′ dx.

The limit of I 111δ can be computed by observing that the integrand is positively homogeneous of degree 0 in
x′−x. In particular, arguing as in Lemma A.2 we can prove that

lim
δ→0

[
I 111δ + n

∫
�

−
∫
Sn−1

Pδ(x)z · z (∇ũ(x) − P̃(x))z · z dHn−1(z) dx
]

= 0

and then

lim
δ→0

−n
∫

�

−
∫
Sn−1

Pδ(x)z · z (∇ũ(x) − P̃(x))z · z dHn−1(z) dx

= −n
∫

�

−
∫
Sn−1

P(x)z · z (∇ũ(x) − P̃(x))z · z dHn−1(z) dx.

In order to handle the integral I 112δ let us firstly observe that, as in (3.19),
∣∣∣∣ (ũ(x′) − ũ(x) − ∇ũ(x)(x′−x))

|x′−x|2 · (x′−x)

∣∣∣∣ ≤ σ(|x′−x|) (B.3)

where σ is a modulus of continuity, and that, for all A ⊂⊂ �, 0 < r < dist(A, ∂�), and x ∈ A we have, as
in (3.25),

∫
�−x

ρδ(x̃)σ (|x̃|) dx̃ ≤ nσ(r) + ‖σ‖∞
∫
Rn\B(0,r)

ρδ(x̃) dx̃.

Define now the tensor-valued functions

x 
→ Gδ(x) =
∫

�

ρδ(x − x′) (x
′−x) ⊗ (x′−x)

|x′−x|2
(ũ(x′) − ũ(x) − ∇ũ(x)(x′−x))

|x′−x|2 · (x′−x) dx′

and control them for a.e. x ∈ A as follows

|Gδ(x)| ≤
∫

�−x
ρδ(x̃)σ (|x̃|) dx̃ ≤ nσ(r) + ‖σ‖∞

∫
Rn\B(0,r)

ρδ(x̃) dx̃.

As the right-hand side goes to 0 as δ → 0, σ(r) can be made arbitrarily small by choosing r → 0, and
A ⊂⊂ � is arbitrary we have proved that Gδ(x) → 0 a.e. The above bound proves additionally that Gδ are
equiintegrable. In particular, Gδ → 0 strongly in L2(�). As Pδ is bounded in L2(�;Rn×n

s,d ) one gets that

I 112δ → 0 as δ → 0.
The treatment of integral I 12δ requires a nonlocal integration-by-parts formula, see [20, Lemma 2.9]. Indeed,
for all ϕ ∈ C∞(�̄ × �̄) a direct computation ensures that

∫
�

∫
�

ρδ(x′−x)D(u)(x, x′) ϕ(x, x′) dx′ dx = −
∫

�

u(x) · D∗
δ (ϕ)(x) dx (B.4)

where the vector-valued operatorD∗
δ is given by

D∗
δ (ϕ)(x) = p.v.

∫
�

ρδ(x′−x)
ϕ(x, x′) + ϕ(x′ x)

|x′−x|2 (x′−x) dx′.
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Let us apply formula (B.4) to I 12δ , getting

I 12δ = −
∫

�

(uδ − u0)(x) · D∗
δ (E(ũ, P̃))(x) dx.

Since uδ → u0 strongly in L2(�;Rn), in order to check that I 12δ → 0 as δ → 0 one needs to provide an L2

bound on D∗
δ (E(ũ, P̃)). As ũ and P̃ are smooth, this follows along the lines of [22, Formula (2.3)].

Let us now turn to the analysis of integral I 13δ . Once again, some further decomposition is needed. We write
I 13δ = I 131δ + I 132δ + I 133δ , where

I 131δ =
∫

�

∫
�

ρδ(x′−x)
∇u0(x)(x′−x) · (x′−x)

|x′−x|2
(∇ũ(x) − P̃(x))(x′−x) · (x′−x)

|x′−x|2 dx′ dx,

I 132δ =
∫

�

∫
�

ρδ(x′−x)
∇u0(x)(x′−x) · (x′−x)

|x′−x|2
(ũ(x′) − ũ(x) − ∇ũ(x)(x′−x)) · (x′−x)

|x′−x|2 dx′ dx,

I 133δ =
∫

�

∫
�

ρδ(x′−x)
(u0(x′) − u0(x) − ∇u0(x)(x′−x)) · (x′−x)

|x′−x|2

× (ũ(x′) − ũ(x) − P̃(x)(x′−x)) · (x′−x)
|x′−x|2 dx′ dx.

The integrand of I 131δ is positively homogeneous of degree 0 in x′−x. By arguing as in Lemma A.2 one can
prove that

I 131δ → n
∫

�

−
∫
Sn−1

∇u0(x)z · z (∇ũ(x) − P̃(x)
)
z · z dHn−1(z) dx as δ → 0.

Integral I 132δ can be proved to converge to 0 by arguing similarly as in I 111δ , as (compared with (B.3))
∣∣∣∣∇u0(x)(x′−x) · (x′−x)

|x′−x|2
(ũ(x′) − ũ(x) − ∇ũ(x)(x′−x)) · (x′−x)

|x′−x|2
∣∣∣∣ ≤ |∇u0(x)|σ(|x′−x|).

We aim now at proving that I 133δ goes to 0 as well. As the function

(x, x′) 
→ (ũ(x′) − ũ(x) − P̃(x)(x′−x)) · (x′−x)
|x′−x|2

is bounded, such convergence would follow as soon as we check that the functions

(x, x′) 
→ ρδ(x′−x)
(u0(x′) − u0(x) − ∇u0(x)(x′−x)) · (x′−x)

|x′−x|2
converge to 0 strongly in L1(� × �). In case of a smooth function v this would follow from the bound

∣∣∣∣ρδ(x′−x)
(v(x′) − v(x) − ∇v(x)(x′−x)) · (x′−x)

|x′−x|2
∣∣∣∣ ≤ Cρδ(x′−x)‖D2v||∞|x′−x|

by arguing as for I 111δ . Fix then ε > 0, and choose v ∈ C∞(�̄;Rn) such thatw = u0−v fulfills ‖w‖H1(�;Rn) ≤
ε. One has that ∫

�

∫
�

∣∣∣∣ρδ(x′−x)
(u0(x′) − u0(x) − ∇u0(x)(x′−x)) · (x′−x)

|x′−x|2
∣∣∣∣ dx′ dx

≤
∫

�

∫
�

∣∣∣∣ρδ(x′−x)
(v(x′) − v(x) − ∇v(x)(x′−x)) · (x′−x)

|x′−x|2
∣∣∣∣ dx′ dx

+
∫

�

∫
�

∣∣∣∣ρδ(x′−x)
(w(x′) − w(x) − ∇w(x)(x′−x)) · (x′−x)

|x′−x|2
∣∣∣∣ dx′ dx.
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The first term in the above right-hand side goes to 0 as δ → 0 because v is smooth and the second can be
treated as follows:

∫
�

∫
�

∣∣∣∣ρδ(x′−x)
(w(x′) − w(x) − ∇w(x)(x′−x)) · (x′−x)

|x′−x|2
∣∣∣∣ dx′ dx

≤
∫

�

∫
�

ρδ(x′−x) |∇w(x)| dx′ dx +
∫

�

∫
�

ρδ(x′−x)

∣∣∣∣ (w(x′) − w(x)) · (x′−x)
|x′−x|2

∣∣∣∣ dx′ dx

≤ n
∫

�

|∇w(x)| dx +
∫

�

∫
�

ρδ(x′−x)| |w(x′) − w(x)|
|x′−x| dx′ dx

≤ c‖w‖H1(�;Rn) ≤ cε,

where we have also used [5, Th. 1] (see also [25, Eq. (5)]). As ε is arbitrary, we conclude that I 131δ goes to 0
as δ → 0.
All in all, we have proved that

I 1δ → n
∫

�

−
∫
Sn−1

(∇u0(x) − P0(x)
)
z · z (∇ũ(x) − P̃(x)

)
z · z dHn−1(z) dx as δ → 0. (B.5)

Step 4: Integrals I 2δ , I
3
δ , and I 4δ One can discuss integral I 2δ by following the analysis of integral I 1δ . Indeed,

the two integrals correspond to each other upon changing E(ũ, P̃) there with div ũ/n here. In particular, we
have that

I 2δ → −
∫

�

−
∫
Sn−1

(∇u0(x) − P0(x)z · z) div ũ(x) dHn−1(z) dx as δ → 0. (B.6)

As for I 3δ , we decompose I 3δ = I 31δ + I 32δ , where

I 31δ = −1

n

∫
�

∫
�

ρδ(x−x′) div u0(x)
(∇ũ(x) − P̃(x))(x′−x)

|x′−x|2 · (x′−x) dx′ dx,

I 32δ = −1

n

∫
�

∫
�

ρδ(x−x′) div u0(x)
(ũ(x′) − ũ(x) − ∇ũ(x)(x′−x))

|x′−x|2 · (x′−x) dx′ dx.

As the integrand of I 31δ is positively homogeneous of degree 0 in x′−x, one can use Lemma A.2.a in order to
get that

I 31δ → −
∫

�

−
∫
Sn−1

div u0(x) (∇ũ(x) − P̃(x))z · z dHn−1(z) dx as δ → 0.

As regards integral I 32δ , one can simply reproduce the argument of I 112δ in order to check that I 32δ → 0 as
δ → 0. This allows us to conclude that

I 3δ → −
∫

�

−
∫
Sn−1

div u0(x) (∇ũ(x) − P̃(x))z · z dHn−1(z) dx as δ → 0. (B.7)

The treatment of term I 4δ is rather straightforward as

I 4δ = 1

n2

∫
�

div u0(x) div ũ(x)
(∫

�

ρδ(x−x′) dx′
)

dx → 1

n

∫
�

div u0(x) div ũ(x) dx as δ → 0, (B.8)

where we have used that
∫
�

ρδ(x−x′) dx′ → n as δ → 0.
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Conclusion of the proof By recollecting (B.1), decomposition (B.2), and limits (B.5), (B.6), (B.7), and (B.8)
we conclude that

lim
δ→0

Aδ

(
(uδ,Pδ), (ũ, P̃)

) (B.1)= lim
δ→0

Ãδ

(
(uδ,Pδ), (ũ, P̃);u0

) (B.2)= lim
δ→0

(
I 1δ + I 2δ + I 3δ + I 4δ

)
(B.5)= n

∫
�

−
∫
Sn−1

(∇u0(x) − P0(x)
)
z · z (∇ũ(x) − P̃(x)

)
z · z dHn−1(z) dx

(B.6)−
∫

�

−
∫
Sn−1

(∇u0(x) − P0(x)z · z) div ũ(x) dHn−1(z) dx

(B.7)−
∫

�

−
∫
Sn−1

div u0(x) (∇ũ(x) − P̃(x))z · z dHn−1(z) dx

(B.8)+ 1

n

∫
�

div u0(x) div ũ(x) dx

= n
∫

�

−
∫
Sn−1

(
(∇u0(x) − P0(x))z · z − 1

n
div u0(x)

)(
(∇ũ(x) − P̃(x))z · z − 1

n
div ũ(x)

)
dHn−1(z) dx,

which proves the convergence of the α term of Bδ . This concludes the proof. ��
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