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Abstract Composites comprising included phases in a continuous matrix constitute a huge class of meta-
materials, whose effective properties, whether they be mechanical, physical or coupled, can be selectively
optimized by using appropriate phase arrangements and architectures. An important subclass is represented
by “network-reinforced matrices,” say those materials in which one or more of the embedded phases are co-
continuous with the matrix in one or more directions. In this article, we present a method to study effective
properties of simple such structures from which more complex ones can be accessible. Effective properties are
shown, in the framework of linear elasticity, estimable by using the global mean Green operator for the entire
embedded fiber network which is by definition through sample spanning. This network operator is obtained
from one of infinite planar alignments of infinite fibers, which the network can be seen as an interpenetrated set
of, with the fiber interactions being fully accounted for in the alignments. Themean operator of such alignments
is given in exact closed form for isotropic elastic-like or dielectric-like matrices. We first exemplify how these
operators relevantly provide, from classic homogenization frameworks, effective properties in the case of 1D
fiber bundles embedded in an isotropic elastic-like medium. It is also shown that using infinite patterns with
fully interacting elements over their whole influence range at any element concentration suppresses the dilute
approximation limit of these frameworks. We finally present a construction method for a global operator of
fiber networks described as interpenetrated such bundles.

Keywords Composites · Fiber networks · Green operator · Effective properties · Phase co-continuity

1 Introduction

Particular attention is paid in this work to those composite structures in which the domains that are embedded
in a homogeneous matrix can be considered as infinite fibers of a same second phase, as exemplified in Fig. 1.
They are assumed to be arranged such as to make either a one-directional bundle or interpenetrated ones
along several directions of space, so realizing various sorts of lattice network in 1, 2 or 3 dimensions, the
modeling of which, in terms of effective property estimate, is still highly challenging, owing to the phase
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Fig. 1 Some (dimensionless) examples of 1-directional (1D) fiber bundles and of 2D and 3D fiber networks

co-continuity [1–6]. Whether it be random or periodically ordered, a one-directional bundle of infinite fibers
makes the composite medium bi-continuous in the fiber direction and phase co-continuity is ensured in all
fiber directions of multi-directional such networks which are through-sample spanning. Such networked fiber
structures can be found in many different materials the matrix phase of which can have different (elasto-visco-
plastic) behavior types, including possible damage, and in most cases the fiber phase combines both stretching
and bending straining modes at least in some ranges of deformation [7–11], while the network itself is more
or less deformable according to the nature of the interconnections between its elements. These structures also
include as particular class the so-called pantographic structures (Fig. 1 right), which have common features
with the other networks here of concern, as far as they behave as a classic first gradient material [12] and
although they may become governed by extremely nonlinear equations under various deformation ranges
and modes [13–19]. It is noteworthy that these particular objects and similar ones, firstly introduced in [20],
are nowadays of primary importance both in applications and for fundamental purposes regarding the study
of generalized continua and, in the specific, of second gradient materials [21]. Here, this first step in the
investigation of effective property estimates for matrices reinforced with fiber networks will be restricted to
purely elastic regime, and bending mode analyses are delayed to subsequent works. Extensions to accounting
for the emerging of effects due to plasticity are also possible, in different ways, as, for example, following the
early works presented in [22–26], an analysis applied by the authors to simple systems of beams. This can
likely be generalized to the composites here of concern and possibly extended up to damage onset, but all this
is out of the present scope.

Now, when in heterogeneous structures of the general (inclusion or fiber) reinforced matrix type (which
can be found at many different scales from micro-mechanics to macro-engineering problems as for examples
embedded tanks or dug tunnels in soils subjected to seismic loading1) the embedded domains are too dense in
the matrix, the interactions between these domains cannot be disregarded in the estimation of some effective
properties. The network-reinforced matrices here of concern suffer the specific difficulty that in addition
to classical pair interaction effects between elements, changes in the network structure can be important,
what is likely to further affect the interactions in return. For example, thanks to a compliant matrix and also
depending on various possible interconnections between elements (from simple contacts to physical links), the
network elements are likely to significantly change their orientations and their inter-distances under straining,
so deserving to currently account for the interaction changes.

Howmuch pair interactions in clusters of inclusions or fibers affect the overall material behavior remains an
open question. The fact that only the nearest neighbors to an inclusion are in practice considered to significantly
matter has been pointed as excessively simplifying, even when no long-range order exists [30]. For embedded
domains that become aligned and get close to each other when, for example, the embedding matrix is soft
enough to suffer a large deformation, interactions may become of non-negligible effect even if the embedded
domains are initially in quite dilute concentration. In some circumstances, when, for example, the interactions
between domains increase in certain directions and oppositely decrease and vanish in other ones, it is certainly
important to account for the current evolution of the interactions in estimating effective properties of composites
and meta-materials. These interactions are not that easy to estimate. They can be accounted for either in some
average or statistical way (as is the case in self-consistent schemes [31–33] or in statistical approaches [34,35]
for random structures) or in fully deterministic manner, from the calculation of the interaction Eshelby tensors
or related operators [36,37] between all element pairs in a pattern, when there is some particular organization
of the elements.

1 See, such applicative examples at geo-mechanical level in the references [27–29].



Mean Green operators of deformable fiber networks embedded 103

In many homogenization frameworks, the main role to estimate effective properties of heterogeneous
structures is carried by the Eshelby tensors [38], say EV (r), that relate, in a medium, the constrained strains
ε∗V (r) at points interior or in the vicinity of some finite domain V to an assigned stress-free-strain (eigenstrain)
ε0 in it, as ε∗(r) = EV (r):ε0. (These domains V represent either elements of embedded phases or a particular
distribution or organization symmetry of these phases in the medium.) In cases when a domain V does not
represent a single inclusion but a pattern of them, the Eshelby tensor at any point of each element V i of
V comprises the interior contribution of that element and all the exterior ones from the other elements of
V . Similarly, the average Eshelby tensor interior to a pattern of N elements V = ⋃N

i=1 V i , say EV (such

that ε∗V = EV :ε0 is the mean constrained strain in the pattern V due to ε0 assigned in it), comprises, in
appropriately weighed sum, the mean interior tensors of the elements V i and the mean interaction tensors
between all element pairs constituting the pattern. While the interior Eshelby tensor is already not easily at
hand for any general V domain shape even in the simplest cases of a matrix with isotropic properties, the
interaction tensor between domain pairs is even harder to access, which makes difficult to obtain the global
tensor of a specific pattern. Yet, in order to estimate effective properties of reinforced matrices, it is frequently
enough to explicate, rather than the entire Eshelby tensor field over V , the mean tensor form which is generally
of easier access. Now, the so-called modified Green operator integral, say tV (r), is the product EV (r):C−1

between the Eshelby tensor and the compliance (inverse stiffness) tensor C−1 of the medium (the matrix) in
which V is embedded. This operator relates the constrained strains ε∗V (r) at points interior or in the vicinity
of V to the assigned eigenstress (or polarization stress) τ0 = C:ε0 in it. Again, if a mean global operator
of V can be considered, then it simply follows that EV :C−1 = tV . The knowledge of tV (r) is then quite
equivalent to the knowledge of EV (r) but using tV (r) (and tV ) operators instead of EV (r) (and EV ) tensors
has advantages that have been already presented in previous works on similar problems [6–35,39,40]. Major
ones are the positive-definiteness and the super-symmetry properties of the modified Green operators that the
Eshelby tensors do not have.

We here use for short the terms “interior”, “pair interaction” and “global interaction” operator, to name,
respectively, the mean (or uniform when so) modified Green operator integral representative of an embedded
domain in a matrix, the mean interaction operator integral between any two such embedded domains and the
whole mean interaction operator integral within a pattern of several domains.

A large variety of morphological situations involving complex patterns can nowadays be approached (in
terms of both interior and interaction operators) by using numerical tools. However, analytical solutions, if
simply accessible, remain the preferential way to approach these “inclusion problems”, owing to the easier
manipulation of closed-form solutions when any. Following this central idea, the analytical solution for the key
pair interaction problem, in terms of Green operators, between two general ellipsoids has been treated formally
in [39–42]. In [42] the geometrical features of the Radon transform (RT) and inverse transform (IRT) method
[43–46], which were previously used only in part, as in [47–49], are developed for obtaining simple operator
forms for various inclusion or pattern shapes. In the literature also the symmetry properties of the matrix have
been well investigated [50–54] in order to approach more general varieties of problems. In the last years,
the RT/IRT method has been applied to several non-ellipsoidal domains and domain patterns, providing quite
simple analytical forms for the mean global operator of the domains, for the mean pair interaction operators
between each two elements in them and/or for the global interaction part of patterns [36,37,55–57].

In this context, the specific interests of knowing and usingmean operators of large, infinite-like, patterns, as
those obtained in earlier already cited works for spheres, spheroids or finite cylinder alignments will be shown
herein, using the example of bundles of infinite parallel cylinders. It will be shown that only a finite part of
infinite patterns contributes to the global interaction, owing to an influence distance (that we determine) beyond
which interactions between elements become negligible. On the contrary to a domain that represents a spatial
distribution of inclusions or of patterns within which the element arrangement will somehow also evolve with
their spatial distribution, this influence (or interaction cutoff) distance defines (unless changes in the matrix
symmetry properties) a size- and shape-invariant influence zone around any element and circumscribes a finite
yet varying part of the infinite pattern.

The present work aims at being a preliminary examination of interpenetrated fiber bundles with the goal
of arriving, in a forthcoming paper, at describing more complex embedded networks in compliant matrices
for effective property estimates from classical mean field homogenization framework (say, no second gradient
theory) to begin with. It will be pointed that the concept of infinite patterns suffering element interactions over
a finite and invariant influence zone has specific interest for continuous fiber networks in which by definition a
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finite pattern cannot be specified while an interaction domain of finite size can be introduced. Damage features
as matrix fracture or interface debonding will be disregarded.

The access to interaction estimates between the elements of such fiber networks in the homogenization
context imposes to at first solve analytically the interaction problem between two infinite parallel fibers with
same cross section. Surprisingly, the basic case of parallel infinite fibers with circular cross sections is not
present in explicit form in the literature so far, to the authors knowledge, even for cylinders of same cross section
radius, and although the single cylindrical inclusion case has been already treated [58,59]. It is noteworthy
(as shown next on) that from the RT/IRT method, this one-cylinder problem is solved (say the cylinder Green
operator is obtained) in a simple manner and no calculations.

In this article, we thus start by fully solving this two-cylinder basic problem (say providing the mean global
cylinder pair Green operator), a quite tedious mathematical exercise reported will all required details in an
“Appendix” that fortunately ends with a quite simple operator form. From this firstly solved case, the exact
analytical solution for the mean global Green operator of n-planar alignments of parallel infinite cylinders
(up to infinite fiber number) is presented, in a quite simple derivation from the pair interaction operator.2

It is then shown how to obtain from these operators for planar alignments the operator solution for infinite
one-directional bundles of parallel infinite cylinders and how the latter allows, in terms of effective properties,
applications for embedded structures of interpenetrated bundles.

Now, in order to show how, with these available mean operators for infinite patterns, one can describe quite
simply effective properties for the sorts of deformable fiber networks we are concerned with and how one can
follow the effective property evolutions resulting from deformation of the fiber arrangement, a homogenization
framework is necessary. Among themost simple (mean field, first gradient) homogenization frameworks which
are likely to be used for such property estimates (see [60–63] for reviews), we will make use of the framework
of Ponte-Castaneda and Willis (PC-W) [34], a type of mean field approximation which has also been shown
to apply for patterns in [35,37,57,61,64]. While the validity of these homogenization frameworks is generally
considered restricted to dilute inhomogeneity concentrations since the interactions are not, or not sufficiently,
accounted for, the application to finite patterns allows the account of the interactions interior to the pattern (even
when made of several phases, as in [65]). But estimates employing finite patterns still are restricted to dilute
concentrations of the selected pattern, with the interactions between the patterns remaining to be improved for
large concentrations. If when the larger is the representative pattern the lower is the disregarded interaction part,
the use of infinite-like patterns with all interior pair interactions possibly accounted for at any concentration of
the elements is expected to substantially correct, if not suppress, these dilute approximation restrictions. It will
be shown that the PC-W estimate form remains relevant at the limit of infinite representative patterns when
the representative spatial distribution symmetry is taken to be the one of the influence (interaction) domains.

Additionally, in order to describe structures with multi-directionally continuous fiber networks (inter pen-
etrated bundles) in a continuous matrix, for which the PC-W framework is not appropriate, we will also refer
to the so-called fiber systems introduced in [1–4] as well as to the laminate systems inspired from them, as
presented in [5,6].

Section 2 recalls briefly theRT/IRTmethod and the generic solution for the interaction operator between two
ellipsoids both already presented in several earlier works. Main details of the RT/IRT method are nevertheless
recalled in “Appendix A”. The (original) analytical calculations of the mean interaction operator between two
infinite parallel cylindrical fibers, which are reported in “Appendix B” with the necessary details for allowing
calculation checking and applications, result from specializing the ellipsoid pair to treat the limit case of two
infinitely long identical spheroids. Section 3 presents the analytical solution for the global operator of a planar
alignment of n infinite parallel cylinders, with n from 2 to infinity that results from the knowledge of the pair
interaction operator. Section 4 presents typical deformable fiber bundles and networks we are interested in and
compares some property estimates from using the global operators for the infinite networks obtained from the
alignment operators with estimates using operators of finite patterns. The key role and helpfulness of the mean
operator of infinite planar alignments of parallel fibers to follow the main arrangement changes in these fiber
patterns are shown from comparing with a few numerical simulations that are also provided in support. The
extension principle to 2D and 3D fiber networks described as interpenetrated directional 1D bundles is also
exemplified in Sects. 4, and 5 briefly concludes.

2 The also obtained solution for similar mean operators of planar alignments of beams with any rectangular cross section is to
appear in [57].
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2 The mean characteristic functions and Green operators of an inclusion pair from the IRT

2.1 Brief summary of the general IRT framework

We consider an infinite medium (matrix) with property tensor3 C containing a V inclusion, which is any
general, piecewise regular, possibly multiply connected, bounded domain. As recalled in “Appendix A” from
earlier works [36,42] and other following ones that are also cited herein, the modified Green operator�(r−r′)
we are concerned with results from the double x-differentiation at point r = (x1, x2, x3) in the medium
(when explicating the stress equilibrium conditions) of the G(r − r′) Green function that relates an applied
punctual force field at a point r′ to the displacement field it creates at r. The integral over that domain V of
�(r− r′) = −∂2G(r− r′)/∂xp∂xq yields the operator tV (r) = ∫

V �(r − r′) dr′ at interior points r of V and

its mean interior value over V , tV = 1
v

∫
V tV (r)dr. From the RT/IRT method in R3, the form of the interior

operator tV (r) (resp. of the mean operator tV over V ) is a weighted angular average of elementary operators
tP(ω) over the vectorsω = (θ, φ) of the unit sphereΩ (θ being counted around the x3 axis and φ from axis x1
in the (x1, x2) plane in all what follows). After recalled manipulations in “Appendix A”, this results in writing
for the elastic-like cases,4 with ω = (sinθcosφ, sinθsinφ, cosθ), dω = sinθdθdφ:

tVpq jn(r) =
∫

V
�pq jn(r − r′) dr′ =

∫

Ω

ψV (ω, r) t Ppq jn(ω) dω (1)

where:

t Ppq jn(ω) = (
(M−1)pj (ω)ωq ωn

)
(pq),( jn)

; Mmp(ω) = Cmipjω j ωi , (2)

ψV (ω, r) = 1

8π3

∫

V
(−π) δ′′ (ω.

(
r − r′)) dr′ = − sV ′′(z, ω)

8π2 . (3)

The rank-four elementary Green operators in Eq. (2) are super-symmetric and so it is as well for the
Green operator of any V domain, what is not the case for the related Eshelby tensors.5 From the IRT, the
mean interior operator for V takes the form tV = ∫

Ω
ψV (ω) tP(ω)dω. For tV (r) (resp. tV ), ψV (ω, r) (resp.

ψV (ω) = 1
v

∫
V ψV (ω, r)dr) is the weighting function for the elementary operators tP(ω) which, in the case

of a matrix with isotropic properties, reduce to simple trigonometric functions as recalled in “Appendix B”.
In Eq. (3), sV (z, ω) is the section area of V by the plane of equation z = ω.r, of ω-normal, which passes

through r and sV ′(z,ω), sV ′′(z, ω) are the first and second z-derivatives of sV (z, ω), say ∂(i)sV (z,ω)

∂z(ω)i
, i = 1, 2.

For a “smooth enough” boundary ∂V of the domain V ,6 one can equivalently write ∀ω:

ψV (ω) = 1

v

∫ d+
V

d−
V

⎛

⎝sV ′′(z) −
∑

i=1,2

(
sV ′(dVi )δ(± z − dVi )

)
⎞

⎠sV (z)dz = −1

v

∫ d+
V

d−
V

(sV ′(z))2dz. (4)

By definition for the interior weight function of V , its integral over the unit sphere is normalized as∫
Ω

ψV (ω, r) dω = ∫
Ω

ψV (ω)dω = 1. If V is an infinite fiber, the breadth is infinite and the weight function
is zero in all directions except normally to the fiber axis. For a x3-cylinder, the breadth around the x3 axis is
isotropic and the weight function value around x3 fulfills

∫
θ

∫
φ

ψcyl(θ, φ) sinθdθdφ = ψcyl
∫
φ=0,2π dφ = 1,

say ψcyl(0, φ) = 1/2π,∀φ.
When in the right hand side of Eq. (4), V is an inclusion pair such that V = V 1∪ V 2 (V 1∩ V 2 = Ø), one

has sV ′(z, ω) = sV 1′(z, ω)+ sV 2′(z,ω), and the mean weight function of V shares into two mean (or uniform

for ellipsoids) interior weight functions ψV 1(ω) and ψV 2(ω), corresponding to the terms
(
sV 1′(z)

)2 and
(
sV 2′(z)

)2 for the elements V 1 and V 2 plus the two mean cross-interaction parts ψV 1−V 2
V (ω) and ψV 2−V 1

V (ω)

3 Although elastic properties are of first concern here, all holds as well for four-rank elastic-like (including the so-called
generalized elasticity type in the case of coupled magneto-electro-elastic properties) properties or second-rank dielectric-like
ones [66].

4 Which contain the dielectric-like cases as subcase [36,56].
5 The super-symmetric Green operators have left, right and super-skew-symmetric counterparts, the left one of which matters

for example when domain rotations need to be accounted for [32].
6 If V is a pattern (V = ∪V i), ∂V here stands for ∪∂V i and the breadth of a pattern is the breadth of its convex hull.
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both corresponding to the cross-product sV 1′(z, ω)sV 2′(z,ω). When the two inclusions are congruent to some
V 0 shape, as is the case in the here treated inclusion pairs, the sum of the two mean (or uniform for ellipsoids)
interior weight functions is exactly the (mean or uniform) interior weight function ψV 0(ω) of the shape
V 0. We call “interaction part” in the weight function the ensemble of the two cross- interaction parts, say

ψ
V 1,V 2
V (ω) = ψV (ω)−ψV 0(ω). Since by definition both

∫
Ω

ψV (ω)dω = 1 and
∫
Ω

ψV 0(ω)dω = 1, it comes
∫
Ω

ψ
V 1,V 2
V (ω)dω = 0. All these generalities for inclusion pairs extend to n-inclusion patterns. The overall

mean interaction operator in a pattern is the total of the appropriately weighted mean pair interaction terms.

2.2 Application to pairs of identical congruent spheroids

The mean pair interaction operator tV 1,V 2
V = ∫

Ω
ψ

V 1,V 2
V (ω)tP(ω)dω between two general inclusions, V 1 and

V 2, as introduced in [42] for ellipsoids, is the cross-part of the global interior mean operator tV for the domain
V = V 1 ∪ V 2 (V 1 ∩ V 2 = Ø), of volume v = v1 + v2 and reads:

tV = 1

v

∑

i=1,2

∑

j=1,2

∫

V i

∫

V j
�(r − r′)dr′dr = v1

v
tV 1 + v2

v
tV 2 + tV 1,V 2

V . (5)

For V 1 and V 2 congruent to a same V 0 shape one has for the interior operator parts, similarly to the weight
function parts v1

v
tV 1 + v2

v
tV 2 = tV 0. We now on specialize to pairs of spheroids.

In contrast to previously considered axially symmetric inclusion pairs and patterns with regard to the x3
axis (θ = 0), we here consider two congruent spheroids V 1, V 2, of x2-oriented symmetry axis ( Fig. 2), say
(θ = π/2, ϕ = π/2) and lying in plane x2−x3. The calculations, according to the RT/IRT method, for the
mean pair interaction weight function and operator between two parallel identical spheroids of radius cross
section R at the limit of 2 infinite cylinders with axis inter-distance 2L , are reported in “Appendix B” with the
minimal information for allowing mathematical check and easy use.

All calculations done, one thus obtains for ζ → ∞ the needed independent two functions:

I 1,02cyl∞ = C2 =
3∑

i(m,n)=1

ζ∞
I 1,0i(m,n) = −ρ2

0

10
; I 2,02cyl∞ = C4 =

3∑

i(m,n)=1

ζ∞
I 2,0i(m,n) = −ρ2

0

20
− 9ρ4

0

280
, (6)

in which ρ0 = R/L and from which the three other involved trigonometric functions result as S2 = − I 1,02cyl∞,

S2C2 = I 1,02cyl∞ − I 2,02cyl∞, S4 = I 2,02cyl∞ − 2I 1,02cyl∞. These 5 functions from Eq. (6), that are the first original

Fig. 2 Pair of x2-oriented parallel identical prolate (infinite-like) spheroids V 1, V 2 in plane x2−x3 and section areas by the
plane of equation z = ω.r
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Table 1 Interior operator of η-elliptic x2-cylinder (col.1) and sphere (col.4); mean pair interaction operator for 2 circular x2-
cylinder (col. 2 and 3) and spheres (col. 5) aligned along x3

x2η-elliptic
cylinder interior
tx2η−cyl

x2 cylinder
general pair
interaction form

x2 cylinder pair
interaction form
v0ρ2

0 + w0ρ4
0

Sphere interior
tsph

Sphere pair
interaction form
v0ρ3

0 + w0ρ5
0

1111 (2+ η)A
2(1+η)2

+ B
1+η

AS4 + BS2 = A(C4
− 2C2) − BC2

2|B|−3|A|
20 ρ2

0 + 9|A|
280 ρ4

0
3A+5B

15
2|B|−3|A|

48 ρ3
0 + 3|A|

160 ρ5
0

1122 0 0 0 A
15 −|A|

48 ρ3
0 + |A|

160ρ5
0

1133 ηA
2(1+η)2

AS2C2 = A(C2 − C4) |A|
20 ρ2

0 − 9|A|
280 ρ4

0
A
15

|A|
24 ρ3

0 − 4|A|
160 ρ5

0

2222 0 0 0 3A+5B
15

2|B|−3|A|
48 ρ3

0 + 3|A|
160 ρ5

0

2233 0 0 0 A
15

|A|
24 ρ3

0 − 4|A|
160 ρ5

0

3333 η(1+2η)A
2(1+η)2

+ ηB
1+η

AC4 + BC2 −2|B|+|A|
20 ρ2

0 + 9|A|
280 ρ4

0
3A+5B

15 − 2|B|
24 ρ3

0 + 8|A|
160 ρ5

0

2323 ηB
4(1+η)

(B/4)C2 −|B|
40 ρ2

0
2A+5B

30
4|A|−|B|

96 ρ3
0 − 4|A|

160 ρ5
0

3131 ηA
2(1+η)2

+ B
4 AS2C2 |A|

20 ρ2
0 − 9|A|

280 ρ4
0

2A+5B
30

4|A|−|B|
96 ρ3

0 − 4|A|
160 ρ5

0

1212 B
4(1+η)

(B/4)S2 = − (B/4)C2 |B|
40 ρ2

0
2A+5B

30
|B|−|A|

48 ρ3
0 + |A|

160ρ5
0

theoretical result of this work, explicitly yield the terms of the mean pair interaction operator between two x2-
oriented cylinders reported in Table 1, using the two constants A = − 0.5B/(1−v) and B = 1/μ for isotropic
elastic-like matrices of shear modulus μ and Poisson ratio v (or the single one B = 1/D for dielectric-like
ones, with dielectric modulus D). The first column of Table 1 reports (from [56]) the interior operator for
an x2-oriented fiber of elliptic cross sections having their two axes along the x1 and x3 axes. The coefficient
η is the “stretch” (ellipticity) in direction x3: infinite (resp. null) aspect ratio η yields the laminate operator
with normal x1 (resp. x3). The interior operator of the single infinite x2-oriented cylindrical fiber (η = 1) is
retrieved from using the first of the three elements of the integral in Eq. (A.3), taking θmin(ϕ) = 0 (resp.
xmax(ϕ) = 1), for all ϕ values, as the min (resp. max) integration bound, say ρ0 = 1, what gives 1/2 and 3/8
for p = 1 and p = 2, respectively. Then, the terms of the global operator for the cylinder pair result from
Table 1 for the x2-oriented cylinders from adding the interior (at η = 1) and the interaction operator and then
for any orientation using the appropriate rotation matrix.

The sphere and sphere pair terms (from [36]) are also reported for comparison. Here, as the limit case when
ζ = 1, they simply correspond to the θ or x integrals, with the ϕ-integrals simply multiplying the θ -integral
results by a factor (2/π)

∫ π/2
0 cos2qφdφ, q = 0, 1, 2).7

It is striking that although often tedious, the calculations for the fiber pair interaction finally yield a quite
simple operator polynomial form in terms of the ratio ρ0 = R/L , with an obvious consistencywith the previous
results concerning alignments of spheres in [36], as is seen from Table 1. These analytical forms were not,
to the authors knowledge, provided earlier in the literature. The dimensionless nonzero terms of the elasticity
mean global (interior plus interaction) pair operator for parallel identical cylinders (say multiplied by the shear
modulus μ) are plotted in Fig. 3 as a function of the normalized distance L/R and for Poisson ratio of 0.3 and
0.5 (incompressible limit case).

According to the introductive recalls, the (i jkl) terms of a mean Green operator for an inclusion pattern
V represent the mean of the constrained strain (ε∗

i j (r)) in V when it suffers a unit uniform polarization stress

(τ 0kl) according to the relation ε∗
i j = t Vi jklτ

0
kl . And it is an essential operator for effective property estimates in

composites as seen in Sect. 4. At large enough distance L, the interaction part vanishes and the global operator
reduces to the interior one. It is seen from Fig. 3 that the influence or cutoff interaction distance is typically
ten times the cylinder radius, with no significant effect of Poisson ratio in the range v ∈ (0.3−0.5).

From Eq. (6), the terms of the pair interaction operator obey the even polynomial decomposition in ρ0:

tcyl,cylρ0 = v0ρ2
0 + w0ρ4

0 , (7)

7 The differences with the results in [36] come from an inter-distance definition difference where ρ0 = 2ρ.
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Fig. 3 Global (interior plus interaction) operator for two parallel infinite x2-cylinders in plane of normal x1

while for the sphere pair case it was of the odd form tsph,sphρ0 = v0ρ3
0 + w0ρ5

0 (with different tensors v0,w0).
As for spheres, the w0 part is only present for elastic-like material properties, in which case certain (ijkl)
components (when v0ijkl and w0ijkl have opposite signs) of the interaction operator can exhibit an optimum
for ρ0∗ < 1 which depends on the Poisson ratio through the A/B coefficient ratio.

The next section examines patterns of parallel infinite cylindrical fibers and gives their globalmean operator
in exact analytical form as well. This will show that while for a single pair of fibers the interaction part of
a global pair operator can be considered as modest in view of the main interior contribution, the cumulated
interaction contribution in large alignments becomes of the same order as the interior term when the fiber
inter-distance is small.

3 General and planar patterns of identical parallel infinite cylindrical fibers

3.1 Mean operator of general patterns of n parallel cylinders

Take a fiber set V = V 1 ∪ V 2 ∪ · · · ∪ Vn, with V i ∩ V j = Ø, ∀i 
= j ∈ (1, n), regardless of the spatial
arrangement of the fibers in the bundle. The operator at any r interior or exterior point of V (including exterior
points which are interior to the convex hull of V ) results from the superimposition of the elementary solutions
for the involved n inclusions and the involved Cn

2 = n!
2(n−2)! pair interactions (for n = 2, there is one pair

interaction, as defined to be the sum of the two opposite 1-2 and 2-1 terms). Similarly, the mean operator for
V assembles all the mean pair interaction terms together with one interior operator under the form:

tV =
n∑

i=1

vi

v
tV i +

n∑

i=1

n∑

j=i+1

(
vi + v j

v

)

tV i,V j , with v =
n∑

i=1

vi . (8)

All cylinders being infinite, one has
∑n

i=1
vi
v
tV i = tV 0 (even if they are not all of same radius), with

tV 0 = tV 0 uniformly since infinite cylinders only differ from infinitely prolate spheroids by negligible terms
(see [37,55,67]). According to the RT/IRT method, these local and mean operators are weighted averages of
the elementary operators tP(ω), making use, respectively, of the local (for r ∈ V i ⊂ V , resp. for r /∈ V ) and
mean weight functions in V which read:
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ψV (ω, r) = − 1

8π2

n∑

i=1

sV i ′′(z, ω), (9a)

ψV (ω) = −
∫ d+

V (ω)

d−
V (ω)

⎛

⎝
n∑

i=1

n∑

j=1

sV i ′′(z, ω)sV j (z, ω)

8π2v

⎞

⎠ dz =
∫ d+

V (ω)

d−
V (ω)

⎛

⎝
n∑

i=1

n∑

j=1

sV i ′(z, ω)sV j ′(z,ω)

8π2v

⎞

⎠ dz,

(9b)

In Eq. (9b),
⌊
d−
V (ω), d+

V (ω)
⌋
is the breadth of the convex hull of the inclusion pattern with support function

dV (ω). It was pointed in [56] that while isotropic distributions have the effect of reducing the interaction,
alignments are likely to reinforce it. Patterns of aligned identical inclusions, like spheres or axially symmetric
spheroids as well as planar alignments of parallel cylinders, are expected to exhibit the highest pair interaction
contributions. We examine planar alignments of equidistant parallel infinite cylindrical cylinders of same
radius, and the overall operator variation with their number n and their (assumed common) inter-distance.

3.2 Mean operator of a planar alignment of n cylinders

For identical cylinders planarly aligned in the x2−x3 plane, we denote ρi = R
Li

= R
i L = ρ0

i ≤ 1
i (with

ρ0 = R/L) for the ith neighbor of a reference cylinder V 1. By extending to n parallel cylinders in this same
plane of x1 normal the obtained relations for a cylinder pair in Eq. (6), the mean global operator for such a
n-alignment reads:

tncylρ0 = 1

n

(

ntcyl + 2
n−1∑

i=1

(n − i) tcyl−cyl
ρi

)

= tcyl + 2
n−1∑

i=1

(n − i)

n

(
v0
i2

ρ2
0 + w0

i4
ρ4
0

)

,

= tcyl + 2
(
σ

(n)
2 v0ρ2

0 + σ
(n)
4 w0ρ4

0

)
= tcyl +

(
v0(n)ρ2

0 + w0(n)ρ4
0

)
. (10a)

For n = 2, i = 1, σ
(2)
2 = σ

(2)
4 = 0.5 and t2cylρ0 = tcyl + (

v0ρ2
0 + w0ρ4

0

)
, where the v0 = v0(2) and

w0 = w0(2) tensorial notations represent the coefficients of the different nonzero terms as they appear inTable 1.
The factors σ

(n)
2 and σ

(n)
4 explicate the evolution of the quadratic and quartic contributions to the interaction

operator with the number n of fibers in the alignment. For n → ∞, the limit for the infinite series, �(q) =
limn→∞ σ

(n)
q = limn→∞

∑n−1
i=1

(n−i)
n

(
1
iq

)
is the Riemann Zeta function Z(q) = limn→∞

∑n−1
i=1

(
1
iq

)
, which

is finite, ∀q > 1.8 In particular, Z(2) = π2/6 and Z(4) = π4/90. As defined from the pair interaction
as v0(2) = 2σ (2)

2 v0 and w0(2) = 2σ (2)
4 w0, for a n-planar alignment v0(2) and w0(2) are substituted with

v0(n) = 2σ (n)
2 v0(2) and w0(n) = 2σ (n)

4 w0(2). With σ
(∞)
2 = Z(2) = π2/6 and σ

(∞)
4 = Z(4) = π4/90, from

Eqs. (8) and (10a), at the limit of an infinite alignment of parallel infinite cylinders, one obtains:

t∞cyl
ρ0 = tcyl +

(
v0(∞)ρ2

0 + w0(∞)ρ4
0

)
= tcyl + 2

(
Z(2)v0ρ2

0 + Z(4)w0ρ4
0

)
, (10b)

and with the particular (not always the maximal) values when all the cylinders are at contact:

t∞cyl
ρ0=1 = tcyl + 2 (Z(2)v0 + Z(4)w0) . (10c)

Equation (10)a, b, c is exact closed forms that are provided by the IRT method for (a) a n-alignment
with general L/R relative inter-distance and (b,c) for an infinite alignment, respectively, at general L/R ratio
or at contact (L = R), of equally distant cylinders. Owing to the values of 2Z(2) = π2/3 ≈ 3, 29 and
2Z(4) = π4/45 ≈ 2, 16, it is noteworthy that the global interaction contribution in such an infinite alignment
is pretty much more than the interaction contribution from the neighboring first inclusion pairs for the same
relative distance ρ0, ∀ρ0 ≤ 1.

Conversely, it is useful to see that for large enough alignments of finite n number of fibers, it is possible to
use the operator of the infinite limit: the critical fiber number above which the infinite operator holds depends

8 The Zeta function has the integral form Z(q) = 1
(q−1)!

∫ ∞
0

xq
ex−1 dx .
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Fig. 4 Global (interior plus interaction) operator for an infinite planar alignment of parallel infinite x2-cylinders in plane of
normal x1

on the inter-distance between fibers and increases when ρ0 approaches its maximum. It also depends on the
desired accuracy for any specific application. For example, the total of the interaction operators farther than
L ≥ 10R contributes at most (for a compact infinite alignment) by, say, only a few percent to the global one.
The evolution of the terms of the pair interaction operator with ρ0 provides the influence (or cutoff interaction)
distance between two fibers above which the interaction can be considered as vanished. For isotropic matrices,
this distance depends on the matrix Poisson ratio but not on the shear modulus. It is 2D isotropic around
a cylindrical fiber but other fiber cross section shapes are similarly responsible for a 2D anisotropic cutoff
interaction distance (not to be examined further here). All these results are similar to those reported in [36] for
axial alignments of spheres, in which case the dependency of the pattern operator with the sphere inter-distance
ρ0 involved terms of power 3 and 5 as recalled in Table 1, and the zeta functions Z(3) and Z(5) instead of the
terms of power 2 and 4 with the zeta functions Z(2) and Z(4) here obtained in Eq. (10)a, b, c.

It is noteworthy that the operator for an infinite alignment can be used for any finite alignment the total
extension of which exceeds the influence or cutoff interaction distance, independently of the fiber number n in
it. This conversely indicates that the dilute approximation without interactions strictly holds if a single fiber is
isolated in this influence volume, what is of the order of only one percent volume fraction. (This is a maximal
effect compared to vanishing average interactions in spatial arrangement of high symmetry, as discussed in
[56].)

For elasticity, Fig. 4 reports the global (interior plus interaction) operator as a function of the normalized
distance L/R, for the values ν = 0, 3 and ν = 0, 5 of the Poisson coefficient, in the case of an infinite
planar alignment of parallel cylindrical fibers. As for a pair of fibers, at large enough distance L/R between
neighboring pairs, the interaction part vanishes and the critical inter-distance for vanishing interaction seems
only slightly increased and basically, the influence or cutoff interaction distance does not increase much above
the one obtained for the pair interaction operator. (This remark of course depends on the result accuracy one
wishes to reach.) More striking is the cumulated interaction amount for an array that concentrates up to make
an infinite alignment at contact: in this case, the interaction part is almost equal to the interior one and is capable
for, according to the operator component, either duplicate the interior value or cancel it. This clearly means
that only considering a single pair interaction (Fig. 3) to represent interactions in a non-dilute concentration
of inclusions (here fibers) in a medium is far from accounting for the global interaction contribution (Fig. 4).

The significantly acting elements of the patterns are those interior to this influence distance around one
fiber and their number is the ratio of this influence distance to the fiber inter-distance: taking, for example, the
influence distance as equal to a dozen of fiber radii (a number which captures more than 90% of the maximum
of interaction part an infinite pattern would provide to the global operator), when the fiber inverse inter-distance
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ρ0 increases as 1
12 ,

1
6 ,

1
4 ,

1
3 ,

1
2 , 1 up to contact, the pattern size in the influence zone is, respectively, of 1, 2, 3,

4, 6 and 12 fibers. Using the infinite operator automatically accounts for this variation of pattern size when ρ0
evolves.

The exemplified alignment of x2-oriented fibers being in the plane of normal x1, it is possible to check the
consistency of the obtained operators from the contact limit case of an infinite alignment: if the fibers were of
same square or rectangular cross section (as considered in [57]), their compact alignment would look like a
laminate layer, the Green operator of which is well known to have nonzero components t1212 = t3232 = B/4
and t1111 = A+ B, the latter one reaching zero at the incompressible limit (A = −B). It is easily verified that
for the compact alignment of cylinders the obtained components for the pattern operator evolve similarly with
decreasing inter-distance, say toward (although not reaching) zero, except for t1212 and t1313 which increase
and for t1111 which either increases or decreases, depending on the matrix compressibility (the Poisson ratio
value). The obtained planar pattern operator for fibers in the x2 direction also holds for any general (θ, φ)
orientation, provided the appropriate rotation, as in particular for a general fiber orientation θ in the x2–x3
plane. For x3-oriented fibers it simply results from the appropriate permutation of axes x2 and x3 in all the
pattern operator terms, corresponding to a rotation from θ = π/2 to θ = 0.

As is seen from what precedes, a planar layer of parallel equidistant cylindrical fibers needs six parameters
(four information) for being geometrically characterized: the number n of parallel elements, the inter-distance
L = R/ρ0 between neighboring pairs and two directions ωi = (θi , φi ) and ω j = (

θ j , φ j
)
for, respectively,

the fiber direction and the normal to the fiber layers. When all planar alignments are taken as infinite, any one
of them can be specified by only 3 information

(
ωi , ω j , ρ0

) = (
(θ, φ)i , (θ, φ) j , ρ0

)
, say 5 parameters, with

angles (θ ,φ), to be explicated when necessary, as exemplified in the next section.

4 Application to effective property estimates for a soft matrix reinforced by a fiber network

We exemplify simple cases of a matrix embedding fiber bundles or networks where planar alignments can
be identified as constitutive elements such as to make use of the global fiber pattern operators obtained in
the previous sections for determining effective property estimates. As far as one considers a homogeneous
medium embedding one, or several other, phase(s) under the form of inclusions or inclusion patterns, in random
manner, using themeanfield two-point statistics approximation introduced in [34] allows to estimating effective
properties in accounting for each phase volume fraction, properties and representative domain shape as well as
for some global anisotropy of the spatial distribution symmetry of these phases when possible [68]. The cases
of embedded elements that remain co-continuous with the matrix enter this framework as limit cases, typically
represented by fibered and layered systems [5,6]. Considering elastic-like or dielectric-like properties, this
here on called “PC-W” estimate from [34], for n included phases in matrix with properties CM , takes the
generic form:

CnVi/SDist
effPCW = CM −

⎛

⎝

(
∑n

i=1

(

fi

((
CM − Ci

)−1 − tV i
CM

))−1
)−1

+ tSDist.
CM

⎞

⎠

−1

. (11)

In Eq. (11), tV i
CM is the mean operator of the representative domain V i for phase i (a single inclusion of

phase i , or a finite pattern of them) having Ci properties and fi volume fraction and tSDist.
CM is the (formally

ellipsoidal) operator representing some common spatial distribution symmetry for all the V i domains in the
matrix. This distribution symmetry operator can also be seen as the operator of the representative (ellipsoidal)
elementary matrix volume VM containing the pattern V i . This latter understanding fixes a concentration limit
for the validity of the PC-W estimate, related to the minimal reference volume size capable of containing
the representative patterns of the embedded phases, in the sense of an (ellipsoidal) envelop of these patterns
[34,35]. When the domains V i are single inclusions, the PC-W estimate statistically accounts for a part of
their interactions through their spatial distribution, but the larger are the chosen representative patterns V i ,
the more precisely the pair interactions can be accounted for at the pattern scale.9 As far as the considered
patterns are finite sets, the estimate still regards the pair interactions between any two patterns through their
spatial distribution and the dilute approximation that characterizes this estimate type still applies at the pattern

9 Patterns with mixed inclusion pair interactions, not accounted for in Eq. (11), appear in [65].
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scale. Equation (11) will be enough for the following discussion purpose about the use of infinite patterns, and
especially the two-phase form of it (a unique embedded phase) which simplifies to:

CV/SDist
effPCW = CM − fV

(((
CM − CV

)−1 − tV
CM

)

+ fV tSDist.CM

)−1

. (12)

In Eq. (12), the embedded phase has volume fraction fV = 1 − fM and properties CV , a representative
inclusion or pattern V with mean global operator tV

CM , and these patterns are spatially distributed according

to some (ellipsoidal) symmetry represented by the operator tSDist.
CM . Assuming statistical homogeneity of the

individual elements, regardless of the pattern, fV must also be the inclusion concentration in the pattern, say
the volume fraction of V in its elementary matrix volume VM (a difference would represent some inclusion
clustering in the patterns, the statistical homogeneity assumption applying then at the pattern distribution
scale).

Now, when a composite comprises a compliant matrix and a stiffer embedded phase, the inclusion arrange-
ment inside the representative pattern is expected to evolve with the matrix deformation (changes of the
inclusion shape being considered as negligible in comparison), this expectedly having an effect on the pattern
element interactions. The description of such evolutions can be simplified when global operators for typical
large (infinite-like) inclusion patterns are available in closed form, as those for aligned spheres and spheroids
[36], for coaxial finite cylinders [37] and for planar arrays of infinite fibers (this present work) to which we
here pay special attention.

In what follows we only consider changes of the material two-phase microstructure (whether them coming
directly from the elaboration process or from some applied deformation on an initial microstructure) for which
everything but the fiber arrangement remains invariant and the individual fibers can be assumed to: (1) not
deform (they remain straight and of fixed circular cross section) and (2) all remain parallel to a same direction
(that may vary) by definition of a 1D bundle. That is we disregard all situations of possible bending, flexion
and torsion modes for the fibers or for their arrays, to which a separate analysis needs to be dedicated. We
furthermore disregard any interface de-cohesion between the fibers and the embeddingmatrixwhich is assumed
compliant enough for so doing if the microstructural changes result from some applied mechanical loading.

The focus is on the examination of estimated variations of effective property estimates when (no matter so
much how) changes occur, in the above-specified limits, in a representative volume element (RVE) of the fiber
arrangement. We compare estimates resulting from different possible descriptions of this fiber arrangement,
paying special attention to descriptions making use of infinite patterns in some simple/simplified way for
easy use, in comparison with more commonly used simpler finite patterns. Comparisons with experiments
are also let out of the present scope, except some numerical ones to provide some comparison data. It is
worth to here specify that comparisons with any finite element numerical simulation data can only capture
tendencies (not accurate match), owing to the impossibility of describing similarly the boundary conditions
and the material microstructural features as in homogenization framework (infinite matrix, isotropic inclusion
or fiber arrangements, etc.).

The first selected example is simple matrix reinforcement by a one-directional (1D) fiber bundle, char-
acterized by a regular arrangement of parallel infinite cylindrical fibers of same radius R as viewed from a
bundle cross section. More complex networks can often be described as several interpenetrated bundles of
parallel cylindrical fibers from this one-directional type. And these structures can be seen in different manners
as arrangements of interpenetrated layers of infinite planar patterns. One-directional cylinder bundles represent
the basic simplest form ofmore general fiber bundles or networks possibly also involving fibers of non- circular
section shape. We here only consider cylindrical fibers; rectangular beams have been addressed in [57] in a
different context but in a similar (planar alignment) manner.

4.1 Description of 1D fiber-reinforced matrices from infinite planar arrays of infinite fibers

A one-directional bundle of parallel fibers can be described in different manners, as exemplified in Fig. 5,
by cross section views of normal ωi = (θi , φi ). On the left side example, the fibers are taken as randomly
distributed in isotropic manner (no spatial arrangement is accounted for if any) with ignored specific pair
interactions what means a validity restriction to “dilute enough concentrations”.

The representative volume element (RVE) is a matrix cylinder embedding a single fiber and straining such
a material amounts to modify this RVE (whose shape represents the spatial fiber distribution) from isotropic to



Mean Green operators of deformable fiber networks embedded 113

Fig. 5 2D isotropic (a) and horizontally (b) or vertically (c) strained elementary volume of 1D fiber-reinforced matrix using a
RVE comprising, from left to right : a single fiber, a finite fiber pattern and the finite part of an infinite fiber pattern contained in
a (2D isotropic) influence zone

elliptic according to a direction of compression- or extension-like stretch. In the central description, a regularly
enough arrangement of the fibers which are aligned and with nearly equal inter-distances in parallel planes
is taken into account with using a finite pattern representative of the major interactions between fibers in the
bundle.

A minimum of 3 or 4 fibers is representative of the first-neighbors interactions and larger sets can be
selected as well, the more complex the pattern and the pairs interactions inside it when the larger is the fiber
number. If substituting a finite pattern to a unique fiber allows accounting for interaction within the chosen
pattern, pair interactions between patterns remain only accounted for through their spatial distribution. Such
a description holds for dilute enough concentrations of the selected pattern unless it is large enough to attain
the size of the influence domain, above which case it becomes simpler to consider an infinite pattern. A major
advantage is that while finite patterns cannot be valid for any fiber volume fraction in the matrix to follow a
possibly evolving fiber arrangement when smaller than the influence zone, using an infinite pattern has open
validity range. And while for any finite pattern not reaching the influence domain size it is still necessary to
attribute it a matrix volume that varies in shape accordingly with the fiber pattern, above this influence size
the shape of the reference matrix domain becomes the one of the influence domain shape itself which is not
varying with the pattern arrangement. The changes of the pattern part inside this domain are those whichmatter
for the effective properties to be estimated.

This corresponds to the third right-hand-side example of Fig. 5, where the pattern is assumed being infinite
with only a finite part of it contributing to the interaction estimate due to the finite interaction or influence
distance represented by the dotted circle, with possibly entering new (gray) elements and possibly getting out
other (white) ones during a deformation-like change in the fiber arrangement. Whether the pattern of several
fibers is finite or infinite, the fiber concentration limit is given by the arrangement at which fibers become in
contact, since they cannot overlap each other. Further evolutionswill depend on the allowed fiber rearrangement
possibilities inside thematrix, what is not in the present scope. For cylinders of same radius, the compact regular
(hexagonal) piling corresponds to a concentration fmax = π/2

√
3 ≈ 0,906. This concentration limit is further

decreased when the fibers are not in hexagonal piling, as described next.
As far as in the bundle the fibers can be assumed regularly enough arranged such as to appear aligned

and with nearly equal inter-distances in parallel planes, these planar alignments are characterized by the fiber
inter-distance and an ω j -oriented normal around the ωi fiber axis. Thus, such fiber arrangements around any
selected fiber can be fully represented by an appropriately weighted average 〈.〉ω j over a set of orientations ω j

around theωi axis of the layer operators t
∞Fib(ωi ,ω j ,ρ0)
CM , what provides a global bundle operator t

∞Fib〈ωi ,ρ0i 〉ω j

CM .
This can be approximated in only considering the few densest planar arrays of fibers that well enough represent
the bundle. As shown in Fig. 5 right, this bundle representation needs properly describe elements entering the
cutoff interaction distance (the gray ones) as well as those getting out of it (the white ones) when the fiber
arrangement changes. Also, the main and densest planar arrays do not necessarily remain invariant, as visible
in Fig. 5c right where the vertical array (dotted parallel lines) becomes denser than the horizontal one.

Rather than calculating all pair interactions inside such a bundle (what is possible), it can be simplifying to
making use of the main operators for the infinite planar arrays representative of the bundle for the follow-up
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of fiber arrangement evolutions or changes in it. The global operator for such an infinite bundle, t
∞Fib〈ωi ,ρ0i 〉ω j

CM

say, can thus be obtained from appropriately summing all or the main constitutive infinite planar alignments
around their common fiber direction.

Using the PC-W estimate with considering nearly 1D bundles of infinite circular fibers organized according
to a 2D isotropic influence zone yields effective properties of the form:

C
∞Fib〈ωi ,ρ0i 〉ω j
effPCW = CM − fF

((
CM − CF

)−1 − t
∞Fib〈ωi ,ρ0i 〉ω j

CM + fF tSDist.CM

)−1

. (13)

It is without loss of generality that the efficiency of such a global infinite bundle operator t
∞Fib〈ωi ,ρ0i 〉ω j

CM

can be examined with simply considering the 3 or 4 main layer orientations generally having different inter-
distances L j = R/ρ j .Aswill be exemplifiednext on, appropriate averageof thesemainplanar pattern operators
describing the bundle arrangement is likely sufficient to provide a quite simple reasonable approximation for

t
∞Fib〈ωi ,ρ0i 〉ω j

CM , owing to the simple operator form for planar arrays and from it in Eq. (13), effective property
estimates to compares with more classical ones using no or finite small fiber patterns.

If the changes in the bundle fiber arrangement in the composite are assumed to be the results of a homoge-
neous strain of the matrix (normally to the fiber direction), the variation of this characteristic set of currently
densest fiber arrays allows quite easily to varying the pattern operators according to the evolution of the
composite structure, in varying their orientations together with varying accordingly the fiber inter-distance in
these layers. Comparing effective property differences between different bundle fiber arrangements directly
resulting from elaboration will follow the same procedure.

In order to simplify the discussion and to simply image the points in concern, we make use of the
deformation-like origin for the changes in the bundle fiber arrangement and both fiber and matrix phases
will be considered as incompressible while deformation in the infinite fiber direction will be disregarded. This
allows assuming a constant area for the cross section of any bundle RVE. Starting from the regular hexagonal
arrangement that may be seen as the undeformed reference one with corresponding to a η = 1 “stretch factor”
(Fig. 5a, middle and right), any change of this η value can be seen as a tensile or compressive stretch normally
to the fiber direction taken along the x3 axis or x1 axis as shown in Fig. 5b, c. It is worth pointing at first that the
two ranges η > 1 and η < 1 do not correspond to symmetric changes of the fiber arrangement in the matrix:
according to the drawings of a first-neighbors pattern in Fig. 6, a stretch η > 1 along x3 extends the initial
reference equilateral triangle of Fig. 6 left for η = 1 into the one of Fig. 6 middle, while the converse stretch
η < 1 along x3 first yields to a square arrangement as shown in Fig. 6c at η = η0 = 1/

√
3. For η values lower

than η0 = 1/
√
3, the fiber arrangement evolves as for η > 1 up to a π /2 rotation. A π /2 rotated hexagonal

arrangement is retrieved at η = 1/3, and any η = k > 1 value has a π /2 rotated equivalent at η = 1/3k with
a kmax limit when the fibers get into contact in the densest of the planes in the pattern (when η < 1/3, the
horizontal alignments become the densest ones in place of the vertical alignments when η > 1). Owing to this

Fig. 6 A 3-element minimal cylinder pattern, for (left) a regular hexagonal array, η = 1; (middle) a compressed-like array
along x3 axis for η > 1, for constant area cross section (the related 3 main infinite alignments—dashed lines—represent the
corresponding infinite pattern); (right) the 4-element (losange AHBK) pattern in the x3 extended-like square arrangement for
η = 1/

√
3.
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symmetry, we have explored the half range η > 1/
√
3, using the four planes of the losange 4-fiber pattern that

needs to be accounted for in the square arrangement at η = 1/
√
3, as shown in Fig. 6 right.

The evolution (or variation) of this pattern can be described as follows: the matrix is considered as almost
incompressible and the area of the elliptic disk is assumed to remain constant (πR2 = πab = πb2η =
πa2/η) where a = OA and b is the second ellipse semi-axis. The alignment of normal x1 (resp. x3) keeps
the ϕ angle to 0 (resp. π /2), while for the two other ones, κ0 evolves—in the considered η range—from

± 2π/3 to ±
(
(π/2) + tan−1(1/η

√
3)

)
. The fiber inter-distances, respectively, vary as HKη

HK1
= 1√

η
for the

vertical alignments, AIη
AI1

= √
η for the horizontal ones and AHη

AH1
= AKη

AK1
=

√
3η+(1/η)

2 for the two types of
oblique ones. When η = 1, 3 fiber inter-distances are equal on the vertical and oblique alignments such

that I H1 = L1 and the concentration of fibers (with radius r) reads f = 0.5πr2

L2
1

√
3

= 0.5πL2
1ρ

2

L2
1

√
3

= πρ2

2
√
3

=
fmaxρ

2 ≤ fmax. For η > 1, the first fiber contact limit is in the vertical alignments for which the inter-
distance is the smaller, such that I Hη = Lη = L1/

√
η provides the new first contact limit. The fiber volume

fraction at this contact when η increases corresponds to ρη = r/Lη = √
η (r/L1) = ρ

√
η, with the limit

being at ρη = 1, thus lim(ρ2) = lim(ρ2
η/η) = 1/η say flim = π

2
√
3
1
η

= fmax
η

. For the square arrangement

(decreasing η to 1/
√
3) the maximal fiber concentration is for fibers at contact along the oblique planes where

ρη = r
Lη

= 2√
3η+(1/η)

r
L1

= 2ρ√
3η+(1/η)

, lim(ρ2) = lim
(
ρ2

η
3η+(1/η)

4

)
= 3η+(1/η)

4 , say flim = fmax
3η+(1/η)

4 ,

equal to flim = π
4 at η = 1/

√
3.

4.2 Estimates of effective properties of 1D fiber-reinforced matrices

Based on the three structure descriptions shown in Fig. 5 for a 1D fiber bundle for some different spatial
arrangement of the fibers, we compare the corresponding estimates of effective properties, using the generic
Eq. (13) for the three of them, in the case of a matrix straining-like that corresponds to a fiber arrangement
change as for a vertical compressive mode):

– For the representative volume with a single fiber in elliptic description with aspect ratio η > 1 (Fig. 5,
left), the elliptic distribution operator is given in Table 1 column1, which also gives the cylindrical fiber
operator when taking η = 1;

– For the middle case of Fig. 5, the same η-elliptic fiber operator describes the finite pattern distribution,
while the pattern mean operator is the sum of the pair interaction operators in the considered pattern,
according to (8)–(10). We assume the elementary finite pattern to have the same “elliptic” symmetry (η) as
the distribution operator, taken to correspond with planes, the normal of which are at angles κ as defined
in Fig. 6. This pattern, when reduced to its minimum to hold for any η value on both sides of the square
symmetric pattern at η = η0 = 1/

√
3, needs the fourfold set of main (densest) fiber planar alignments

(twice the triangle of Fig. 6a,b, symmetrically duplicated into a losange that yields the square pattern in
Fig. 6c) specified by the 4 inter-distances and the 4 plane orientations as described in the previous section.
Each of these four constitutive main alignments can be considered made of a same number of n elements,
with n ranging from 2 to any value that makes the distance between two extreme fibers larger than the
cutoff interaction (influence) distance, even in the case the n fibers are at contact. According to the here
estimated influence distance, n should be larger than the ten to twenty critical number of fibers, ncritic say.
In this latter case (n > ncritic), the interaction terms can be taken as being those of the infinite alignment.
We report the data obtained for the two extreme assumptions (n = 2 and n “infinite” for n > ncritic) that
correspond, respectively, to Eqs. (7) and (10b).

– For the third (right hand side) case in Fig. 5 that also makes use of a four infinite alignment pattern, the
invariant 2D isotropic distribution is represented by the cylinder operator. Comparing these two estimates
that make use of the same infinite pattern but in different distribution symmetries allows to specifically
examining the effect of taking that constant distribution symmetry rather than an elliptic one that varies
with the pattern.

For the isotropic matrix phase that embeds this fiber bundle, the only elastic property of interest is the
Poisson ratio vM , while only the relative elastic stiffness moduli of the fibers CF/μM are needed, μM being
the matrix shear modulus. Although CF can be taken of general anisotropy, we here consider isotropically
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Fig. 7 Evolution with a stretch η of the three effective shear moduli at 40% (a) and 60% (b) fiber volume fraction from the four
compared estimates (single fiber, elementary pattern and n > ncritic -elements in η-elliptic distribution are represented by black
dots, triangles and crosses, the infinite pattern in a fixed influence zone by white dots on a bold line). Numerical 2D simulations
for the in-plane shear modulus 2C55 reported for comparison are plotted as points linked by dashed straight lines

incompressible elastic fibers for sake of simplicity (vF = 0.499) and since the matrix is assumed highly
compliant in comparison with the fibers, one considers μF = 50μM .

We arbitrarily choose vM = 0.49 for keeping a nearly incompressible matrix. We present and discuss
for the four compared different estimates the variations with the fiber arrangement (say with η) of the three
effective shear moduli and of the two effective Young moduli transverse to the fibers (the axial Young modulus
Y2 being in all cases given by the Voigt upper—arithmetic mean—bound). Except for Y2, all results are on the
Reuss lower bound side, as expected for hard inclusions in a soft matrix. From these data which are presented
in Figs. 7 and 8, one firstly observe that the 2 estimates based on the use of an infinite pattern to represent (even
in a simplified manner) the fiber bundle are markedly different from those which make use of more simpler
descriptors of the fiber arrangement, while the two estimates of each pair do not differ much. The few reported
comparisons with numerical simulations also clearly evidence that the former pair (infinite alignment pattern)
better capture the major features of effective property changes due to the fiber arrangement than the latter
ones. Figure 7a, b, respectively, presents for 40 and 60% fiber concentrations, the 3 effective shear moduli
variations with η from 0.4 (slightly less than the square symmetric arrangement 1/

√
3 ≈ 0.57735) to nearly

the maximal stretch with no fiber contact, for the four compared estimates: it is seen on both figures that
while for 2C44 (C2323) and 2C66 (C1212) (which clearly appear to reverse from η > 1/

√
3 to η < 1/

√
3,
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Fig. 8 Evolution with a stretch η of the two transverse effective Young moduli at 40% (a) and 60% (b) fiber volume fraction from
the four compared estimates (single fiber, elementary pattern and n > ncritic-elements in η-elliptic distribution are represented
by black dots, triangles and crosses, the infinite pattern in a fixed influence zone by white dots on a bold line). Full and dashed
lines correspond to two different weight sets given to the four terms patterns taken to represent the bundle in each of the four
compared estimates. Numerical 2D simulations are plotted as open double circles for comparison

the square pattern position been indicated by the vertical dotted line) the variation remains moderate, there
is a sharp change for the 2C55 (C1313) modulus, in the cross section plane. This is the shear modulus that
has been compared with 2D numerical simulations using the bundle RVE and simulation calculation method
summarized in “Appendix C”. It is quite striking that only the two estimates making use of the infinite planar
finer alignments capture the main features of this modulus evolution with η (changes of fiber arrangement)
over almost all the explored range. Here, the four main planar alignments have been considered over the whole
η range with weights (1/6,1/3,1/3,1/6) since in a losange 4-fiber pattern, the weights of the two oblique planes
are twice those of the x1 and x3 planes as shown in Fig. 6.

Figure 8a, b similarly reports the same estimates for the two transverse Young moduli as well as 2D
numerical simulations performed according to “Appendix C” procedure. As for the shear moduli, the estimates
that make use of the infinite planar alignments better capture the Young moduli evolutions with η, especially in
the range η < 1 but do not reach the numerically estimated moduli values when η becomes large. These latter
values can be overestimated because the matrix meshing becomes difficult when the fibers get close to each
other in some of the planar alignments and one can consider the well-reproduced tendency as a satisfying result.
Also, since the pattern of 4 main alignments necessarily omits possibly also influent few additional ones, the
best weights to be given to the fourfold set may not be (1/6,1/3,1/3,1/6): in order to show this, the set of dotted



118 P. Franciosi et al.

lines which get closer to the numerical values correspond to a different weight set that enhances the contribution
of the densest plane, namely based on using the function arcsin(R/Li) (i = 1, 4, for the four main alignments)
in normalized manner,10 as if each of the four alignments is weighted to also account for complementary
alignments in its angular sector. Unfortunately, this alternative weighting (arbitrary) assumption that appears
better for the Young moduli becomes less satisfying for the 2C55 shear moduli even if the main tendency
as in Fig. 7 is still obtained (not reported for room saving and sake of clarity in the figures). That again
means that the estimate improvements may need to account for some more alignments to more accurately
describe the bundles, what is a still ongoing analysis not to be entered here. If the proposed simplification of
the fiber bundle by a limited set of 3 or 4 main planar alignments turns to appear too-simplified to be valid
over the whole possible range of fiber arrangements as represented by the η parameter, it quite well holds
for a large η range already. And the obtained results with the proposed simplifications clearly show that the
use of infinite alignments appears to significantly improve the obtained moduli estimates compared to more
classical estimates with a single fiber or a small pattern of first near neighbors. In that respect, it is noteworthy
that, provided all pair interactions being conveniently accounted for in such an infinite pattern description of
the fiber arrangement, the resulting mean field estimate will no more be a dilute concentration approximation,
being a dilute concentration applying on patterns that are infinite and individually representing the whole
fiber arrangement. At last, the weak difference due to whether the reference domain is elliptically varying or
constant 2D isotropic shows that considering the invariant influence domain with an infinite bundle is relevant.

As the fiber arrangement is described, the fiber concentration limit is given by the impossible overlapping
of any two fibers. If the changes in the composite structure result from a deformation process (as for the given
example of compression or extension transversally to the fibers) other processes in the fiber rearrangements
need to be described appropriately to allow further deformation beyond the contact limit. And if the fiber
arrangement evolution can still be described from planar alignments, the modeling can be pursued with the
appropriate representative (infinite and fully interacting) pattern. It isworth insisting on the fact that the reported
results also hold for fiber arrangements having some η ellipticity that may simply result from the composite
elaboration, and not necessarily from an applied deformation on it.

Now, in the extreme case when the fibers are dense in a single set of parallel planes (of normal ω j ) and
with large enough distances between the planes to neglect transverse interactions, the structure can be treated
as a laminate structure made of fiber-reinforced layers of matrix with distribution symmetry represented by
the platelet operator t

pω j

CM (from Table 1, column 1, with η = 0 or infinite according to the laminate normal
orientation x1 or x3, respectively). A property estimate from the PC-W framework for such a laminate structure
reads:

C
∞Fib(ωi ,ω j ,ρ0i )
effPCW = CM − fF

((
CM − CF

)−1 − t
∞Fib(ωi ,ω j ,ρ0i )

CM + fF t
pω j

CM

)−1

, (14)

using the single t
∞Fib(ωi ,ω j ,ρ0i )

CM operator for the infinite planar pattern of fibers and for the distribution, the

laminate operator t
pω j

CM of samenormal (fromTable 1, column1with appropriateη value and rotated orientation).

4.3 Extension to fiber networks as interpenetrated parallel fiber bundles

Now consider a layered structure still made of planarly fiber-reinforced (soft) matrices and issued from a 1D
bundle as the one of Fig. 9a (similar to the one of Fig. 5 but with a rectangular rather than hexagonal array
of fibers) by alternatively rotating the successive layers along the normal axis x3 say, at plus or minus ϕ (not
necessarily orthogonal) angle with regard to the x1 axis. This is illustrated in Fig. 9b where the odd and even
fiber layers numbered

(n11, . . . , n61 . . .) ,
(
n13, . . . , n63,...

)
, (n15, . . . , n65, . . .) , . . .

and

(n12, . . . , n62 . . .) ,
(
n14, . . . , n64,...

)
, (n16, . . . , n66, . . .) , . . .

alternate.
10 Each arcsin(R/Li) function for the four alignments is divided by the sum of them four.
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Fig. 9 A one-directional rectangular fiber bundle (a) transformed into a two-directional arrangement of infinite and planarly
aligned infinite fibers by alternated layer rotations (+ ϕ, − ϕ)

The fibers are equidistant in all layers, and the fiber radius R and their inter-distances L = R/ρ0 are also
taken identical in the two-layer types, although they may be different more generally. Also assume the layers
parallel the x1–x2 plane to have equal thicknesses or inter-distances such that both layer types contribute to
50% of the composite material.

Under still simple deformation modes and still assuming rigid fibers (neither bending nor torsion allowed),
such a structure may not only change the inter-distances between fibers as for the previous 1D bundle (as
would result from a compression along x3 axis for example) but also reorient the different fiber layers by a
change of the angles ± φ (under a tension in the x1–x2 plane for example).

This two-directional arrangement could be reasonably well described as a bilayered laminate structure with
x3 normal axis and effective properties for such a bilayered structure can be obtained in applying the classical
two-phase laminate scheme [20] on the homogeneous two materials equivalent to each layer structure type,
which only differ by a 2ϕ disorientation. The effective properties for the two individual layer types could be
estimated by the laminate solution of Eq. (14) with taking the appropriate fiber orientation ω± i = (π/2, ± φ),
according to the ϕ rotation around the x3 axis. Yet, so-doing this laminate-based estimate would not take into
account the trans-layers fiber interactions and would not be very accurate if the layer thicknesses are to thin
(if the alternated layers are too close to each other, say).

This laminate-base estimate is applicable to any number of disoriented interpenetrated bundles larger than
two, provided they all are rotated around a same axis, which will be the normal to the layered description. It
does not apply when more than two bundles are interpenetrated otherwise, as, for example, a third bundle with
x3-fiber orientation is introduced in the pattern of Fig. 9 right.

Relevant alternatives for structures that exhibit multi-directional phase co-continuity features consist in
using either a fiber system scheme or a laminate system scheme, according to the references [1,2,4–6,32] given
in introduction. A property estimate from a fiber system or a laminate system scheme consists in averaging
(arithmetically) the property estimates from an elementary 1D fiber or laminate structure over some (possibly
discrete) distribution of (fiber or laminate normal) orientations ω j .

For estimating properties from a laminate system scheme, the elementary 1D laminate structure can
assemble as many different parallel phase layers as involved in the composite to be described, in using
tV i
CM = tSDist

CM = t
pω j

CM in Eq. (11), and the reference matrix possibly being any one of the assembled phases. In
an elementary 1D laminate structure with normal ω j , all the involved phases are co-continuous normally to ω j
with Voigt-like effective moduli in this plane while they are, with some modulation according to the modeling
details, Reuss-like (harmonic average) in direction ω j .

For estimating properties from a fiber system scheme, the elementary 1D fiber structure can be described
with making use of as many fibers as appropriate in the representative pattern, provided that all are parallel. In
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that respect, disregarding the “quality” differences, the effective properties obtained from any one of the four
descriptions for the 1D fiber bundle that are compared in Sect. 4.2 (from Eq. (12)) for a two-phase material
could be used (parallel fibers of different phases can also appear in the 1D bundle description if more than one
phase is embedded) with a better capture of the effective moduli for the estimates that make use of infinite
alignments. In a 1D fiber structure, the effective moduli are Voigt-like with regard to the fiber direction ω j
and, also with some modeling-due modulations, are nearly Reuss-like normally to it.

Consequently, laminate system schemes are more appropriate when multi-directional phase co-continuity
needs to be accounted for without distinction between the involved phases, while fiber systems are more
appropriate if one of the phases plays a specific role (as amatrix). Both become of interest when interpenetrated
1D fiber bundles are to be considered, with the best choice depending on the specific situation.

For the structure exemplified in Fig. 9 right, this fiber arrangement can also be seen (if the fibers are also
well aligned in alternatively identical layers) as two interpenetrated arrays of planarly aligned cylinders, with
normal oriented at ± φ∗ = ± (π

2 − φ), as represented by the layers

(n12, n14, n16 . . .) , (n22, n24, n26 . . .) , (n32, n34, n36 . . .) , . . .

and

(n11, n13, n15 . . .) , (n21, n23, n25 . . .) , (n31, n33, n35 . . .) , . . . .

Aproperty estimate could then be obtained fromusing a two-layer laminate system scheme, that is an arithmetic
average of the effective properties of the two types of interpenetrated planar arrays, also obtained from Eq. (14)
with the appropriate layer orientation and fiber inter-distance. This second description is not either fully
satisfying for the interactions between the two interpenetrated arrays are still not well accounted for. In this
example, a better account for all the fiber interactions would be likely obtained in considering at once these
two pairs of planar alignments in a four-layer laminate system scheme.

Now, since the structure of Fig. 9 right can also be described as two inter penetrated (± φ) 1D rectangular
fiber bundles, a property estimate can also be obtained from using a two-term fiber system scheme that consists
in the (arithmetic) average of the effective properties for these two rectangular bundles, the effective properties
of which can be obtained as for the hexagonal bundle discussed in the previous section, by construction of the
global bundle operator from the (two orthogonal), appropriately rotated, operator of infinite planar alignments.

The best appropriate choice for a specific structure will be detail-dependant, and we do not enter further
into this here. The goal of this last section is limited to introduce how, from the obtained global operators
for infinite planar alignments and, from them, for 1D bundles of infinite fibers, possibly deformable and
with element interactions essentially (if not fully) accounted for, relevant estimates are made available for
fiber network-reinforced matrices. Further description of the evolution under strain of such networks depends
on their “behavior law” which is still to be specified and in particular on the interconnections that may exist
between the fibers of a same layer or of different ones. These interconnections between fibers are of determinant
role in most networked structures. They can go, as exemplified in Fig. 1, from simple contacts to physical
connections, as for the pantographic-like structures of Fig. 1 right, the homogeneous domains of which obeys
a classic first gradient material [69–72]. When assumed embedded in a compliant matrix, the here introduced
effective property estimates for such structures from the study of infinite alignments of interacting infinite
fibers are relevant down to infinitesimal matrix stiffness, as will be addressed in a forthcoming paper dedicated
to planar alignments of parallel beams with any rectangular cross section.

5 Conclusion

In order to estimate effective properties of compliant matrices reinforced with deformable fiber networks,
we have first analytically derived global (interior plus interaction parts of) mean Green operators for large,
and up to infinite, planar alignments of parallel cylindrical fibers of infinite length in isotropic matrices, the
also solved case of rectangular beams being to be presented separately. The mean pair interaction operator
between two infinite parallel cylinders is the first obtained and here presented original theoretical result, from
which the mean interaction operator for infinite planar alignments of parallel identical cylinder (with equal
inter-distances) appears of very simple closed form (thanks to the used Radon transform and inverse transform
method). This interaction operator for infinite planar alignments of cylinders is an even polynomial form of
order four in terms of the fiber radius to inter-distance ratio, similar to order five odd polynomial form of
the interaction operator for infinite alignments of equally distant identical spheres, as reported in a previous
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work. Owing to the infinite length of the fibers and to the co-continuity, they ensure with the matrix in the
fiber directions, the operator for infinite planar alignments opens on specific interest for network-reinforced
matrices.

It has been shown that the influence distance between two fibers, that is the fiber neighborhood within
which interactions matter in a global pattern operator, is typically one order of magnitude (ten to twenty times)
larger than the fiber cross section radius. This allows to making use of the infinite alignment operator for
any planar fiber array larger than ten to twenty fibers if they are likely to all get close to each other, or even
less according to the minimal inter-distance between them. The inter-distance between the fibers is the key
parameter that modifies the number of fibers in this fixed influence zone. The 2D shape of this influence zone
is assigned by the fiber cross section shape and by the symmetry properties of the matrix. It is in particular 2D
isotropic around circular fibers in transversally isotropic matrices.

It has been then shown how these global mean operators for infinite planar alignments of fibers can provide
global mean operators for one-directional fiber bundles in averaging a finite operator set for coaxial dense
planar alignments to be quite easily used in homogenization frameworks for effective property estimates of
directionally fiber-reinforced matrices. A first key interest is the possibility to quite easily follow the effective
property variations related to deformation-like changes in such 1D fiber networks when embedded in a soft
matrix with a much better accuracy in capturing the property variations than when using a too small finite
pattern that is only valid for dilute concentrations of the chosen pattern. Furthermore, the use of an infinite
pattern in accounting for the major (and possibly all if necessary) pair interactions between the inclusions
interior to the influence zone by-passes the dilute and no interaction approximation suffered by the mean field
estimates from the literature and extends their validity range to the maximal element (here fiber) concentrations
allowed by the no-overlap limit.

It is finally shown how extension to determining, from the obtained effective properties for 1D bundles, the
effective properties for a matrix reinforced with interpenetrated multi-directional fiber networks is possible,
thanks to the building of global mean operator for the whole network and to the use of laminate system and fiber
system schemes. The case of networks with interconnected fibers, as in particular typical pantographic-like
beam structures of increasing interest, will be the topic of a dedicated forthcoming paper.

Acknowledgements Mario Spagnuolo has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie Grant agreement No. 665850.

Appendix A: Recall of the bases of the RT/IRT method, from [36,42] and following works

In an infinite homogeneous elastic medium of C elasticity moduli, the G(r − r′) Green “strain” tensor, gives
the u(r) displacement field at point r = (x1, x2, x3) due to a punctual force F(r′) at point r′ by the
relation ui (r) = Gi j (r − r′) Fj (r′). This tensor is classically defined by the equation Cmnpq G pj,qn(r −
r′) + δ(r − r′) �mj = 0, issued from explicating the stress equilibrium condition of linear elasticity
σ i j, j (r) = Ci jklεkl, j (r) = 0.5Ci jkl

(
uk,l j (r) + ul,k j (r)

) = 0, where � is the Kronecker tensor and δ(r) is
the delta (generalized) function in R3. Introducing the notations�pq jn(r−r′) = − Gpj,qn(r − r′)

∣
∣
((p,q),( j,n))

,
with ‘((p, q), ( j, n))’ specifying the symmetry on each pair of indices within brackets plus the super-symmetry
of the two index pairs, the �pq jn(r − r′) operator, is the twice differentiated Green operator generally called
the modified Green operator. The integral of this Go over a bounded V domain (possibly an inclusion pattern)
which depends on the V domain shape and on theC elasticitymoduli of thematrix containing V , say t Vpq jn(r) =
∫
V �pq jn(r − r′) dr′, can be calculated from the Fourier transform of the force versus displacement relation

that reads Cmnpq
�

Gpj (K) kq kn = �mj , where K = (k1, k2, k3) and |K| = k. In spherical coordinates
such that ki = k ωi , K = k ω, with ω = (sinθcosϕ, sinθsinϕ, cosθ), this formula can be explicated as

Cmnpq ωq ωn k2
�

Gpj (K) = Mmp(ω) k2
�

Gpj (K) = �mj => k2
�

Gpj (K) = (M−1)pj (ω) where the

k2
�

Gpj (K) product is independent on the k modulus of the K vector. Next, replacing �pq jn(r − r′) by the
inverse transform of its Fourier transform yields:

t Vpq jn(r) = 1

8 π3

∫

V

(∫
(
(M−1)pj (ω) ωq ωn

)∣
∣
((pq),( jn))

exp−i K (r−r′)dK
)

dr′, (A.1)
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from which, writing dK = k2dksinθdθdϕ = k2dkdω, one obtains the operator form:

t Vpq jn(r) = 1

8 π3

∫

V

(∫

Ω

tepq jn(ω)

∫ ∞

k=0
k2 exp−i K (r−r′) dkdω

)

dr′, (A.2)

where Ω is the unit sphere. Permutation of the V and Ω integrals ends to formally write:

t Vpq jn(r) =
∫

Ω

tepq jn(ω) ψV (ω, r) dω, (A.3)

with:

ψV (ω, r) = 1

8 π3

∫

V

(∫ ∞

k=0
k2 exp−ikω(r−r′) dk

)

dr′, (A.4a)

tepq jn(ω) = (
(M−1)pj (ω)ωq ωn

)
((pq),( jn))

. (A.4b)

Obviously, whatever the V domain shape is, tV (r) writes under the form of a weighted angular average of
te(ω) elementary operators, with a ψV (ω, r) weight function. Then, taking a (x, y, z) frame with Oz // K //
ω, such that K × r = kω × r = k z, Eq. (A.4a) reads:

ψV (ω, r) = 1

8 π3

(

−1

2

∫

V

(∫ +∞

−∞
(i t)2 exp−i t (z−z′) dt

)

dr′
)

= − 1

8 π2

∫

V
δ′′(z − z′, ω) dr′,

(A.5)

with δ′′(z − z′, ω), the second z-derivative of the one-dimensional delta function, ω both defining a direction
in space and the infinite z-oriented axis along this direction. Setting dr′ = dsV (z′, ω) dz′, with sV (z′, ω) the
area of the section of the volume V by the plane of z′ = ω.r′ equation, yields:

ψV (ω, r) = − 1

8 π2

∫ z′=+∞

z′=−∞

(∫

sV (z′,ω)

dsV (z′, ω)

)

δ′′(z − z′, ω) dz′ = − 1

8 π2 sV ′′(z, ω), (A.6)

where s′′
V (z, ω) is the second z-derivative of sV (z, ω). Since V is bounded, the z’ integral in Eq. (A.6) is only

nonzero within the
⌊
D−
V (ω), D+

V (ω)
⌋ = 2 DV (ω) breadth of V in the ω direction, i-e the distance between

the two opposite tangent planes to V , of ω-normal. These definitions likely hold as well for single domains
or for sets of regular subdomains, in which cases the 2 DV (ω) breadths characterize the support function of
the convex hull of V and the z′ integral over

⌊
D−
V (ω), D+

V (ω)
⌋
dissociates into several ones over separated

intervals. ψV (ω, r) is not uniform in V except when it is an isolated ellipsoidal volume. The ψV (ω) mean
value of ψV (ω, r) over V , which appears in the tV = 1

v

∫
V tV (r)dr volume average of tV (r), is obtained

setting dr = dsV (z, ω) dz, as for dr’ in ψV (ω, r), and with the area integral part directly written sV (z, ω),
what arrives at:

ψV (ω) = − 1

8π2v

∫ D+
V (ω)

D−
V (ω)

s̃V ′′(z, ω) sV (z, ω) dz = 1

8π2v

∫ D+
V (ω)

D−
V (ω)

(s̃V ′(z, ω))2 dz, (A.7)

The right hand side of Eq. (A.7) results from part integration, and the tilde on the z-derivatives of sV (z, ω)
indicates that their regularized form needs to be considered. See cited references for further details.

Appendix B: The mean Green interaction operator between two infinite parallel cylinders

Main calculation steps are in part B1, additional calculation details are given in parts B2 and B3. Let first
recall that for an ellipsoid V 0, what includes the infinite cylinders with elliptic or circular cross section at limit
(together with zero-thickness platelets at the other extreme), the interior uniform weight function takes the
simple form (wit z = ω.r and

⌊−Dell
V (ω), Dell

V (ω)
⌋
the breadth of V 0 in the ω-normal direction):

ψell
V 0(ω) =

(

− 1

8π2

)
∂2

∂z2

⎛

⎝ 3 v

4 Dell
V 0(ω)

⎛

⎝1 −
(

z

Dell
V 0(ω)

)2
⎞

⎠

⎞

⎠ =
(

3

4 π

)2
(

v

3 Dell
V 0(ω)3

)

.
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-B1: For two ellipsoids V 1, V 2 (of volume v1 and v2, respectively), with centers I1,I2 at distance ± L from
the frame origin O along the x3 axis, the weight function to be calculated reads [42]:

ψ
V 1,V 2
v (ω) =

zmax
(ω)∫

zmin
(ω)

2
(
s′
V 1(z + ηω, ω)sV 2′(z − ηω, ω)

)

8π2v
dz = P(1,2)

D1(ω)3D2(ω)3

(
z3

3
− η2ωz

)zmax
(ω)

zmin
(ω)

, (B.1)

with P(1,2) = 9v1v2
16π2(v1+v2)

. s′
V i (z, ω) is the first z-derivative of the section area of V i by the plane of equation

z = ω.r, D1(ω) is the breadth of V i in direction ω = (θ, φ) and ηω = L cos θ . The direction ω = (0, φ)
corresponds ∀φ to the x3 axis around which θ is counted and φ runs in the x1–x2 plane from 0 along
direction x1. Taking ηω positive corresponding to the half θ ∈ (0, π/2) domain, Eq. (B.1) yields, with{
zmin, zmax

} = {η − D2, D1 − η} for 0 ≤ η ≤ (D1 + D2) /2 (the ω-dependencies are here omitted for
brevity) and with D1 = D2 = D0(ω)∀ω when V 1 = V 2 = V 0:

ψ
V 1,V 2
v (ω) = P(1,2)

D3
1D

3
2

(
D3
1

3
+ D3

2

3
− η

(
D2
1 + D2

2

) + 4η3

3

)

, ∀φ. (B.2)

For spheroids of semi-axes (a, c, a) with c//x2, c/a = ζ => 1 and volume v0 = 4πa3ζ/3 such

that P(1,2) = P = 9v20
16π2(2v0)

= 3a3ζ
8π , the breadths read D0(θ, φ) = a

√
1 + (

ζ 2 − 1
)
sin2φsin2θ =

a
√
1 + (

λ2(φ) − 1
)
sin2θ and the interior and interaction weight functions:

ψ
ζ−sph
x2 (θ, φ) = 1

4π

ζ
(
1 + (

ζ 2 − 1
)
sin2φsin2θ

)3/2 = 1

4π

ζ
(
1 + (

λ(φ)2 − 1
)
sin2 θ

)3/2 ,

ψ
2sphζ
x2(x1) (θ, φ) = P

D6
0 (θ, φ)

(
2D3

0 (θ, φ)

3
− 2η(θ,φ)D0 (θ, φ)2 + 4η3(θ,φ)

3

)

(B.3a)

= ζ

4π

(
1

(
1 + (λ(φ)2 − 1)sin2θ

)3/2 − 3(L/a) cos θ
(
1 + (λ(φ)2 − 1)sin2θ

)2 + 2(L/a)3cos3θ
(
1 + (λ(φ)2 − 1)sin2θ

)3

)

. (B.3b)

Equation B.3 can be formally written:

ψ
2sphζ
x2(x1) (θ, φ) = I 0,02sphζ =

3∑

i(m,n)=1

F0,0
i(m,n)(θ, φ) =

3∑

i(m,n)=1

ζ

4π
Ki(m,n)

cosmθ
(
1 + (λ(φ)2 − 1)sin2θ

)n , (B.4)

the three elements i(m, n) = 1, 2, 3 of which correspond to (m, n) = (0, 3/2), (1, 2), (3, 3) and with the
appropriate coefficients, Ki(m,n) = 1, −3L/a = −3/ρ0 and 2(L/a)3 = 2/ρ3

0 as appearing. For an isotropic
reference matrix, the integrals to be calculated belong to the set:

I p,q2sphζ =
3∑

i(m,n)=1

I p,qi(m,n) =
3∑

i(m,n)=1

(∫ 2π

φ=0
2

∫ π/2

θ=θmin

F p,q
i(m,n)(θ, φ) sin θdθdφ

)

, p, q = 0, 1, 2, (B.5)

where: F p,q
i(m,n)(θ, φ) = ζ

4π
Ki(m,n)

cosmθ
(
1 + (λ(φ)2 − 1)sin2θ

)n cos
2pθ cos2q φ. (B.6)

The value of θminwhich depends on φ corresponds with tan(θmin) = tan(θ(φ)min) = 1
λ(φ)

√
L2−a2

a2
. θmin = 0

when L = a (contact) for all φ angles. Then, with 1 + tan2(θmin) = cos−2(θmin), it comes:

cos(θ(φ)min) =
√

λ2(φ)
(
λ2(φ) − 1

) + (
L2/a2

) = ρ0λ(φ)
√

ρ2
0λ

2(φ) + (1 − ρ2
0 )

= ρ(φ) ≤ ρ0 ≤ 1. (B.7)
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The case p, q = 0, 0 in Eqs. (B.5), (B.6) corresponds to the integrals of the elements of the mean pair
interaction weight function itself in Eq. (B.1), for which we know that they always fulfill together the null

value
∫ 2π
φ=0 2

∫ π/2
θ=θmin

ψ
V 1,V 2
v (θ, φ) sin θdθdφ = ∑3

i(m,n)=1

(∫ 2π
φ=0 2

∫ π/2
θ=θmin

F0,0
i(m,n)(θ, φ) sin θdθdφ

)
= 0.

As will appear next on, for parallel infinite cylinders, only the cases p = 0, 1, 2 with q = 0 suffice to obtain
all the interaction operator terms, say nine double integrals of the generic form:

I p,0i(m,n) =
∫ 2π

φ=0
2

∫ π/2

θ=θmin

F p,0
i(m,n)(θ, φ) sin θdθdφ = 8

∫ π/2

φ=0

∫ π/2

θ=θmin

F p,0
i(m,n)(θ, φ) sin θdθdφ

= 8ζ

4π
Ki(m,n)

∫ π/2

φ=0

∫ π/2

θ=θmin

(
cosm θ

(
1 + (λ(φ)2 − 1)sin2θ

)n cos
2pθ

)

sin θdθdφ. (B.8)

The variable changes cos θ = x and λ(φ)2 − 1 = α(φ)−2 ≥ 0 (for prolate spheroids11) yield:

I p,0i(m,n) = 2ζ

π
Ki(m,n)

∫ π/2

φ=0

⎛

⎝α(φ)2n

xmx∫

x=0

xm+2pdx
(
1 + α(φ)2 − x2

)n

⎞

⎠dφ = 2ζ

π
Ki(m,n)

∫ π/2

φ=0
Gp,0

m,n(α(φ))dφ,

(B.9)

where xmx = xmax(φ) = cos(θ(φ)min) = ρ(φ). The calculation steps for the nine x-integrals Gp,0
m,n(α(φ)) are

given in part B2. Also using x2mx = ρ2
0 (1+α2)

ρ2
0+α2 and x2mx

1+α2−x2mx
= ρ2

0
α2 where α stands for α(φ), one arrives at the

9 forms:

G0,0
0,3/2(α) = α2

1 + α2 ρ0, (B.10a)

G1,0
0,3/2(α) = α3

(ρ0

α
− tan−1

(ρ0

α

))
, (B.10b)

G2,0
0,3/2(α) =

(
α3 + α5

)

2

(
ρ0α

ρ2
0 + α2

+ 2
ρ0

α
− 3tan−1

(ρ0

α

)
)

, (B.10c)

G0,0
1,2(α) = α2

1 + α2

ρ2
0

2
, (B.11a)

G0,0
3,3(α) = α2

1 + α2

ρ4
0

4
, (B.11b)

G1,0
1,2(α) = α4

2

(
ρ2
0

α2 − ln

(
ρ2
0 + α2

α2

))

, (B.12a)

G1,0
3,3(α) = α6

2

(
1

2

ρ4
0

α4 − ρ2
0

α2 + ln

(
α2 + ρ2

0

α2

))

, (B.12b)

G2,0
1,2(α) =

(
α4 + α6

)

2

(
ρ2
0

α2 + ρ2
0

ρ2
0 + α2

− 2 ln

(
α2 + ρ2

0

α2

))

, (B.13a)

G2,0
3,3(α) =

(
α6 + α8

)

2

(
1

2

ρ4
0

α4 + 3 ln

(
ρ2
0 + α2

α2

)

− ρ2
0

ρ2
0 + α2

− 2
ρ2
0

α2

)

. (B.13b)

Equations (B.10)–(B.13) also hold for more general ellipsoids than x2-oriented spheroids (β = 1), using
λ(φ)2 − 1 = α(φ)−2 = (

ζ 2 − β2
)
sin2φ + (

β2 − 1
) ≥ 0 in Eq. (B.3) and following ones. At the sphere

11 The case of oblate spheroids (to be treated) follows the same route, using 1 − λ(φ)2 = α(φ)−2 ≥ 0.
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pair limit (β = 1, ζ = 1), the φ integrals becomes independent of θ and simply amounts to multiplying the
functions Gp,0

m,n(α) by a factor π/2 in Eq. (B.9) with the value for α being its infinite limit. Taking the α → ∞
(or ᾱ → 0) limits in Eqs. (B.10)–(B.13) well provides the sphere pair expected values, as recalled in part B2
(elliptic cross sections β 
= 1 yield a (β, 1, 1) spheroid pair limit).
Back to the x2-oriented spheroids, the second φ integrations in Eq. (B.9) with using the obtained functions

Gp,0
m,n(α(φ)) are solved using a second (φ to α) variable change from α(φ)2 = 1

λ(φ)2−1
= sin−2(φ)

ζ 2−1
, what yields

d
(
α(φ)2

)

dφ = −2 sin−3(φ)

ζ 2−1
cos(φ) = − 2α(φ)2

tan(φ)
such that dφ = − tan(φ) dα

α
with tan(φ) = (

(ζ 2 − 1)α2 − 1
)−1/2

.

That finally arrives at dφ = − (
(ζ 2 − 1)α2 − 1

)−1/2
(dα/α). The reference integral form becomes:

I p,0i(m,n) = 2ζ

π
Ki(m,n)

π/2∫

φ=0

Gp,0
m,n(α(φ))dφ = 2ζ

π
Ki(m,n)

∞∫

α=(ζ∞2−1)−1/2

Gp,0
m,n(α)

√
(ζ 2 − 1)α2 − 1

dα

α
. (B.14a)

This complicated integral type simplifies for infinite cylindrical fibers ζ → ∞ as:

ζ∞
I p,0i(m,n) = 2

π

Ki(m,n)ζ
∞

√

ζ∞2 − 1

∞∫

α=(ζ∞2−1)−1/2

Gp,0
m,n(α)

√
α2 − (ζ∞2 − 1)−1

dα

α
→ 2

π
Ki(m,n)

∞∫

α=0

Gp,0
m,n(α)

α

dα

α
. (B.14b)

Analytical solutions are obtained as shown in part B3 for the 9 integrals, either from the direct α integration
or in terms of its inverse ᾱ = 1/α, since

∫ ∞
α=0 G

p,0
m,n(α)

(
dα/α2

) = ∫ ∞
ᾱ=0 G

p,0
m,n(ᾱ)dᾱ (infinite elliptic fibers,

β 
= 1 and ζ → ∞, here disregarded can be treated similarly).
The variable change from φ to α highlights why integrals of Eq. (B.9) with q = 1, 2 as I p,qi(m,n) =
(2ζ/π) Ki(m,n)

∫ π/2
φ=0 G

p,q
m,n(α(φ))cos2q(φ)dφ are equal to the corresponding I p,0i(m,n) integral when ζ → ∞:

with using cos2q(φ) =
(
1 − 1

(ζ 2−1)α2

)q
, Eq. (B.14a) becomes:

ζ∞
I p,qi(m,n) = 2

π

Ki(m,n)ζ
∞

√

ζ∞2 − 1

∞∫

α=(ζ∞2−1)−1/2

Gp,0
m,n(α)

√
α2 − (ζ∞2 − 1)−1

(

1 − 1

(ζ∞2 − 1)α2

)q dα

α
. (B.15)

When ζ → ∞, this additional factor equals unity for any nonzero α value and does not affect the integral such
that limζ→∞ I p,qi(m,n) = limζ→∞ I p,0i(m,n), q = 1, 2. For the same reason, as is easily verified for the integrals
that correspond to the terms of the cylinder interior weight function and interior operator, which are known
from direct simple calculation, one has limζ→∞ (2ζ/π) Ki(m,n)

∫ π/2
φ=0 G

p,q
m,n(α(φ))sin2q(φ)dφ = 0.

-B2: Integrals with regard to x = cos θ . For n = 3/2, one obtains, taking u = x√
1+α2 :

1◦) G0,0
0,3/2(α) = α3

xmx∫

0

dx
(
1 + α2 − x2

)3/2 = α3

1 + α2

umx∫

0

du
(√

1 − u2
)3 = α3

1 + α2

umx
√
1 − u2mx

= α3

1 + α2

√
x2mx

1 + α2 − x2mx
= α3

1 + α2

ρ0

α
= ρ0

α2

1 + α2 (limsphere
α→∞ = ρ0);

2◦) G1,0
0,3/2(α) = α3

xmx∫

0

x2dx
(
1 + α2 − x2

)3/2 = α3

umx∫

0

1 − (
1 − u2

)

(
1 − u2

)3/2 du

= α3

⎛

⎝

√
x2mx

1 + α2 − x2mx
− sin−1

⎛

⎝

√
x2mx

1 + α2

⎞

⎠

⎞

⎠ = α3
(ρ0

α
− tan−1

(ρ0

α

))
(
sphere
lim
ᾱ→0

= ρ3
0

3

)

;
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In Eq. B2.2◦, we have used sin−1
(√

ρ2
0

ρ2
0+α2

)

= tan−1
(

ρ0
α

)
.

3◦) G2,0
0,3/2(α) = α3

xmx∫

0

x4dx
(
1 + α2 − x2

)3/2 = α3 (
1 + α2)

⎛

⎝

umx∫

0

(
1 − u2

)2 + 2u2 − 1
(
1 − u2

)3/2 du

⎞

⎠

= α3 (
1 + α2) 1

2

⎛

⎝

√
x2mx

1 + α2

√

1 − x2mx

1 + α2 + 2

√
x2mx

1 + α2 − x2mx
− 3sin−1

⎛

⎝

√
x2mx

1 + α2

⎞

⎠

⎞

⎠

=
(
α3 + α5

) 1

2

(
ρ0α

ρ2
0 + α2

+ 2
ρ0

α
− 3tan−1

(ρ0

α

)
)

(limsphere
ᾱ→0 = 0ρ3

0 + ρ5
0

5
);

For the 6 remaining integrals (with n = 2 and n = 3), taking the variable change z = x2

1+α2 yields:

4◦) G0,0
1,2(α) = α4

xmx∫

0

xdx
(
1 + α2 − x2

)2 = α4

2
(
1 + α2

)

zmx∫

0

dz

(1 − z)2

= α4

2
(
1 + α2

)

(
x2mx

1 + α2 − x2mx

)

= α4

2
(
1 + α2

)
ρ2
0

α2 = α2

2
(
1 + α2

)ρ2
0

(

limsphere
α→∞ = ρ2

0

2

)

;

5◦) G0,0
3,3(α) = α6

xmx∫

0

x3dx
(
1 + α2 − x2

)3 = α6

2
(
1 + α2

)

⎛

⎝

zmx∫

0

dz

(1 − z)3
−

zmx∫

0

dz

(1 − z)2

⎞

⎠

= 1

2

(
x2mx

1 + α2 − x2mx

)2

= α6

2
(
1 + α2

)
1

2

(
ρ2
0

α2

)2

= α2

4
(
1 + α2

)ρ4
0

(

limsphere
α→∞ = ρ4

0

4

)

;

6◦) G1,0
1,2(α) = α4

xmx∫

0

x3dx
(
1 + α2 − x2

)2 = α4

2

zmx∫

0

zdz

(1 − z)2

= α4

2

(
x2mx

(1 + α2) − x2mx
+ ln

(
(1 + α2) − x2mx

1 + α2

))

= α4

2

(
ρ2
0

α2 − ln

(
ρ2
0 + α2

α2

)) (

limsphere
ᾱ→0 = ρ4

0

2

)

;

7◦) G1,0
3,3(α) = α6

xmx∫

0

x5dx
(
1 + α2 − x2

)3 = α6

2

(
x2mx

(
3xmx − 2(1 + α2)

)

2
(
1 + α2 − x2mx

)2 − ln

(
1 + α2 − x2mx

1 + α2

))

= α6

2

((
1

2

ρ4
0

α4

)

−
(

ln

(
α2

α2 + ρ2
0

)

+ ρ2
0

α2

)) (

limsphere
ᾱ→0 = ρ6

0

6

)

;

8◦) G2,0
1,2(α) = α4

xmx∫

0

x5dx
(
1 + α2 − x2

)2 = α4
(
1 + α2

)

2

zmx∫

0

z2dz

(1 − z)2

= α4
(
1 + α2

)

2

(
x2mx

(1 + α2) − x2mx
+ 2 ln

(
(1 + α2) − x2mx

1 + α2

)

+ x2mx

1 + α2

)

=
(
α4 + α6

)

2

(
ρ2
0

α2 + ρ2
0

ρ2
0 + α2

− 2 ln

(
α2 + ρ2

0

α2

)) (

limsphere
ᾱ→0 = 0ρ4

0 + ρ6
0

3

)

;
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9◦) G2,0
3,3(α) = α6

xmx∫

0

x7dx
(
1 + α2 − x2

)3 = α6
(
1 + α2

)

2

zmx∫

0

z3dz

(1 − z)3

= α6
(
1 + α2

)

2

(
x2mx

(
5x2mx − 4(1 + α2)

)

2
(
(1 + α2) − x2mx

)2 − 3 ln
(
(1 + α2) − x2mx

) − (1 + α2)x2mx

)

=
(
α6 + α8

)

2

(
1

2

ρ4
0

α4 + 3 ln

(
ρ2
0 + α2

α2

)

− ρ2
0

ρ2
0 + α2

− 2
ρ2
0

α2

) (

limsphere
ᾱ→0 = 0ρ6

0 + ρ8
0

8

)

;

-B3: Integrals with regard to α = α(φ) = (
(ζ 2 − 1) sin2 φ

)−1/2
or κ = α/ρ0, at the limit ζ → ∞.

1◦) ζ∞
I 0,00,3/2 = 2

π
K1(0,3/2)

∞∫

α=0

G0,0
0,3/2(α)

α

dα

α
= 2

π

∞∫

α=0

α2ρ0

1 + α2

dα

α2 = ρ0, lim
contact
ρ0→1 = 1;

2◦) ζ∞
I 1,00,3/2 = 2

π
K1(0,3/2)

∞∫

α=0

G1,0
0,3/2(α)

α

dα

α
= 2

π

∞∫

α=0

α3
(ρ0

α
− tan−1

(ρ0

α

))ρ0

α2 d

(
α

ρ0

)

= 2ρ2
0

π

∞∫

0

(

1 − κ tan−1
(
1

κ

))

dκ = ρ2
0

2
, limcontact

ρ0→1 = 1

2
;

3◦) ζ∞
I 2,00,3/2 = 2

π
K1(0,3/2)

∞∫

α=0

G2,0
0,3/2(α)

α

dα

α

= 2

π

⎛

⎝
ρ2
0

2

∞∫

κ=0

(
κ2

1 + κ2 + 2 − 3κ tan−1
(
1

κ

))

dκ

+ρ4
0

2

∞∫

κ=0

(
κ4

1 + κ2 + 2κ2 − 3κ3tan−1
(
1

κ

))

dκ

⎞

⎠

= 2

π

(
ρ2
0
π

8
+ ρ4

0
π

16

)
= 2ρ2

0 + ρ4
0

8
, limcontact

ρ0→1 = 3

8
;

4◦) ζ∞
I 0,01,2 = 2

π
K2(1,2)

∞∫

α=0

G0,0
1,2(α)

α

dα

α
= 2

π

(−3

ρ0

) ∞∫

α=0

(
α2

1 + α2

ρ2
0

2

)
dα

α2 = −3ρ0
2

, limcontact
ρ0→1 = −3

2
;

5◦) ζ∞
I 0,03,3 = 2

π
K3(3,3)

∞∫

α=0

G0,0
3,3(α)

α

dα

α
= 2

π

(
2

ρ3
0

) ∞∫

α=0

(
α2

1 + α2

ρ4
0

4

)
dα

α2 = ρ0

2
, limcontact

ρ0→1 = 1

2
;

6◦) ζ∞
I 1,01,2 = 2

π
K2(1,2)

∞∫

α=0

G1,0
1,2(α)

α

dα

α
= 2

π

(

− 3

ρ0

) ∞∫

α=0

α4

2

(
ρ2
0

α2 − ln

(
ρ2
0 + α2

α2

))
ρ0

α2 d

(
α

ρ0

)

= 2

π

(−3

ρ0

)
1

ρ0

ρ4
0

2

∞∫

κ=0

(

1 − κ2 ln

(
1 + κ2

κ2

))

dκ = −ρ2
0 , lim

contact
ρ0→1 = −1;
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7◦) ζ∞
I 1,03,3 = 2

π
K3(3,3)

∞∫

α=0

G1,0
3,3(α)

α

dα

α

= 2

π
ρ2
0

∞∫

0

κ4
(

ln

(
1 + κ2

κ2

)

+ 1

2

1

κ4 − 1

κ2

)

dκ = 2

5
ρ2
0 , lim

contact
ρ0→1 = 2

5
;

8◦) ζ∞
I 2,01,2 = 2

π
K2(1,2)

∞∫

α=0

G2,0
1,2(α)

α

dα

α

= 2

π

(−3

2

) ∞∫

0

(
ρ2
0κ

2 + ρ4
0κ

4)
(

1

κ2 + 1

1 + κ2 − 2 ln

(
κ2 + 1

κ2

))

dκ

= −
(

ρ2
0

2
+ 3ρ4

0

10

)

, limcontact
ρ0→1 = −4

5
;

9◦) ζ∞
I 2,03,3 = 2

π
K3(3,3)

∞∫

α=0

G2,0
3,3(α)

α

dα

α

= 2

π

∞∫

0

(
ρ2
0 + ρ4

0κ
2)

(
1

2
+ 3κ4 ln

(
1 + κ2

κ2

)

− κ4

1 + κ2 − 2κ2
)

dκ = ρ2
0

5
+ ρ4

0

7
, limcontact

ρ0→1 = 12

35
.

Appendix C: Numerical simulation conditions for moduli calculations to compare with estimates

For validating the presented new estimates based on considering infinite patterns in homogenization frame-
works, we performed numerical simulations (in Comsol Multiphysics) by considering a 2D cell (a x1–x3
cross section of the x2-oriented fiber bundle) whose sides are provided of periodic boundary conditions for
allowing the identification with the infinite case analytically derived in this article and for minimizing the size
and the boundary effects. The representative “volume” (cross section) element (RVE), exemplified in Fig. 10,
comprises a set of regularly arranged identical fibers, starting from a reference hexagonal lattice (Fig. 10b),
with two different concentrations of 30% (inner circles) and 70% (outer circles) to be modified “as if” resulting
from a (tensile or compressive) stretch of the RVE normally to the fiber direction. Figure 10c corresponds to
a tensile stretch of η = 1.2955 (≈ 1.3) in the x3 direction for which the fibers get into horizontal contact
when their concentration is 70% (outer circles). Figure 10a corresponds to a compressive stretch of η = 1/

√
3

along x3, yielding a square symmetric arrangement. The size of the RVE is taken large enough to integrate
planar alignments of at least ten fibers, a minimal number to correctly estimate the global interactions when

Fig. 10 The periodic cell for volume fraction of fibers equal to 30% (inner circles) and 70% (outer circles) and a η = 1/
√
3 , b

η = 1 and c η = 1.3 at contact for 70% fibers. The influence zone is marked by the dashed circle
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Fig. 11 A stress–strain-like representation of the obtained effective Young moduli as plotted in Fig. 8, when considering the
fiber arrangement changes due to a transverse (tensile or compressive) stretch of an undeformed structure (η = 1) here taken
to correspond to a regular hexagonal fiber arrangement. These plots disregard any real feature of a deformation path possibly
yielding to an arrangement η from η = 1

the fiber concentration is in the non-dilute range. Each fiber arrangement corresponds to a specific value of the
η, stretch-like parameter, defined from the hexagonal reference structure assigned to η = 1.
On each fiber arrangement η, two kinds of tests, a compression and a shear test, are performed in the x1–x3
cross section plane. Boundary conditions are given on the displacement vector u of R2 whose components u
and v are, respectively, in the x1 and x3 directions. We deduce the nomenclature of the sides of the cell from
Fig. 10a: the two horizontal sides are called AB and CD, AB = L and the vertical ones are BC and DA,
BC = H . The displacements on side AB are called uAB = (uAB, vAB) and similarly for the other sides.
For the determination of the Young moduli Y1 and Y3, we performed two compressions, along the two axes
x1 and x3. Both compressions need the same boundary conditions to simulate an infinite-like structure. For
allowing a compression (and not simply a translation), continuity is assigned to the horizontal (resp. vertical)
displacements in the horizontal (resp. vertical) sides and anti-periodicity to the horizontal (resp. vertical)
displacements in the vertical (resp. horizontal) sides. With referring to Fig. 10, we can write these conditions

as

{
uBC = −uDA
vBC = vDA

and

{
uAB = uCD
vAB = −vCD

. For the determination of the shearmodulusC1313 = C55,we perform

a shearing test along the side BC . In order to obtain the same result by shearing along the two directions x1 and
x3 for η = 1/

√
3 (square fiber arrangement) a square RVE is necessary what is not exactly fulfilled, owing to

the number of fibers in the RVE. Two different boundary conditions are defined for the two possible shear tests:

for shear along the x1 direction the imposed boundary conditions are

{
uBC = uDA
vBC = vDA

and

{
uAB = −uCD
vAB = vCD

; for

shear along the x3 direction, conditions become

{
uBC = uDA
vBC = −vDA

and

{
uAB = uCD
vAB = vCD

. The requested moduli

are calculated via a numerical measurement that is the analogous of an experimental measure, say imposing
an external small displacement u0 to one of the sides and calculating the desired modulus as ratio between the
computed stress and the global strain. We have considered the σ11 and σ33 components of the stress for the
calculation of the Young moduli Y1 and Y3, respectively, and the σ13 = σ31 component for the shear modulus
C1313 = C55 . This has been performed in the context of the Hooke law for linear elasticity σi j = Ci jklεkl
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where the strain tensor εkl is defined as εkl = 0.5
(
uk,l + ul,k

)
with uk,l = ∂uk/∂xl , the displacement first

gradient components. Obtained moduli calculations are reported in Fig. 7 for C55 and in Fig. 8 for Y1 and Y3.
In the Youngmoduli cases, although the obtained estimates do not result from a continuously strain-due change
of the fiber arrangement (various fiber arrangements are subjected to an infinitesimal strain), it is possible to
mimic a stress–strain curve of which the estimated moduli are the slope. These stress–strain curves are plotted
in Fig. 11 for both the numerically calculatedYoungmoduli and the estimated ones from the four here compared
estimates. The logarithmic overall strain is taken equal to ε = ln

√
η. It is zero for the state at which η is taken

(arbitrarily) to be equal to 1. Taking the hexagonal fiber arrangement as the undeformed one, two curves can
be obtained whether η > 1 or η < 1 (in the latter case, the stress should have a negative sign as the strain but
it is here plotted in absolute value). These data are a particular presentation of the more general ones in Fig. 8
since changing the reference state (for example starting from the square fiber arrangement as the undeformed
one) can also yield other stress–strain-like curves. It is worth to precise that none of them accounts for the
real features of a real deformation path (especially strain heterogeneities in the matrix) that may transform one
fiber arrangement into another. These curves can nevertheless serve as indicators for first nonlinearity causes
only due to changes of the fiber arrangement (everything else being invariant) in the elastic behavior of such
composite materials.
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