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Abstract The thermoelasticity problem in a thick-walled orthotropic hollow cylinder is solved analytically
using finite Hankel transform and Laplace transform. Time-dependent thermal and mechanical boundary
conditions are applied on the inner and the outer surfaces of the cylinder. For solving the energy equation,
the temperature itself is considered as boundary condition to be applied on both the inner and the outer
surfaces of the orthotropic cylinder. Two different cases are assumed for solving the equation of motion:
traction–traction problem (tractions are prescribed on both the inner and the outer surfaces) and traction–
displacement (traction is prescribed on the inner surface and displacement is prescribed on the outer surface of
the hollow orthotropic cylinder). Due to considering uncoupled theory, after obtaining temperature distribution,
the dynamical structural problem is solved and closed-form relations are derived for radial displacement, radial
and hoop stress. As a case study, exponentially decaying temperature with respect to time is prescribed on
the inner surface of the cylinder and the temperature of the outer surface is considered to be zero. Owing to
solving dynamical problem, the stress wave propagation and its reflections were observed after plotting the
results in both cases.

Keywords Classical thermoelasticity · Orthotropic cylinder · Hankel transform · Stress wave

1 Introduction

Cylinders are one of the most applicable structures in the industrial areas. Meet the requirements of having
materials which have diverse properties in different directions, has made a sharp rise in using orthotropic
materials. Composite orthotropic thick-walled cylinders are capable of using in the various fields such as
aerospace structures, space crafts, pressure vessels. Thermal loads are one of the most effectual loadings
which numerous mechanical elements are affected by. In some cases, the intensity of these thermal loads in
structures might lead to a substantial amount of thermal stresses which can be the main reason for making
structural failure. Due to this widespread application, classical and generalized theories of thermoelasticity
are developed. In the general form, the equations of thermoelasticity are coupled, i.e., a change in temperature
field produces a strain and mutually time-dependent deformation leads to the change in temperature field. The
traces of the coupling between temperature and displacement fields are seen in the classical thermoelasticity
theory, where there are terms of the strain rate in the energy equation and terms of the temperature gradient in
the equation of motion. The existence of these coupling terms between displacement and temperature fields
makes the coupled classical theory of thermoelasticity very complicated. As amatter of fact, in many structures
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the coupling terms in the energy equation have a little impact on the temperature and stress field distribution.
Due to the complexity in solving the coupled equations alongside the negligible effect of the coupling terms
in reality, ignoring the coupling terms in the energy equations seems rational.

Yen and Krimser [1] presented a solution for determining thermal stresses in an isotropic cylinder which is
subjected to axisymmetric thermal load. Both steady state and transient stresses are considered, and the solution
is obtained by constructing the thermoelastic displacement potential and the bi-harmonic Love function.

Kardomateas [2] used a displacement approach to obtain the steady-state thermal stresses and displacements
in an orthotropic elliptic cross-section cylinder. Temperature changes uniformly and the properties of the
material are considered to be independent of the temperature.

Shahani andNabavi [3] solved quasi-static thermoelasticity problem in a thick-walled hollow cylinder using
finite Hankel transform. Time-dependent thermal boundary condition is applied on the inner surface and in
case of mechanical boundary conditions traction–displacement and traction–traction problems are considered.

Analytical solution of quasi-static and dynamic uncoupled thermoelasticity problem in a thick-walled
isotropic sphere presented by Shahani and Momeni [4] in 2014. The boundary conditions are considered to
be time dependent and as a case study for dynamical problem, constant temperature is prescribed on the inner
boundary, and both the inner and the outer boundaries are traction free. They [5] also solved the coupled
thermoelasticity problem in a thick-walled isotropic sphere for the first time in 2013. Likewise the previous
work, the problem is solved analytically and closed-form relations are extracted for the stress components.

Yee and Moon [6] presented a closed-form analytical solution for plane stress uncoupled quasi-static
problem in an orthotropic hollow cylinder. Fourier–Bessel eigenfunction expansions are used for characterizing
the temperature field distribution, and the corresponding thermal stresses are calculated using stress–stress
function relations. The hollow orthotropic cylinder is subjected to an arbitrary temperature distribution, and
thermal boundary conditions are considered to be homogenous.

Wang [7] studied the history and distribution of dynamic thermal stress in an isotropic cylinder. The cylinder
is subjected to rapid arbitrary heating, and a uniform temperature is considered in the entire hollow cylinder
whichmakes the problem uncoupled. The elastic displacement field is solved applying finite Hankel transform.

Chao et al. [8] presented an elastodynamic solution for the thermal dynamic stresses in an orthotropic
thick cylindrical shell. The solution was obtained using finite Hankel transform and Laplace transform. The
main disadvantage of this work is that the heat conduction equation is not solved as was the case in [7],
and in an example, a constant temperature distribution is assumed for obtaining stress fields. Following the
same approach, Ding et al. [9] solved dynamic plane strain thermoelasticity problem for a non-homogeneous
orthotropic cylindrical shell using the orthogonal expansion technique.

Jabbari et al. [10] presented an analytical solution for coupled classical thermoelasticity in cylindrical coor-
dinates, and the properties of material are considered to be isotropic. The Fourier expansion and eigenfunction
method are used in solving partial differential equations.

Goshima and Miyao [11] analyzed transient thermal stresses in a long hollow isotropic circular cylinder.
There is an internal heat generation due to γ -ray radiation, and both inner and outer surfaces of the cylinder are
cooled by heat convection. The Laplace transform and Green’s function are used for solving the problem. The
inertia terms in the equations are neglected, and the properties of the material are independent of temperature.

Zhang et al. [12] derived an analytical solution for determining thermal stresses in amultilayered composite
pressure vessel with closed ends subjected to thermal load and internal pressure. The problem is considered
to be steady state, and the finite element method is used to validate the analytical results of this work.

Abd-allah et al. [13] studied the dynamic uncoupled thermal stresses in a long transversely isotropic solid
circular cylinder. A constant temperature is applied to a specific portion of the surface, and the temperature of
the other sections is considered to be zero. They used Fourier transform and theory of complex variables to
obtain the solution of heat conduction equation, and Bessel functions series for longitudinal wave equation.

Kouchakzadeh and Entezari [14] solved the coupled thermoelasticity problem in an isotropic rotating disk
analytically. The inner surface of the disk is subjected to a heat flux, and the outer surface temperature is
considered to be zero. As well as this, the outer surface mechanical boundary condition is traction free and the
inner one is assumed to be radially fixed.

Shahani and Sharifi [15] solved uncoupled dynamic thermoelasticity problem in an isotropic hollow cylin-
der. They solved the problem using the finiteHankel transform andLaplace transform. Time-dependent thermal
and mechanical boundary conditions are prescribed on the inner and the outer surfaces.

Marin [16] studied the existence and the uniqueness of general solutions for the boundary value problems in
elasticity of dipolar martials with voids. The theory of bodies with voids can be used in investigation the elastic
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behavior of porous materials. The problem is considered to be elastostatic, and the material is anisotropic and
non-homogenous.

Marin [17] obtained the harmonic vibrations in thermoelasticity of a cylinder which is made ofmicrostretch
anisotropic homogeneous material. One plane end of the cylinder is subjected to time varying harmonic
boundary condition, and a thermal load is applied on the other end plane. He showed that the amplitude of the
vibrations decays exponentially with the distance to the base.

Sharma andMarin [18] investigated wave propagation and reflection in micropolar thermoelastic solid in a
half-plane using two-temperature theory of thermoelasticity. They obtained closed-form relations for amplitude
ratios and showed that these ratios are functions of incidence angle, frequency and thermoelastic properties of
the medium.

In this paper, uncoupled thermoelasticity problem in an orthotropic hollow cylinder is solved analytically.
For the thermal boundary conditions, the inner and the outer surfaces of the cylinder are exposed to temper-
ature which is known as the Dirichlet. Also for the mechanical boundary conditions, two different cases are
considered: traction–traction problem (tractions are prescribed on both the inner and the outer surfaces) and
traction–displacement (traction is prescribed on the inner surface and displacement is prescribed on the outer
surface of the hollow orthotropic cylinder). The problem is solved using an innovative technique combined
with the finite Hankel transform. The temperature field and the distribution of stress components are presented
in closed-form relations. Distributions of the temperature field and the stress components for the two different
mechanical boundary conditions are presented as figures. Due to considering inertia term in the equation of
motion and solving the dynamical problem, the thermal stress wave and the reflection of stress wave into
medium from the surfaces were observed after plotting the results. To validate the solution, the special case of
a hollow cylinder subjected to the uniform constant temperature distribution is considered and the results are
compared with those obtained by Ding et al. [9] which shows complete agreement. As well as this, comparing
the results of this work with the results of the isotropic cylinder which was presented by Shahani and Sharifi
[15], implies the accuracy and the precision of the solution.

2 Formulation

Consider a hollow orthotropic circular cylinder with inner and outer radii a and b, respectively. The cylinder
is long enough in the axial direction to satisfy the plane strain condition. In addition the cylinder is subjected
to symmetric boundary conditions. Due to symmetry, there is only radial dependence of the temperature and
displacement distributions and stresses and strains become independent of the circumferential coordinate.
Thus, the relations between stress and strain components are [19]:

⎡
⎢⎢⎢⎢⎢⎣

σrr
σϕϕ

σzz
τϕz
τr z
τrϕ

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

εrr − αrΔT
εϕϕ − αϕΔT
εzz − αzΔT
γϕz
γr z
γrϕ

⎤
⎥⎥⎥⎥⎥⎦

(1)

where ci j are the elastic constants and αr , αϕ and αz are thermal expansion coefficients in r , ϕ and z directions,
respectively. The relations between ci j and elastic moduli are [20]:

c11 = (1 − ν23ν32)

1 − νt
E1; c12 = (ν21 + ν31ν23)

1 − νt
E1;

c22 = (1 − ν13ν31)

1 − νt
E2; c13 = (ν31 + ν21ν32)

1 − νt
E1;

c33 = (1 − ν12ν21)

1 − νt
E3; c23 = (ν32 + ν12ν31)

1 − νt
E2;

c44 = G23; c55 = G13; c66 = G12; (2)

where νi j are the Poisson’s ratios and:

νt = ν12ν21 + ν23ν32 + ν13ν31 + ν12ν23ν31 + ν21ν32ν13 (3)



512 A. R. Shahani, H. Sharifi Torki

where 1, 2 and 3 represent r , ϕ and z directions, respectively. Due to symmetry, one can conclude τrϕ = τr z =
τzϕ = 0, and so, the equations of motion reduce to:

∂σrr

∂r
+ 1

r

(
σrr − σϕϕ

) = ρü (4)

in which ρ is the density. The strains components can be expressed in terms of the only non-vanishing
displacement component, i.e., the radial displacement u as follows:

εrr = ∂u

∂r
; εϕϕ = u

r
; εrϕ = εϕz = εzr = 0 (5)

Substituting Eq. (5) into Eq. (1) and using Eq. (4) give the equation of motion in terms of displacement in the
following form:

∂2u

∂r2
+ 1

r

∂u

∂r
− c22

c11

u

r2
− β11

c11

∂θ

∂r
+ 1

r
θ

(
β22 − β11

c11

)
= ρ

c11
ü (6)

where

β11 = c11αr + c12αϕ + c13αz (7a)

β22 = c12αr + c22αϕ + c23αz (7b)

and
θ = T (r, t) − T0 (8)

where T0 is the reference temperature at which the cylinder is stress free. The heat conduction equation in
cylindrical coordinate system and for an orthotropic material takes the following form [21]:

k1
1

r

∂

∂r

(
r
∂T

∂r

)
+ k2

1

r2
∂2T

∂ϕ2 + k3
∂2T

∂z2
+ W = ρc

∂T

∂t
(9)

in which ρ is the density, c the specific heat, W the internal heat generation and k1, k2, k3 are the thermal
conductivity in r , ϕ, z directions, respectively. For the case of symmetric thermal boundary condition and in
the absence of the internal heat generation, temperature distribution becomes independent of ϕ and z; thus,
Eq. (9) is reduced to:

k1
1

r

∂

∂r

(
r
∂T

∂r

)
= ρc

∂T

∂t
(10)

Therefore, the equations of the uncoupled thermoelasticity problem in an orthotropic hollow cylinder are:

∂2θ

∂r2
+ 1

r

∂θ

∂r
= 1

α∗
∂θ

∂t
(11a)

∂2u

∂r2
+ 1

r

∂u

∂r
− ν2

r2
u − β11

c11

∂θ

∂r
+ 1

r
θ

(
β22 − β11

c11

)
= γ 2ü (11b)

where

α∗ = k1
ρc

(12a)

ν2 = c22
c11

(12b)

γ 2 = ρ

c11
(12c)

Two terms of the left-hand side of Eq. (11b) cause the interaction of thermal field on the mechanical field. The
non-vanishing stress components are σrr and σθθ which are related to the displacement component and the
temperature as follows:

σrr = c11
∂u

∂r
+ c12

u

r
− β11θ (13a)

σθθ = c12
∂u

∂r
+ c22

u

r
− β22θ (13b)
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3 Solution of the heat conduction equation

To solve the energy equation, the boundary and initial conditions are assumed in the following form:

∂2θ

∂r2
+ 1

r

∂θ

∂r
− 1

α∗
∂θ

∂t
= 0 (14a)

θ (a, t) = f (t) (14b)

θ (b, t) = g (t) (14c)

θ (r, 0) = 0 (14d)

The solutions of Eq. (14a) can be accomplished using the finite Hankel transform defined as [22]:

H [θ (r, t) ; ζn] = θ̄ (ζn, t) =
∫ b

a
rθ (r, t) K1 (ζn, r) dr (15)

where K1 (ζn, r) is the kernel of the transformation. Choosing the proper kernel depends on the form of the
equation and the boundary conditions. The kernel of transformation for the present problem is as follows [23]:

K1 (r, ζn) = J0 (ζnr)Y0 (ζna) − J0 (ζna)Y0 (ζnr) (16)

where ζn’s are the positive roots of the following characteristics equation:

J0 (ζnb)Y0 (ζna) − J0 (ζna)Y0 (ζnb) = 0 (17)

The inverse transform is defined as [23]:

H−1 [θ̄ (ζn, t) ; r] = θ (r, t) =
∞∑
n=1

an θ̄ (ζn, t) K1 (r, ζn) (18)

where

an = 1∫ b
a r K 2

1 (r, ζn) dr
= π2

2

ζ 2
n {J0 (ζnb)}2

{J0 (ζna)}2 − {J0 (ζnb)}2 (19)

Applying the finite Hankel transform to Eq. (14a) yields:

∂θ̄

∂t
+ α∗ζ 2

n θ̄ (ζnt) = α∗
[
2J0 (ζna)

πJ0 (ζnb)
g (t) − 2

π
f (t)

]
= A1 (t) (20)

Eq. (20) is non-homogeneous ordinary differential equation, the solution of which can be easily obtained as
follows:

θ̄ (ζnt) =
∫ t

0
A1 (τ ) e−α∗ζ 2n (t−τ)dτ (21)

Using the inversion relations, Eq. (18a), we have:

θ (r, t) =
∞∑
n=1

anK1 (r, ζn)
∫ t

0
A1 (τ ) e−α∗ζ 2n (t−τ)dτ (22)

4 Solution of the equation of motion

For solving the equation of motion, two types of the boundary conditions are considered. In the first case,
tractions are applied both on the inner and the outer surfaces of the orthotropic cylinder and in the second case
the traction is applied on the inner surface and the displacement boundary condition on the outer one. To solve
the displacement equation, u (r, t) is resolved into two components:

u (r, t) = u1 (r, t) + u2 (r, t) (23)

In the following, the solution for each of the introduced mechanical boundary conditions is presented.
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4.1 Case 1: Traction–Traction

In this case, both the inner and the outer surfaces of the cylinder are subjected to the traction boundary
conditions:

σrr (a, t) = P1 (t) (24a)

σrr (b, t) = P2 (t) (24b)

As is seen, the mechanical boundary conditions are considered to be time dependent and in a general form.
By substituting (24a) and (24b) in (13a), we have:

∂u

∂r

∣∣
r=a + h1u (a, t) = B1 (t) (25a)

∂u

∂r

∣∣
r=b + h2u (b, t) = B2 (t) (25b)

where

h1 = c12
c11a

(26a)

h2 = c12
c11b

(26b)

B1 (t) = 1

c11
P1 (t) + β11

c11
f (t) (26c)

B2 (t) = 1

c11
P2 (t) + β11

c11
g (t) (26d)

The initial conditions for the displacement field are:

u (r, 0) = F2 (r) (27a)

u̇ (r, 0) = F3 (r) (27b)

where F2 (r) and F3 (r) are known functions of the radial position and a dot over the quantity is the partial
derivative of it with respect to time. As is mentioned before, for solving displacement equation, it should be
separated into two parts. The boundary conditions are allocated to the first homogenous part and the initial
conditions for the second non-homogenous part of the differential equation:

∂2u1
∂r2

+ 1

r

∂u1
∂r

− ν2

r2
u1 − γ 2ü1 = 0 (28a)

∂u1
∂r

∣∣
r=a + h1u1 (a, t) = B1 (t) (28b)

∂u1
∂r

∣∣
r=b + h2u1 (b, t) = B2 (t) (28c)

u1 (r, 0) = 0 (28d)

u̇1 (r, 0) = 0 (28e)

and

∂2u2
∂r2

+ 1

r

∂u2
∂r

− ν2

r2
u2 − γ 2ü = β11

c11

∂θ

∂r
− 1

r
θ

(
β22 − β11

c11

)
(29a)

∂u2
∂r

∣∣
r=a + h1u2 (a, t) = 0 (29b)

∂u2
∂r

∣∣
r=b + h2u2 (b, t) = 0 (29c)

u2 (r, 0) = F2 (r) (29d)

u̇2 (r, 0) = F3 (r) (29e)
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The solutions of Eq. (28a) can be accomplished using the finite Hankel transform defined as [22]:

H [u1 (r, t) ; ξm] = ū1 (ξm, t) =
∫ b

a
ru1 (r, t) K2 (r, ξm) dr (30)

where K2 (r, ξm) is the kernel of the transformation. Choosing the proper kernel depends on the form of the
equation and the boundary conditions. The kernel of transformation for the present problem is as follows [23]:

K2 (r, ξm) = {
Jν (ξmr)

[
ξmY

′
ν (ξma) + h1Yν (ξma)

] − Yν (ξmr)
[
ξmJ

′
ν (ξma) + h1Jν (ξma)

]}
(31)

where ξm’s are the positive roots of the following characteristic equation:
[
ξmY

′
ν (ξma) + h1Yν (ξma)

] [
ξmJ

′
ν (ξmb) + h2Jν (ξmb)

] − [
ξmY

′
ν (ξmb) + h2Yν (ξmb)

]

× [
ξm J′ν (ξma) + h1 Jν (ξma)

] = 0 (32)

The inverse transform is defined as [23]:

H−1 [ū1 (ξm, t) ; r ] = u1 (r, t) =
∞∑

m=1

bmū1 (ξm, t) K2 (r, ξm) (33)

where

bm = 1∫ b
a r K 2

2 (r, ξm) dr
= π2ξ2me

2
2

2

{(
h22 + ξ2m

[
1 −

(
ν

ξmb

)2])
e21 −

(
h21 + ξ2m

[
1 −

(
ν

ξma

)2])
e22

} (34)

in which

e1 = ξm J′ν (ξma) + h1Jν (ξma) (35a)

e2 = ξm J′ν (ξmb) + h2Jν (ξmb) (35b)

Applying the finite Hankel transform to Eq. (28a), yields:

∂2ū1 (ξm,t)

∂t2
+

(
ξm

γ

)2

ū1 (ξm,t) = 1

γ 2

[
2e1
πe2

B2 (t) − 2

π
B1 (t)

]
= A2 (t) (36)

Eq. (36) is non-homogeneous ordinary differential equation, the solution of which can be easily obtained as
follows:

ū1
(
ξm,t

) = γ

ξm

∫ t

0
A2 (τ ) sin

(
ξm

γ
(t − τ)

)
dτ (37)

Using the inversion relation, Eq. (33), we have:

u1 (r, t) =
∞∑

m=1

γ

ξm
bmK2 (r, ξm)

∫ t

0
A2 (τ ) sin

(
ξm

γ
(t − τ)

)
dτ (38)

As is seen, the first equation has been solved. To solve the second part of the equations, u2 (r, t) can be
considered as the following form [5]:

u2 (r, t) = Y (t) K2 (r, ξm) (39)

where Y (t) is unknown function of time. It should be emphasized that the above form for u2 (r, t) satisfies the
related boundary conditions. Substituting Eq. (39) into (29a) yields to:

(
Ÿ +

(
ξm

γ

)2

Y

)
K2(r, ξm) = −an θ̄

γ 2

[
β11

c11

∂K1 (r, ζn)

∂r
− 1

r
K1 (r, ζn)

(
β22 − β11

c11

)]
(40)



516 A. R. Shahani, H. Sharifi Torki

Using the orthogonality of the Bessel functions, the following equation can be obtained [22]:

b∫

a

r K2 (r, ξm) K2
(
r, ξp

)
dr = Mmδmp (41)

where δ is the Kronecker delta and:

Mm = 1

ξ2m

{
b2

dK2

dr

∣∣2
r=b − a2

dK2

dr

∣∣2
r=a + (

ξ2m − ν2
) [
b2K 2

2 (b) − a2K 2
2 (a)

]}
(42)

Multiplying Eq. (40) by r K2 (r, ξm), integrating between a and b, and then using the orthogonality relation
result in:

Ÿ +
(

ξm

γ

)2

Y =
⎧⎨
⎩−

∫ b
a r K2 (r, ξm)

[
β11
c11

∂K1(r,ζn)
∂r − 1

r K1 (r, ζn)
(

β22−β11
c11

)]
dr

γ 2Mm

⎫⎬
⎭

(
an θ̄

)
(43)

To simplify the above equation, we introduce the following parameter:

U1 =
⎧⎨
⎩−

∫ b
a r K2 (r, ξm)

[
β11
c11

∂K1(r,ζn)
∂r − 1

r K1 (r, ζn)
(

β22−β11
c11

)]
dr

γ 2Mm

⎫⎬
⎭ (44)

Now, Eq. (43) can be written in the simplified form:

Ÿ +
(

ξm

γ

)2

Y = U1an θ̄ (45)

The proper form of the initial conditions can be obtained by substituting Eq. (29d) into (39):

Y (0) K2 (r, ξm) = F1 (r) (46)

Using the orthogonality relation, Eq. (41), yields to:

Y (0) =
∫ b
a r K2 (r, ξm) F1 (r) dr

Mm
(47)

The second initial condition can be obtained in a similar way:

Ẏ (0) =
∫ b
a r K2 (r, ξm) F2 (r) dr

Mm
(48)

Using Laplace transform and considering initial conditions lead to the following solution for the second part
of the displacement equation.

Y (t) = L−1

⎧⎪⎪⎨
⎪⎪⎩
L {

U1
[
an θ̄

]} + sY (0) + Ẏ (0)[
s2 +

(
ξm
γ

)2]

⎫⎪⎪⎬
⎪⎪⎭

(49a)

Y (t) = U1an
γ

ξm

∫ t

0
θ̄ (ζn,τ ) sin

(
ξm

γ
(t − τ)

)
dτ + γ

ξm
Ẏ (0)

∫ t

0
sin

(
ξm

γ
(t − τ)

)
dτ

+Y (0)
∫ t

0
cos

(
ξm

γ
(t − τ)

)
dτ (49b)
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4.2 Case 2: Traction–Displacement

In the second case, the traction boundary condition is prescribed on the inner surface of the orthotropic cylinder
and the displacement boundary condition on the outer one:

σrr (a, t) = P1 (t) (50a)

u (b, t) = D2 (t) (50b)

By substituting Eq. (50a) in (13a), we have:

∂u

∂r

∣∣
r=a + h1u (a, t) = B1 (t) (51a)

u (b, t) = B2 (t) (51b)

where

h1 = c12
c11a

(52a)

B1 (t) = 1

c11
P1 (t) + β11

c11
f (t) (52b)

B2 (t) = D2 (t) (52c)

The initial conditions for the displacement field are:

u (r, 0) = F2 (r) (53a)

u̇ (r, 0) = F3 (r) (53b)

where F2 (r) and F3 (r) are known functions of the radial position and a dot over the quantity is the partial
derivative of it with respect to time. Likewise the first case, the following forms are considered for solving
each part of the equation.

∂2u1
∂r2

+ 1

r

∂u1
∂r

− ν2

r2
u1 − γ 2ü1 = 0 (54a)

∂u1
∂r

∣∣
r=a + h1u1 (a, t) = B1 (t) (54b)

u1 (b, t) = B2 (t) (54c)

u1 (r, 0) = 0 (54d)

u̇1 (r, 0) = 0 (54e)

and

∂2u2
∂r2

+ 1

r

∂u2
∂r

− ν2

r2
u2 − γ 2ü2 = β11

c11

∂θ

∂r
− 1

r
θ

(
β22 − β11

c11

)
(55a)

∂u2
∂r

∣∣
r=a + h1u2 (a, t) = 0 (55b)

u2 (b, t) = 0 (55c)

u2 (r, 0) = F2 (r) (55d)

u̇2 (r, 0) = F3 (r) (55e)

The solutions of Eq. (54a) can be accomplished using the finite Hankel transform defined as [22]:

H
[
u1 (r, t) ; λq

] = ū1
(
λq , t

) =
∫ b

a
ru1 (r, t) K3

(
r, λq

)
dr (56)

where K3
(
r, λq

)
is the kernel of the transformation. The kernel of transformation for the present boundary

condition is as follows [23]:

K3
(
r, λq

) = Jν
(
λqr

)
Yν

(
λqb

) − Jν
(
λqb

)
Yν

(
λqr

)
(57)
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where λq ’s are the positive roots of the following characteristic equation:

Yν

(
λqb

) [
λq J

′
ν

(
λqa

) + h1 Jν
(
λqa

)] − Jν
(
λqb

) [
λqY

′
ν

(
λqa

) + h1Yν

(
λqa

)] = 0 (58)

The inverse transform is defined as [23]:

H−1 [ū1
(
λq , t

) ; r] = u1 (r, t) =
∞∑
q=1

cq ū1
(
λq , t

)
K3

(
r, λq

)
(59)

where

cq = 1∫ b
a r K 2

3

(
r, λq

)
dr

= π2λ2qe
2
1

2{e21 − [Jν
(
λqb

)]2
(
h21 + λ2q

[
1 −

(
ν

λqa

)2])}
(60)

in which
e1 = λqJ

′
ν

(
λqa

) + h1Jν
(
λqa

)
(61)

Applying the finite Hankel transform to Eq. (54a) yields:

∂2ū1
(
λq ,t

)

∂t2
+

(
λq

γ

)2

ū1
(
λq ,t

) = 1

γ 2

[
−2Jν

(
λqb

)

πe1
B1 (t) + 2

π
B2 (t)

]
= A2 (t) (62)

The solution of the above differential equation can be obtained as follows:

ū1
(
λq ,t

) = γ

λq

∫ t

0
A2 (τ ) sin

(
λq

γ
(t − τ)

)
dτ (63)

Using the inversion relation, Eq. (59), we have:

u1 (r, t) =
∞∑

m=1

γ

λq
cq K3

(
r, λq

) ∫ t

0
A2 (τ ) sin

(
λq

γ
(t − τ)

)
dτ (64)

After obtaining the solution of the first part of the equation, to solve the second one, u2 (r, t) can be considered
as the following form [5]:

u2 (r, t) = Y (t) K3
(
r, λq

)
(65)

where Y (t) is an unknown functions of time. Substituting Eq. (65) into (55a) yields to:
(
Ÿ +

(
λq

γ

)2

Y

)
K3

(
r, λq

) = −an θ̄

γ 2

[
β11

c11

∂K1 (r, ζn)

∂r
− 1

r
K1 (r, ζn)

(
β22 − β11

c11

)]
(66)

Using the orthogonality of the Bessel functions, the following equation can be obtained [22]:

∫ b

a
r K3

(
r, λq

)
K3

(
r, λp

)
dr = Mmδqp (67)

where δ is the Kronecker delta. Multiplying Eq. (66) by r K3
(
r, λq

)
, integrating between a and b, and then

using the orthogonality relations results in:

Ÿ +
(

λq

γ

)2

Y =
⎧⎨
⎩−

∫ b
a r K3

(
r, λq

) [β11
c11

∂K1(r,ζn)
∂r − 1

r K1 (r, ζn)
(

β22−β11
c11

)]
dr

γ 2Mm

⎫⎬
⎭

(
an θ̄

)
(68)

Now, Eq. (68) can be simplified in the following form:

Ÿ +
(

λq

γ

)2

Y = U2an θ̄ (69)
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where

U2 =
⎧⎨
⎩−

∫ b
a r K3

(
r, λq

) [β11
c11

∂K1(r,ζn)
∂r − 1

r K1 (r, ζn)
(

β22−β11
c11

)]
dr

γ 2Mm

⎫⎬
⎭ (70)

In a similar way, to obtain the proper initial conditions we have:

Y (0) =
∫ b
a r K3

(
r, λq

)
F1 (r) dr

Mm
(71a)

Ẏ (0) =
∫ b
a r K3

(
r, λq

)
F2 (r) dr

Mm
(71b)

Using Laplace transform and Eqs. (71a) and (71b), the solution of Eq. (69) can be obtained:

Y (t) = L−1

⎧⎪⎪⎨
⎪⎪⎩
L {

U2
[
an θ̄

]} + sY (0) + Ẏ (0)[
s2 +

(
λq
γ

)2]

⎫⎪⎪⎬
⎪⎪⎭

(72a)

Y (t) = U2an
γ

λq

t∫

0

θ̄ (ζn, τ ) sin

(
λq

γ
(t − τ)

)
dτ + γ

λq
Ẏ (0)

∫ t

0
sin

(
λq

γ
(t − τ)

)
dτ

+Y (0)

t∫

0

cos

(
λq

γ
(t − τ)

)
dτ (72b)

5 Numerical examples

In order to study the response of the orthotropic cylinder under external loads, two numerical examples are
considered. The following material specifications are employed in the calculations [24]:

a = 1 m; b = 2 m; P1 = P2 = 0; θ0 = 100; ω = 0.001;α∗ = .112E − 6m2/s

E11 = 19.8GPa; E22 = 48.3GPa; E33 = 19.8GPa; G12 = 8.9GPa;
G23 = 8.9GPa; G31 = 6.19GPa; ν12 = .27; ν23 = .27; ν31 = .3

α11 = 15E − 6 1/K; α22 = 0.23E − 61/K; α33 = 15E − 61/K;
In order to plot the distribution of temperature, it is considered that an exponentially decaying temperature is
applied on the inner surface of the cylinder. So, the thermal boundary conditions and the initial condition are:

θ (a, t) = θ0e
−ωt (73a)

θ (b, t) = 0 (73b)

θ (r, 0) = 0 (73c)

Considering the above equations and Eq. (20) yields:

A1 (t) = −2α∗θ0e−ωt

π
(74)

Using Eqs. (74) and (21) leads to:

θ̄ (ζnt) = − 2α∗θ0
π
(
α∗ζ 2

n − ω
)
(
e−ωt − e−α∗ζ 2n t

)
(75)
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Fig. 1 Temperature distribution versus the radial distance

Substituting Eq. (75) into Eq. (22) results in:

θ (r, t) = −α∗πθ0

∞∑
n=1

ζ 2
n {J0 (ζnb)}2

{J0 (ζna)}2 − {J0 (ζnb)}2

(
e−ωt − e−α∗ζ 2n t

)
(
α∗ζ 2

n − ω
) K1 (r, ζn) (76)

Figure 1 shows the distribution of the temperature through the thickness of the orthotropic cylinder. It can
be seen that over time passing the temperature of each point increases so long as it reaches the steady-state
condition which is zero temperature.

Due to the low thermal conductivity, it takes a lot of time to reach the steady-state condition.
The histories of the thermal stresses which are caused by this temperature distribution are presented in the

following for each of the mechanical boundary conditions.

5.1 Case 1: Traction–Traction

As mentioned, in this case the tractions are prescribed on both the inner surface and the outer surface of the
cylinder. Using the presented specifications leads to:

σrr (a, t) = 0 (77a)

σrr (b, t) = 0 (77b)

Considering Eqs. (26c), (26d) and (36), we have:

B1 = β11

c11
θ0e

−ωt (78a)

B2 = 0 (78b)

A2 (t) = −2θ0β11e−ωt

πγ 2c11
(78c)

Substituting the above equations in Eq. (37) yields to:

ū1 (ξmt) = 2θ0β11

πc11
(
ξ2m + ω2γ 2

)
{

1

ξm

[
ξm cos

(
ξm

γ
t

)
− γω sin

(
ξm

γ
t

)]
− e−ωt

}
(79)

Thus, the final solution of the first part of the displacement component can be obtained in the following form:

u1 (r, t) = 2θ0β11

πc11

∞∑
m=1

bm(
ξ2m + ω2γ 2

)
{
cos

(
ξm

γ
t

)
− γω

ξm
sin

(
ξm

γ
t

)
− e−ωt

}
K2 (r, ξm) (80)
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Fig. 2 History of dynamic radial stress for different radial positions (case i)

The section of the second part of the answer which was a function of time is obtained in the following form:

Y (t) = − 2anθ0U1α
∗γ

π
(
α∗ζ 2

n − ω
)
ξm

⎧⎪⎨
⎪⎩

(
ξm
γ

)
e−ωt

ω2 +
(

ξm
γ

)2

−
(

ξm
γ

)

ω2 +
(

ξm
γ

)2 cos
(

ξm

γ
t

)
+ ω

ω2 +
(

ξm
γ

)2 sin
(

ξm

γ
t

)

−
(

ξm
γ

)
e−α∗ζ 2n t

(
α∗ζ 2

n

)2 +
(

ξm
γ

)2 +
(

ξm
γ

)

(
α∗ζ 2

n

)2 +
(

ξm
γ

)2 cos
(

ξm

γ
t

)

− α∗ζ 2
n(

α∗ζ 2
n

)2 +
(

ξm
γ

)2 sin
(

ξm

γ
t

)
⎫⎪⎬
⎪⎭

(81)

Now, after determining the both parts of radial displacement component, the stress components distributions
can be easily derived from Eqs. (13a) and (13b).

Figure 2 illustrates the dynamic radial stress history for the first case of the boundary conditions. As is
seen, dilatation stress wave which is created by thermal boundary condition at the inner surface moves forward
from the inner surface through the thickness of orthotropic cylinder. After colliding with the outer surface,
the stress wave reflects into the medium but as reversed. The reason of this fact is considering traction free
boundary condition for the outer surface of the orthotropic cylinder.

In point of fact, propagating tensile radial stress wave leads to producing compressive hoop stress. However,
as is seen from Fig. 3, hoop stress component is tensile at the initial moments and it diminishes and turns into
compressive passing time. This occurs due to the resistance of the nearby points in the medium which exerts
to any point. But this resistance vanishes after the stress wave reaches to the nearby point.

5.2 Case 2: Traction–Displacement

The traction on the inner surface and the displacement on the outer surface are assumed as boundary conditions
in this case. These types of boundary conditions can be stated as follows:

σrr (a, t) = 0 (82a)
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Fig. 3 History of dynamic hoop stress for different radial positions (case i)

u (b, t) = 0 (82b)

Considering Eqs. (52c), (52d) and (62), leads to:

B1 = β11

c11
θ0e

−ωt (83a)

B2 = 0 (83b)

A2 (t) = −2β11θ0e−ωt

c11γ 2π

Jν
(
λqb

)

e1
(83c)

Substituting Eq. (83c) into Eq. (63) yields:

ū1
(
λq t

) = 2θ0β11 Jν
(
λqb

)

πc11
(
λ2q + ω2γ 2

)
e1

{
1

λq

[
λq cos

(
λq

γ
t

)
− γω sin

(
λq

γ
t

)]
− e−ωt

}
(84)

Therefore, the first part of the solution for displacement field can be obtained using Eq. (64):

u1 (r, t) = 2θ0β11

πc11

∞∑
m=1

cq Jν
(
λqb

)
(
λ2q + ω2γ 2

)
e1

{[
cos

(
λq

γ
t

)
− γω

λq
sin

(
λq

γ
t

)]
− e−ωt

}
K3

(
r, λq

)
(85)

In addition, for the second part of solution we have:

Y (t) = − 2anθ0U2α
∗γ

π
(
α∗ζ 2

n − ω
)
λq

⎧⎪⎨
⎪⎩

(
λq
γ

)
e−ωt

ω2 +
(

λq
γ

)2

−
(

λq
γ

)

ω2 +
(

λq
γ

)2 cos
(

λq

γ
t

)
+ ω

ω2 +
(

λq
γ

)2 sin
(

λq

γ
t

)
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Fig. 4 History of dynamic radial stress for different radial positions (case ii)

Fig. 5 History of dynamic hoop stress for different radial positions (case ii)

−
(

λq
γ

)
e−α∗ζ 2n t

(
α∗ζ 2

n

)2 +
(

λq
γ

)2 +
(

λq
γ

)

(
α∗ζ 2

n

)2 +
(

λq
γ

)2 cos
(

λq

γ
t

)

− α∗ζ 2
n(

α∗ζ 2
n

)2 +
(

λq
γ

)2 sin
(

λq

γ
t

)
⎫⎪⎬
⎪⎭

(86)

Using Eqs. (13a) and (13b), the radial and the hoop stress components can be obtained.
Figure 4 shows the dynamic radial stress history for the second case of the boundary conditions. As is seen,

likewise the previous case, initiated dilatation stress wave at the inner surface moves forward from the inner
surface of the orthotropic cylinder to the outer one. In spite of the traction–traction boundary condition, the
stress wave which is reflected into the medium does not become reversed in this case. Considering the outer
surface of the cylinder to be fixed causes the reality of reflecting the stress wave from the outer surface into
medium as the same sign.

As is mentioned, tensile radial stress wave produces compressive hoop stress. It can be seen in Fig. 5, when
the tensile radial stress wave reaches any radial position for the first time, the hoop stress component becomes
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Table 1 Comparison between the instants of reaching dilatation wave to specific radial positions considered in Figs. 2 and 3 and
Eq. (88)

Radial position (m) Calculated using Eq. (88) (s) Obtained using Fig. 2 (s)

r = 1.2 4.94 × 10−5 4.915 × 10−5

r = 1.4 9.88 × 10−5 9.885 × 10−5

r = 1.6 14.82 × 10−5 14.85 × 10−5

r = 1.8 19.76 × 10−5 19.75 × 10−5

tensile at the early moments due to the resistance of nearby points and after that it decreases gradually with
time.

Dilatation wave velocity can be obtained using the following equation:

Ve = 1

γ
=

√
c11
ρ

= 4.049 × 103 (m/s) (87)

Using the above equation, one can compute the first time when dilatation wave reaches any radial position.
This value can be calculated using the following equation:

t∗ = r − a

Ve
(88)

Table 1 indicates the values which are calculated with Eq. (88) and those which are obtained from Fig. 2.

6 Validation

6.1 Uniformly heated orthotropic cylinder

The present work is validated in a special case with the problem of orthotropic cylinder subjected to uniform
temperature throughout the cylinder. In the mentioned problem, the energy equation has not been solved and
a constant temperature is assumed for all radial sections of the cylinder and therefore there is no temperature
gradient. The history of non-dimensional stress components is plotted in Figs. 6 and 7. Due to applying thermo-
mechanical boundary conditions in the inner and the outer surfaces, there are two thermoelastic waves. The
one moves outward from the inner surface, and the other propagates inward the medium from the outer surface.
The corresponding results of Ding et al. [9] have been shown on the same figures. It is observed that the results
of this work are in good agreement with the results of Ding et al. [9]. The following properties are employed
in calculations:

a = 50 mm; b = 100 mm; θ0 = 200, c11 = 17.075GPa

c12 = 6.757GPa; c13 = 7.289GPa; c22 = 59.645GPa;
c23 = 6.752GPa; c33 = 17.074GPa; ρ = 1700 kg/m3

α11 = 4E − 51/K; α22 = 1E − 51/K; α33 = 4E − 51/K;
The non-dimensional time relation used in the figures are defined as follows:

t̄ = Vet

a
(89)

6.2 Pure thermal load in isotropic cylinder

As it is mentioned orthotropic cylinder has different mechanical and thermal properties in three different
directions. By choosing the same amount for these properties in all directions, the orthotropic cylinder reduces
to isotropic one. Indeed isotropic cylinder is a special case of orthotropic cylinder which has the same properties
in different directions. The analytical solution of the thermoelasticity problem in isotropic cylinder which is
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Fig. 6 Variation of radial stress for r = (a + b)/2

Fig. 7 Variation of hoop stress for r = (a + b)/2

subjected to transient thermal loading is also solved by Shahani and Sharifi [15]. The following properties are
employed for comparing the result of the present work with those which are presented in [15].

a = 1 m; b = 2 m; ν = .3; θ0 = 100 e−ωt ; ω = 0.001

E = 70 GPa; ρ = 2707 kg
/
m3; k = 204 w/mk

α = 23E − 61
/
K; c = 903 J

/
kgK; T0 = 293 K

A time-decaying temperature is applied on the inner surface of the cylinder, and the outer surface temperature
is considered to be zero. Figure 8 shows the history of temperature in isotropic cylinder.

Figures 9 and 10 indicate the history of radial and hoop stress. As is seen, considering the same properties
in different directions in orthotropic cylinder leads to the same results as in isotropic cylinder which were
presented by Shahani and Sharifi [15].
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Fig. 8 Temperature distribution in isotropic cylinder

Fig. 9 History of dynamic radial stress in isotropic cylinder

Fig. 10 History of dynamic hoop stress in isotropic cylinder
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