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Abstract Acontinuummechanical theory is used tomodel physicalmechanisms of twinning, solid-solid phase
transformations, and failure by cavitation and shear fracture. Such a sequence ofmechanisms has been observed
in atomic simulations and/or experiments on the ceramic boron carbide. In the present modeling approach,
geometric quantities such as the metric tensor and connection coefficients can depend on one or more director
vectors, also called internal state vectors. After development of the general nonlinear theory, a first problem
class considers simple shear deformation of a single crystal of this material. For homogeneous fields or stress-
free states, algebraic systems or ordinary differential equations are obtained that can be solved by numerical
iteration. Results are in general agreement with atomic simulation, without introduction of fitted parameters.
The second class of problems addresses the more complex mechanics of heterogeneous deformation and stress
states involved in deformation and failure of polycrystals. Finite element calculations, in which individual
grains in a three-dimensional polycrystal are fully resolved, invoke a partially linearized version of the theory.
Results provide new insight into effects of crystal morphology, activity or inactivity of different inelasticity
mechanisms, and imposed deformation histories on strength and failure of the aggregate under compression
and shear. The importance of incorporation of inelastic shear deformation in realistic models of amorphization
of boron carbide is noted, as is a greater reduction in overall strength of polycrystals containing one or a few
dominant flaws rather than many diffusely distributed microcracks.

Keywords Continuum mechanics · Geometry · Phase field · Fracture · Twinning · Phase transformation ·
Finsler space

1 Introduction

When subjected to mechanical stresses exceeding their elastic limit, crystalline materials may undergo one or
more of a number of inelastic deformation mechanisms. Such mechanisms include dislocation-mediated plas-
ticity, deformation twinning, stress-induced phase transformations, and various fracture behaviors. Emphasis
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of the present work is on those mechanisms distinct from dislocation plasticity: twinning, solid–solid phase
transformations, and fracture in the form of shear failure, cleavage, and/or cavitation. These mechanisms are
often encountered in less ductile nonmetals, or in those crystals with structures belonging to space groups of
low symmetry, wherein the tendency for dislocation glide is restricted.

The particular material of interest in the present paper, to which a novel and sophisticated constitutive
model framework is applied, is boron carbide, with nominal chemical composition B4C. Boron carbide is a
ceramic crystal with rhombohedral (i.e., trigonal) symmetry, and it demonstrates advantages of high elastic
stiffness, relatively lowmass density, and high hardness. Performance in industrial and engineering applications
is hindered by low ductility and a tendency to undergo a stress-induced phase transformation from crystal to
glass, often accompanying shear localization and fracture. Experimental evidence for such behavior is reported
in [1,2]. Atomic simulation results, obtained either via first principles or molecular dynamics, confirming
deformation mechanisms of amorphization and fracture via cavitation or instability include [3–7]. Continuum
nonlinear elastic and elastic–plastic models have also been used to predict instability and failure of boron
carbide single crystals and polycrystals [8–11]. Deformation twinning has been reported in experiments [12]
and atomic simulations [6,7], and twins are also prevalent in certain kinds of boron carbide depending on
processing [13].

Various classes of finite deformation continuum physics models have been used to address inelastic defor-
mation mechanisms of present interest. Continuum theories based on the idea of pseudo-slip (similar to con-
tinuum crystal plasticity [14,15]) have been invoked to describe deformation twinning [16–18] and cleavage
fracture [19–21] in crystals. Continuum damage mechanics models are widely used to describe cavitation and
fracture [22,23]. Sharp-interface representations of inelastic mechanisms include cohesive zone models for
fracture [24–27] and a level-set model for twinning [28]. Many diffuse-interface representations invoke phase
field concepts for modeling fracture [29–32], phase transformations [33–35], and twinning [36–39]. Coupled
continuum models of crystal plasticity with phase field representations of fracture also exist [40].

The theory and simulations advanced in the present paper invoke concepts from phase field dynamics
and Finsler differential geometry. Regarding the latter, generalized Finsler-geometric continuum mechanics
[41–43] incorporates a director vector or a vector of evolving state variables upon which the metric tensor
and geometric quantities derived from it (e.g., volume and connection coefficients) depend. Such dependence
enables a physically natural and geometrically inspired description of evolving microstructure on the response
of thematerial to mechanical loading. Early work by the present author [44] identified a state vector component
of Finsler continuum mechanics with an order parameter of phase field theory. A complete and refined theory
was first presented in [41] including solutions to problems involving shear failure and cavitation in magnesium
metal. A generalized Finsler-geometric continuum physics framework was developed in [45] that included
both additive and multiplicative decompositions of the deformation gradient into elastic and inelastic parts.
Solutions for tensile fracture and compressive phase transformations of boron carbide were reported. The
variational theory of [41,45] was further focused in [46] to consider spherical inelastic deformation associated
with ductile failure or void growth, with solutions developed for ductile tensile failure of magnesium and
shear localization in boron carbide. More recently, the theory was extended to consider dynamics and shock
wave propagation in [47], including solutions for shock compression of a boron carbide single crystal along
its c-axis, wherein inelastic shearing in conjunction with amorphization was permitted on pyramidal planes
[7]. In theory and applications reported to date [41,45–47], governing equations are derived via fundamental
principles of mathematical physics with material properties obtained from standard experiments or reported
results of atomic simulations; thus, few, if any, calibrated material parameters are required.

Developed in this work is the first known continuummodel of deformation twinning in boron carbide single
crystals. This model incorporates ideas from a prior geometrically nonlinear phase field theory of twinning
[36–38]. The present model simultaneously allows for a stress-induced phase change to an amorphous or
glassy solid. A single order parameter measures the transition from parent crystal to twinned crystal to glass,
as observed for some orientations of single crystals in atomic simulations [7]. Suppression of twinning for other
orientations enables transition directly from parent to amorphous phase. Since volume, and thus the material
metric, changes with a change in phase (specifically, a mass density increases from crystal to glass [2,34]),
the order parameter is assigned as a component of a state vector of generalized pseudo-Finsler space [45]. A
second component of this state vector is another order parameter linked to shear softening and cavitation, with
a local mass density decreases associated with the latter failure mechanism.

Also reported in this paper are the first known three-dimensional (3-D) finite element (FE) simulations for
Finsler-geometric continuummechanics. Fully resolved polycrystals of polyhedral shape [48–50] are subjected
to deformation histories enabling exploration of effects of grain size, shape, and orientation on the mechanical
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response of boron carbide. Analytical or simple numerical solutions in prior work [45,46] were restricted
to homogeneous deformation of single crystals or stress-free solutions for failed material, while dynamic
solutions in [47] were restricted to homogeneous domains behind steady shock fronts. The present, and much
more sophisticated, numerical methods enable the potential for understanding and designing polycrystalline
boron carbide microstructures for improved failure resistance. Such work at the “mesoscale” complements
atomic scale simulations [51,52] whose purpose is virtual design of failure resistant single crystal compositions
of boron-based ceramics.

Remaining content is organized as follows. General theory is reviewed in Sect. 2, including geometry,
kinematics, and equilibrium and rate equations. The theory is specialized to boron carbide in Sect. 3, allowing
for inelastic mechanisms of twinning, amorphization, and failure by shear fracture and cavitation. A basic
problem of simple shear of a single crystal of boron carbide is solved in Sect. 4, enabling demonstration
of capabilities of the constitutive model and comparison and validation with observations from experiments
or atomic simulations reported elsewhere. Implementation of the theory in FE simulations of deforming
polycrystals under pure shear or axial compressive loading is reported in Sect. 5. Conclusions follow in Sect. 6.

2 Theory: general concepts

A theory for the mechanical response of deformable solids is presented, consisting of geometric descriptions of
reference and spatial configurations and motion between the two. Thermodynamic aspects, balance equations,
and kinetics are then described. Amultiplicative decomposition of the deformation gradient is invoked, leading
to more specific forms of governing equations.

The present discussion is limited to only those theoretical features used in subsequent applications of
the paper, and thus justification and elaborate discussion of many aspects of the general theory are often
omitted. Such justification and discussion can instead be found in prior work [41,45–47] that comprises a
more complete presentation of the Finsler-geometric continuum mechanics theory. A notable simplification
to be invoked herein is that the base manifold of each configuration is assigned a Cartesian structure since
curvilinear coordinates are not needed for the present applications.

2.1 Geometry and kinematics

Denote by M a differentiable manifold of dimension 3 covered by coordinates {X A}, and denote an arbitrary
material point by X ∈ M. To each point is assigned a unique vectorD(X)with entries {DA}, where A = 1, 2, 3.
This is referred to here as a director vector or internal state vector, and it need not be a unit vector. Notation
f (X, D) implies a dependence of an arbitrary function f on {X A, DA}. The natural or holonomic basis
vectors for the generalized Finsler tangent bundle are the fields { ∂

∂X A , ∂
∂DA }. The cotangent bundle has the

corresponding natural bases {dX A, dDA}. In the present simplified version of the theory, nonlinear connection
coefficients N A

B are prescribed to vanish identically, and there is no need for introduction of non-holonomic
basis vectors unlike the more general differential geometric presentations given in [41,45].

The referential metric tensor in this case, which presumes a constant Cartesian basis { ∂
∂X A } overM, is

G(D) = GAB(D)dX A ⊗ dX B + GAB(D)dDA ⊗ dDB . (2.1)

Components of this metric are used to raise and lower indices as necessary. Partial differentiation is written

∂A(·) = ∂(·)/∂X A, ∂̄A(·) = ∂(·)/∂DA. (2.2)

The delta derivative δA(·) of Finsler geometry [53] reduces to ∂A(·) here since nonlinear connection coeffi-
cients vanish. Since G does not depend on {X A}, Levi–Civita connection coefficients vanish identically, as
do horizontal coefficients of the Chern–Rund and Cartan connections. Cartan’s tensor has generally nonzero
components

CA
BC = 1

2G
AD(∂̄CGBD + ∂̄BGCD − ∂̄DGBC ) = GADCBCD. (2.3)

Respective scalar volume elements and volume forms ofM are [54]

dV = √
GdX1dX2dX3, dΩ = √

GdX1 ∧ dX2 ∧ dX3. (2.4)
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A differential area form for a compact region ofM is

Ω = √
βdU 1 ∧ dU2;

[
X A = X A(Uα), (α = 1, 2); β A

α = ∂X A

∂Uα
, β = det

(
β A

α GABβB
β

)]
. (2.5)

Let V A(X, D)Ω(X, D) be a 2-form, and let V A be contravariant components of a generic differentiable
vector field. For the present case in which the horizontal covariant derivative of G vanishes, Stokes’ theorem
for generalized pseudo-Finsler geometry is [45,54]

∫

M

[
V A|A +

(
V ACC

BC + ∂̄BV
A
)
DB

;A
]
dΩ =

∮

∂M
V ANAΩ. (2.6)

Here, NA is the unit outward normal to ∂M, V A|A is the horizontal covariant derivative of V , and DB
;A =

∂ADB + N B
A . Motivated by this theorem, a covariant derivative operation (·)||A is defined in a reference

coordinate chart as [47]

(·)||A = (·)|A +
[
(·)CC

BC + ∂̄B(·)
]
DB

;A ⇒
∫

M
(·)||AdΩ =

∮

∂M
(·)NAΩ. (2.7)

Since herein N A
B = 0 and G does not depend on {X A}, the simplifications V A|A = ∂AV A and DB

;A = ∂ADB

hold.
The description of the spatial configurationmanifoldm and associated geometric quantities exactly parallels

that of the reference configuration. Coordinates of points x ∈ m are {xa}, and each is assigned a unique vector
d(x) with entries {da}. The spatial metric tensor, which presumes a constant Cartesian basis { ∂

∂xa } over m, is

g(d) = gab(d)dxa ⊗ dxb + gab(d)dda ⊗ ddb. (2.8)

Partial differentiation is
∂a(·) = ∂(·)/∂xa, ∂̄a(·) = ∂(·)/∂da . (2.9)

Since g does not depend on {xa}, Levi–Civita connection coefficients and horizontal coefficients of the Chern–
Rund and Cartan connections all vanish. Cartan’s tensor in the spatial configuration is

Ca
bc = 1

2g
ad (

∂̄cgbd + ∂̄bgcd − ∂̄dgbc
) = gadCbcd . (2.10)

Volume elements and forms of m are

dv = √
gdx1dx2dx3, dω = √

gdx1 ∧ dx2 ∧ dx3. (2.11)

A version of Stokes’s theorem like (2.6) applies for m, as does a definition for differentiation (·)||a analogous
to (2.7).

The motion function fromM to m and its inverse at time t are, respectively,

xa(X, t) = ϕa(X, t), X A(x, t) = Φ A(x, t). (2.12)

These are a specific case of the more general functions introduced in [46,47] that may include functional
dependence on D or d as well. The present simpler definitions are sufficient for applications in this paper.
Mappings of state vectors between configurations are the functions

da(X, D, t) = θa[X, D(X, t), t], DA(x, d, t) = �A[x, d(x, t), t]. (2.13)

The deformation gradient and its inverse are, from (2.12) and under the present case of null nonlinear connection
coefficients,

F(X, t) = Fa
A(X, t)

∂

∂xa
⊗ dX A = ∂Aϕa(X, t)

∂

∂xa
⊗ dX A, (2.14)

F−1(x, t) = (F−1)Aa (x, t)
∂

∂X A
⊗ dxa = ∂aΦ

A(x, t)
∂

∂X A
⊗ dxa . (2.15)
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Determinants of (2.14) and (2.15) are presumed positive. Transformation equations for line elements between
configurations are

dxa = Fa
AdX

A, dX A = (F−1)Aa dx
a . (2.16)

Transformation equations for volume elements and volume forms are

dv = JdV =
[
det(Fa

A)
√
g/G

]
dV, dV = J−1dv = [

1/ det(Fa
A)

] √
G/g]dv;

dω = JdΩ, dΩ = (1/J )dω. (2.17)

The symmetric deformation tensor C quantifies the stretch of line elements:

|dx|2 = Fa
AF

b
BgabdX

AdXB = CABdX
AdXB = 〈dX,CdX〉, C = CABdX

A ⊗ dX B

= Fa
AgabF

b
BdX

A ⊗ dX B . (2.18)

Furthermore, det(CA
B ) = det(CAB)/G = J 2.

Let D(·)/Dt denote the material time derivative, which is defined here as the partial time derivative of a
quantity at a fixed material point X and at fixed internal state D. The material velocity (vector) is defined as
the material time derivative of position:

υυυ(X, t) = ∂x(X, t)

∂t
= ∂ϕa(X, t)

∂t

∂

∂xa
, υa = Dxa

Dt
. (2.19)

When there is no chance of confusion, a superposed dot is also used for material time differentiation. A special
case is the time derivative of internal state, which is a partial derivative at constant X [47]:

Ḋ(X, t) = ∂DA(X, t)

∂t

∂

∂DA
. (2.20)

2.2 Governing equations

In this work, quasi-static conditions for mechanical momentum are assumed, but dynamic evolution of the
state vector field (i.e., order parameter kinetics) is enabled. Isothermal conditions are also presumed. Such
simplifications are common in phase field applications [33]. Governing equations for the fully dynamic case—
including material inertia and temperature and entropy changes—are derived in [47].

Referential mass density ρ0 is related to spatial mass density ρ via application of (2.17):

ρ0 = ρ J. (2.21)

Denote by nada and NAdA area elements on the boundaries ofm andM, related by the usual Nanson’s formula
[55] at x = x(X, t):

NAdA = J−1Fa
Anada. (2.22)

Letting dPa = tada = ta0 dA be a component of a differential mechanical force vector, traction components
are

ta = σ abnb, ta0 = gabP A
b NA. (2.23)

The first Piola–Kirchhoff stress PA
a and symmetric Cauchy stress σ ab are related by the deformation gradient

and Jacobian determinant as [41,45–47]

σ ab = J−1gac P A
c Fb

A = σ ba . (2.24)

Using Stokes’ theorem (2.6) for Finsler space, the following local balance of linear momentum can be derived
for the quasi-static case [47], wherein body forces and acceleration Dυυυ/Dt are presumed null:

PA
a||A = ∂AP

A
a +

(
PA
a CC

BC + ∂̄B P
A
a

)
∂AD

B = 0. (2.25)

The differential notation (·)||A is introduced in (2.7).
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Free energy density per unit reference volume on M is of the following general form for isothermal
conditions:

ψ = ψ (F,D, ∇D,G) = ψ(Fa
A, DA, ∂BD

A,GAB), (2.26)

recalling a Cartesian reference basis with vanishing nonlinear connection is imposed such that the horizontal
material gradient ∇(·) is equivalent to the partial derivative with respect to reference coordinates {Xa}. The
internal state vector D is interpreted as a vector-valued set of order parameter(s). Thermodynamic forces are
obtained via the material time derivative and chain rule applied to (2.26):

ψ̇ = ∂ψ

∂Fa
A
Ḟa
A + ∂ψ

∂DA
ḊA + ∂ψ

∂
(
∂B DA

)
D

Dt

(
∂B D

A
)

+ ∂ψ

∂GAB
Ġ AB = PA

a Ḟa
A + QA Ḋ

A + Z B
A
D

Dt

(
∂B D

A
)

+ SABĠ AB .

(2.27)
Spatial coordinate invariance requires [41]

ψ = ψ[C(F, g),D, ∇D,G] = ψ(CAB, DA, ∂BD
A,GAB). (2.28)

In prior work [41], a local equilibrium equation was derived for micromomentum, containing terms in Q and
Z. In the dynamic regime, the kinetic equation for internal state vector components DA is found by setting the
residual of that equilibrium equation proportional to the negative rate of internal state as declared in [47]

ḊK = −LKC [QC − ∂AZ
A
C − ∂̄B Z

A
C ∂AD

B − Z B
CC

D
ED∂BD

E + (SAB + ψGAB)∂̄CGAB]. (2.29)

Here,LKC is a positive definitematrix ofmaterial constants dictating the time scale for kinetics. Equation (2.29)
suggests that order parameter(s) evolve in time so that at equilibrium, the term in square braces vanishes in
accordance with the static director momentum equation in [41]. Equation (2.29) can be expressed in condensed
form as

ḊK = −LKC
[

∂ψ

∂DC
− ∇A

(
∂ψ

∂(∂ADC )

)
+ · · ·

]
= −LKC δψ

δDC
, (2.30)

where terms are truncated only for presentation purposes and the notation δψ/δD here denotes the thermody-
namic derivative typical in phase field theory, not to be confused with the delta derivative of Finsler geometry.
This equation is the generalized Finsler analog to the time-dependent Ginzburg–Landau or Allen–Cahn equa-
tions of phase field kinetics [35,56,57].

Thorough consideration of the First and Second Laws of Thermodynamics requires introduction of fun-
damental postulates for energy conservation and entropy production as well as distinct definitions of thermo-
dynamic quantities such internal energy, Helmholtz free energy, temperature, entropy, and heat flux. Partial
progress in this regard is reported in [47], where it is emphasized that special care must be taken for definitions
of kinematic rates, energy rates, and Reynolds’ transport theorem in generalized Finsler space. In that work, the
First Law is addressed for the adiabatic case. Herein, where isothermal conditions apply, a scalar dissipation
function D can be introduced similarly to that in [33,57], which, when kinetic equation (2.30) is invoked, is
always nonnegative:

D = FK ḊK = LKC δψ

δDK

δψ

δDC
≥ 0. (2.31)

The conjugate thermodynamic force component is FK = −δψ/δDK . Thus, (2.31) is essentially in accord
with an irreversibility principle. A more formal treatment of thermodynamics remains to be pursued in future
work.

2.3 Multiplicative descriptions

As in prior work [45,46], a multiplicative decomposition of deformation gradient F of (2.14) is used:

F = FEFD, Fa
A = (FE )aα(FD)αA. (2.32)

The elastic ormechanically recoverable deformation,FE , and the residual/inelastic deformation due to changes
in internal state, FD , both must have positive determinants. The functional forms of these two-point tensors
are [45,46]

(FE )aα = (FE )aα(X, t), (FD)αA = (FD)αA[D(X, t)]. (2.33)
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Greek indices correspond to potentially anholonomic space [55,58] of the intermediate configuration. Multi-
plicative decompositions of the referential Sasaki metric tensor and its inverse are

GAB(D) = δAB B(D), GAB(D) = δAB B−1(D). (2.34)

noting that the dependence on internal state is relegated to a positive scalar function B(D) that scales the
Cartesian metric δAB . Such a form is consistent with the use of Cartesian basis vectors { ∂

∂X A } throughout this
paper. Analogously for the spatial metric,

gab(d) = δabb(d), gab(d) = δabb−1(d), (2.35)

with scalar function b(d) > 0. The metric tensor for the intermediate configuration [59] is

gαβ(D) = δαβB(D), gαβ(D) = δαβB−1(D). (2.36)

Determinants of metrics are

G(D) = B3(D), g(d) = b3(d); g̃(D) = det[gαβ(D)] = B3(D). (2.37)

Volume element dṽ and volume form dω̃ on the intermediate space are

dṽ = {det[(FD)aA]√g̃/G}dV = J DdV, dṽ = {det[(FE−1)αa ]√g̃/g}dv = (J E )−1dv;
dω̃ = J DdΩ = (J E )−1dω. (2.38)

Jacobian determinants for inelastic and elastic mappings are respectively defined as

J D = det[(FD)aA]√g̃/G = det
[
(FD)aA

]
, J E = det

[
(FE )aα

]√
g/g̃ = det

[
(FE )aα

]
(b/B)3/2. (2.39)

Further explanation of the use of Weyl scaling [60] in the conformal transformation of the Cartesian metrics
in (2.34), (2.35), and (2.36) can be found in [41,46,47].

As in prior treatments [45,46] the free energyψ of (2.26) is split into a sum of elastic strain energy density
W and structure/internal state-dependent energy density f :

ψ(Fa
A, DA, ∂BD

A) = W [(FE )aα, DA] + f (DA, ∂BD
A). (2.40)

Dependence on the metric tensor G is not needed upon consideration of (2.34) since dependence on D is
already included in the list of arguments. Importantly, the general dependence of energy density on F in (2.26)
is replaced by a dependence on elastic part FE . Applying (2.40), thermodynamic forces of (2.27) become

PA
a = ∂ψ

∂Fa
A

= ∂W

∂Fa
A

= (FD −1)Aα
∂W

∂(FE )aα
;

QA = ∂ψ

∂DA
= ∂W

∂DA
+ ∂ f

∂DA
− PB

a (FE )aα
∂(FD)αB

∂DA
, Z B

A = ∂ψ

∂(∂BDA)
= ∂ f

∂(∂BDA)
.

(2.41)

Spatial invariance like (2.28) suggests W should depend on symmetric tensor CE rather than FE , with

(CE )αβ = (FE )aαδab(F
E )bβ = (FD −1)Aα C̄AB(FD −1)Bβ , C̄AB = Fa

AδabF
b
B = b−1CAB . (2.42)

3 Theory: twinning, phase change, and fracture

The general theory of Sect. 2 is now specialized to address inelastic deformation mechanisms of twinning,
solid–solid phase transformations, and fracture. The model material is the ceramic crystal boron carbide,
wherein the specific phase change in study is stress-induced amorphization, and wherein fracture mechanisms
of study are simultaneous shear softening and cavitation.
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3.1 Geometry and kinematics

Considered here is a crystalline material element with a single potentially active twin system and a single
cleavage plane coincident with the habit plane of twinning. The internal state vector field D referred to
reference coordinates consists of two nonzero entries in a preferred Cartesian basis, where { ∂

∂X1 } is normal to

the fracture/habit plane, and where { ∂
∂X2 } is aligned parallel to the direction of twinning shear. Basis vector

{ ∂
∂X3 } also lies in the fracture/habit plane, with a direction orthogonal to the direction of twinning shear. Unit

basis vectors { ∂
∂D1 ,

∂
∂D2 ,

∂
∂D3 } are of the same orientation as their Cartesian (X ) counterparts. Specifically in

this coordinate system, the column vector of internal state variables is defined as

D(X, t) =
⎡

⎣
D1(X, t)
D2(X, t)
D3(X, t)

⎤

⎦ = l

⎡

⎣
ξ(X, t)
η(X, t)

0

⎤

⎦ . (3.1)

Order parameters ξ and η are dimensionless fields at least twice differentiable with respect to X A and once with
respect to t , and l is a constant regularization length. Physically, D1 corresponds to crack opening, crack sliding,
and/or cavitation on a plane with orientation (unit normal vector) M parallel to { ∂

∂X1 } and { ∂
∂D1 }. Physically,

D2 corresponds to microdisplacement in the direction associated with twinning shear, S, which is a unit vector
parallel to { ∂

∂X2 } and { ∂
∂D2 }. Variable D2 is also conveniently used to denote a possible transformation from

crystal to glassy phase corresponding to a plane with the same unit normalM. Later, ξ will be mathematically
related to dilatation kinematics and elastic stiffness degradation, and η will be related to the shearing-type
deformation gradient contribution(s) from twinning and/or amorphization.

Specifically, ξ ∈ [0, 1], where
ξ(X, t) = 0∀X ∈ undamaged material at time t,

ξ(X, t) ∈ (0, 1)∀X ∈ partially degraded material at time t,

ξ(X, t) = 1∀X ∈ fully failed material at time t.
(3.2)

Also, let η0 ∈ (0, 1] be a constant for a particular material system. Then η ∈ [0, 1], where
η(X, t) = 0∀X ∈ parent crystal at time t,

η(X, t) ∈ (0, η0)∀X ∈ twin boundary zone at time t,

η(X, t) ∈ (0, 1)∀X ∈ phase boundary zone at time t,

η(X, t) ≥ η0∀X ∈ fully twinned material at time t,

η(X, t) = 1∀X ∈ fully amorphous material at time t.

(3.3)

The physical rationale for (3.3) with η0 < 1 follows atomic simulation results [7] that demonstrate amorphiza-
tion subsequent to twinning, i.e., favorable phase transitions within twinned regions. It will be demonstrated
later how the model can be reduced to allow η to represent either twinning or amorphization rather than
both simultaneously, behaviors that depend upon the particular crystallographic deformation system of inter-
est [6,7]. Regardless, η > 0 is used to account for inelastic shearing and densification, where the former is
attributed to some combination of twinning dislocations and localized slip in amorphous bands and the latter
is attributed to a reduction in free volume in transformation zones.

The spatial versions of dimensionless state variables, denoted by ξ̂ (x, t) and η̂(x, t), follow the simple
canonical transformation rules used in prior work [41,45]:

ξ = ξ̂ ◦ ϕ ⇔ ξ(X, t) = ξ̂ [ϕ(X, t), t] ⇔ d1(x, t) = ξ̂ (x, t)l = D1[X (x, t), t],
η = η̂ ◦ ϕ ⇔ η(X, t) = η̂[ϕ(X, t), t] ⇔ d2(x, t) = η̂(x, t)l = D2[X (x, t), t]. (3.4)

Recall that ϕ is the motion of (2.12). The same fixed regularization length l is used in the spatial configuration.
Other more complex transformations between configurations are not considered since they would lack any
apparent physical justification. On the other hand, vectors D and d follow the usual transformation formulae
of (pseudo)-Finsler geometry [41,53] for changes of coordinates at fixed configuration.
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The material and spatial metric tensors in (2.34) and (2.35) are assigned Weyl-type scaling behavior
[41,46,60]:

B(ξ, η) = exp
[ 1
3 (mξ2 + kη2)

]
, b(ξ̂ , η̂) = exp

[
1
3 (mξ̂2 + kη̂2)

]
. (3.5)

Here, m and k are scalar constants quantifying the magnitude of volume change associated with fracture
and amorphization, respectively. Fracture by cavitation leads to dilatation, corresponding to m > 0, while
amorphization in boron carbide is associated with densification, implying k < 0. From (3.4) and (3.5), the
ratio of determinants of metric tensors is unity:

g[x(X, t), t]/G(X, t) = b3[x(X, t), t]/B3(X, t) = 1 ⇒ J = det
(
Fa
A

)√
g/G = det

(
Fa
A

)
. (3.6)

Components of Cartan’s tensors in (2.3) and (2.10) are functions of (ξ, η) and (ξ̂ , η̂), respectively. Specifically
needed in momentum balance (2.25) and kinetic law (2.29) are three traces of referential Cartan tensor CA

BC :

CA
1A = ( 32 ∂̄1B)/B = mξ/ l, CA

2A = ( 32 ∂̄2B)/B = kη/ l, CA
3A = 0. (3.7)

Contributions from changes in internal state to the deformation gradient are embedded in the two-point
tensorFD(D) = FD(ξ, η) introduced in (2.32). First consider the contribution from cavitation, which is treated
as isotropic [34,46]. Specifically, define

Fξ (ξ) = [1 + xξφξ (ξ)]1, φξ (ξ) = αξ2 + 2(2 − α)ξ3 + (α − 3)ξ4. (3.8)

Constant xξ is positive for expansion. Polynomial φξ : [0, 1] → [0, 1] is an interpolation function obeying
φ′

ξ (0) = φ′
ξ (1) = 0, and α ∈ [0, 6] is a constant [33,36]. Next consider the contribution from a change in

phase (crystal to glass), which is here presumed to coincide with uniaxial straining normal to the basal plane
[2,45]. Let

F̄
η
(η) = 1 + xηφη(η)M ⊗ M, φη(η) = βη2 + 2(2 − β)η3 + (β − 3)η4. (3.9)

Constant xη is negative for densification. Polynomial φη : [0, 1] → [0, 1] obeys φ′
η(0) = φ′

η(1) = 0, and
β ∈ [0, 6] is a constant. Finally, consider the contribution from deformation twinning and inelastic shear. As
in [36,37], twinning on a single system with unit plane normal M and orthogonal shearing direction S is the
isochoric simple shear

Fη
0(η) = 1 + γ0φ0(η)S ⊗ M, φ0(η) = χη2 + 2(2 − χ)η3 + (χ − 3)η4. (3.10)

The maximum magnitude of twinning shear (and/or possible shearing accommodated by localization in trans-
formation zones) is the constant γ0, and φ0(η) is an interpolation function with constant χ ∈ [0, 6]. The total
deformation gradient contribution from changes of internal state is the product of the deformation tensors in
the first of each of (3.8), (3.9), and (3.10):

FD(ξ, η) = Fξ (ξ)F̄
η
(η)Fη

0(η). (3.11)

The total inelastic volume change, consulting (2.39), becomes

J D(ξ, η) = [1 + xξφξ (ξ)]3[1 + xηφη(η)]. (3.12)

See also [61–63] for finite deformation theories containing a multiplicative decomposition of inelastic defor-
mations representing various lattice defects and structural transformation mechanisms.

Consider a fully cavitated material element at X with ξ(X) = 1, but with η(X) = 0. Consistency of (3.5)
and (3.12) leads to the following relationship between constants m and xξ :

√
G = exp(m/2) = J D(1, 0) =

(1 + xξ )
3. Analogously, consideration of a fully transformed but undamaged material element furnishes a

relationship between k and xη:
√
G = exp(k/2) = J D(0, 1) = 1 + xη. The selection process for m, k, l,

and remaining independent constants α, β, χ , γ0, and η0 particular to boron carbide will be discussed later in
Sect. 3.5.
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3.2 Energy function and thermodynamic forces

Thermodynamics of Sect. 2.3 is now revisited in consideration of the more detailed geometry and kinematics
in Sect. 3.1. Let ∇(·) denote covariant differentiation with respect to X. RecallingD(ξ, η) = [ξ l, ηl, 0]T in the
present special Cartesian frame and with CE defined in (2.42), the free energy function of (2.40) is refined as
follows:

ψ(F,D, ∇D) = W (FE , ξ) + f (ξ, η, ∇ξ, ∇η)

= W (CE , ξ) + fξ (ξ) + fη(η) + ζζζ : ∇ξ ⊗ ∇ξ + κκκ : ∇η ⊗ ∇η.
(3.13)

The strain energy function used here is a nonlinear elastic, compressible neo-Hookean model [37,41,50],
modified to account for degradation of the shear modulus with cumulative damage (ξ > 1):

W = 1
2K

(
ln J E

)2 + 1
2 (1 − ξ)2μ

[
trCE − 3 − 2 ln J E

(
1 + 1

3 ln J E
)]

, (3.14)

where from (2.39), (2.42), and (3.5), it follows that J E =
√
detCE . The bulk modulus is K , and the initial

shear modulus isμ. The factor of (1−ξ)2 accounts for reduction in the latter due to fracture. The bulk modulus
can be assigned a more sophisticated form in which degradation occurs in tension but not in compression, as
in [31,50], an approach that will be invoked later in Sect. 5. A slightly different compressible neo-Hookean
elastic potential is used in the phase field fracture model of [32]. Denoting the surface energy of fracture by
ϒ , the standard quadratic form of phase field fracture models [31,64] is invoked for fξ (ξ):

fξ = (ϒ/ l)ξ2. (3.15)

The potential fη(η) is the sum of a quadratic form for amorphization and a double-well for twinning:

fη = Âη2 + 12(Γ/ l)η2(η0 − η)2H(η0 − η). (3.16)

Here, Â is related to the energy barrier for solid–solid phase transformation from crystal to glass [34], Γ is the
twin/phase boundary surface energy, and H(·) is the Heaviside function. The latter ensures that the energy of
a twinned domain vanishes for η ≥ η0, in agreement with (3.3). The coefficients in the gradient contributions
are defined as [50]

ζζζ = ϒl[1 + ϑξ (1 − M ⊗ M)], κκκ = 3
4Γ l[1 + ϑη(1 − M ⊗ M)]. (3.17)

Scalars ϑξ and ϑη penalize fracture and twinning, respectively, on planes of orientations other than M. For
isotropic free surface energy, ϑξ = 0, and for isotropic twin/phase boundary energy, ϑη = 0. The above
representation of anisotropic surface energies is similar to that of [39], but others are possible [65].

Invoking (3.13)–(3.17), thermodynamic forces of (2.41) are computed as follows:

PA
a = (1 − ξ)2μ[(FE )αa (FD−1)Aα − (1 + 2

3 ln J E )(F−1)Aa ] + K ln J E (F−1)Aa ; (3.18)

Q1 = 1

l

∂ψ

∂ξ
= 1

l

[
∂W

∂ξ
+ ∂ fξ

∂ξ
− PB

a (FE )aα
∂(FD)αB

∂ξ

]

,

Q2 = 1

l

∂ψ

∂η
= 1

l

[
∂ fη
∂η

− PB
a (FE )aα

∂(FD)αB

∂η

]

; (3.19)

Z B
1 = 1

l

∂ψ

∂(∂Bξ)
= 2ϒ

[
δAB + ϑξ (δ

AB − MAMB)
]
∂Aξ,

Z B
2 = 1

l

∂ψ

∂(∂Bη)
= 3

2Γ
[
δAB + ϑη(δ

AB − MAMB)
]
∂Aη. (3.20)

Consideration of the steps involved in transformation of the arguments of free energy functions in (2.26),
(2.28), (2.40), and (3.13) proves instructive. In this regard, the condensed notationψ(F;D, ∇D,G) = ψ(F; ···)
is used, noting that the terms (···) = (D, ∇D,G) are all defined with respect to the reference configuration and
thus are invariant under transformations of the spatial frame. The transformation ψ(F; ···) → ψ(C; ···) from
(2.26) to (2.28) is standard in continuum mechanics and ensures objectivity since C = FTF is referred
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completely to reference coordinates. The form in (2.40) can be obtained from (2.26) using (2.32), i.e.,
FE (F,D) = F · (FD)−1(D) enables ψ(F; ···) → ψ(FE ; ···). Objectivity is then enabled in (3.13) by replacing
argument FE with CE , i.e., ψ(FE ; ···) → ψ(CE ; ···). This follows from kinematic definition (2.42) which can
be manipulated to give CE in terms of C and D as CE = b · (FD)−1C(FD)−1, where the Weyl scaling factor
and inverse inelastic deformation are of the respective forms b = b(D) and (FD)−1 = (FD)−1(D).

3.3 Governing equations

The balance laws and kinetic relations of Sect. 2.2 are specialized as follows for the geometry, kinematics, and
thermodynamics pertaining to the present application (e.g., boron carbide). First, linear momentum balance
(2.25) reduces to

dAP
A
a + PA

a CC
BC∂AD

B = 0. (3.21)

The following notation is used:

d

dX A
[(·)(X, D, t)] = ∂

∂X A
[(·)(X, D, t)] + ∂

∂DB
[(·)(X, D, t)]∂D

B(X, t)

∂X A
⇒ dA(·) = ∂A(·) + ∂̄B(·)∂ADB .

(3.22)
In the present preferred Cartesian coordinate system, the three distinct equations in (3.21) are, with (3.7),

dAP
A
a + PA

a (mξ∂Aξ + kη∂Aη) = 0. (3.23)

The kinetic equations for the internal state vector (i.e., order paramters) in (2.29) become, invoking the sim-
plification of diagonal kinetic coefficient matrix LKC ,

ξ̇ = −(Lξ l
2/ϒ)

[
Q1 − dAZ

A
1 − Z A

1 (mξ∂Aξ + kη∂Aη) + 2mξψ/ l
]
,

η̇ = −(Lηl
2/Γ )

[
Q2 − dAZ

A
2 − Z A

2 (mξ∂Aξ + kη∂Aη) + 2kηψ/ l
]
.

(3.24)

Positive kinetic coefficients with dimensions of 1/time are the two constants Lξ and Lη. In some problems
considered later, energy minimization is used to directly obtain equilibrium states in lieu of time integration of
one or both kinetic equations in (3.24). In such cases, fields ϕϕϕ(X), ξ(X), and/or η(X) are sought at particular
time t satisfying the conditions

min
ϕϕϕ,D

[Ψ (ϕϕϕ,D)] = min
x,ξ,η

[∫

M
ψ[Fa

A(X, t), ξ(X, t), η(X, t), ∂Aξ(X, t), ∂Aη(X, t)]dΩ
]

= min
x,ξ,η

[∫

M
ψ̄[Fa

A(X, t), ξ(X, t), η(X, t), ∂Aξ(X, t), ∂Aη(X, t)]dΩ0

] (3.25)

subject to any constraints imposed by essential boundary conditions on D along ∂M. In the final expression,
ψ̄ = ψ

√
G is the appropriately scaled free energy density, and Ω0 is the original volume of the domain prior

to any changes of internal state affecting the determinant G of the pseudo-Finsler metric tensor. For example,
in the context of FE simulations of Sect. 5, Ω0 represents the initial FE mesh in Cartesian space.

3.4 Linearization

A version of the theory with linearized kinematics is invoked in some numerical simulations reported later.
In such a setting, the distinction between spatial and referential configurations is not made explicit, and thus
a single set of coordinates {X A, DA} with A = 1, 2, 3 suffices. The referential generalized pseudo-Finsler
metric tensor G(D) is of the same form as in (2.1), (2.34), and (3.5), and Cartan’s tensor thus still obeys
(3.7). The same Cartesian system of basis vectors and the same set of order parameters (ξ, η) from Sect. 3.1
are invoked for this partially linearized theory, which does feature nonlinear material behavior for non-trivial
cases wherein order parameters do not vanish.
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Linearized kinematics are similar to those employed in prior phase field theory [36–38]. Denote the dis-
placement field by u = u(X, t). Let ∇(·) denote the covariant derivative with respect to X. The displacement
gradient is decomposed into elastic and state-dependent parts as follows:

∇u(X, t) = βββE (X, t) + βββD[D(X, t)]. (3.26)

The elastic distortion is βββE (X, t) and is related to the elastic deformation gradient of (2.32) via linearization
according to the approximation βββE ≈ FE − 1. If the internal state and total distortion ∇u are known, then βββE

can be obtained from inversion of (3.26), i.e., βββE (∇u,D) = ∇u − βββD(D). The state-dependent contribution
is further specified as

βββD(ξ, η) = xξφξ (ξ)1 + xηφη(η)M ⊗ M + γ0φ0(η)S ⊗ M, (3.27)

where the first term accounts for dilatation from cavitation, the second accounts for densification from amor-
phization, and the third accounts for shearing from twinning. Notation for particular quantities in each term is
consistent with that of Sect. 3.1. Denote the total strain tensor εεε and the elastic strain tensor εεεE as, respectively,

εεε = 1
2 [∇u + (∇u)T], εεεE = 1

2 [βββE + (βββE )T]. (3.28)

Definitions in (3.26)–(3.28) imply existence of the functional form εεεE = εεεE (∇u, ξ, η).
For the linearized theory, the free energy density of (2.26) and (3.13) is replaced with

ψ(∇u,D, ∇D) = W (βββE , ξ) + f (ξ, η, ∇ξ, ∇η)

= W (εεεE , ξ) + fξ (ξ) + fη(η) + ζζζ : ∇ξ ⊗ ∇ξ + κκκ : ∇η ⊗ ∇η.
(3.29)

All quantities entering function f are identical to those of Sect. 3.2. The strain energy density is isotropic linear
elastic and considers degradation of the shear modulus with cumulative damage (ξ > 1):

W = 1
2K (trεεεE )2 + (1 − ξ)2με̂εε

E : ε̂εε
E ; ε̂εε

E = εεεE − 1
3 trεεε

E1. (3.30)

The stress tensor P is symmetric, in lieu of (2.24), and it obeys

PAB = ∂ψ

∂εAB
= ∂W

∂εEAB
= K (εE )CCδAB + 2(1 − ξ)2μ(ε̂E )AB . (3.31)

The effective bulk modulus, here taken as constant K , will be permitted to degrade in tension later in Sect. 5.
Thermodynamic forces QA are computed as follows, instead of (3.19):

Q1 = 1

l

∂ψ

∂ξ
= 1

l

[
∂W

∂ξ
+ ∂ fξ

∂ξ
− PAB ∂βD

AB

∂ξ

]

, Q2 = 1

l

∂ψ

∂η
= 1

l

[
∂ fη
∂η

− PAB ∂βD
AB

∂η

]

. (3.32)

Forces Z A
B are identical to those of (3.20). The linear momentum balance of (3.23) becomes

dAP
AB + PAB(mξ∂Aξ + kη∂Aη) = 0. (3.33)

Kinetic equations (3.24) are unchanged in form. For the direct energyminimization approach, (3.25) is replaced
with

min
u,D

[Ψ (u,D)] = min
u,ξ,η

[∫

M
ψ[∇AuB(X, t), ξ(X, t), η(X, t), ∂Aξ(X, t), ∂Aη(X, t)]dΩ

]

= min
u,ξ,η

[∫

M
ψ̄[∇AuB(X, t), ξ(X, t), η(X, t), ∂Aξ(X, t), ∂Aη(X, t)]dΩ0

]
.

(3.34)

The following modified thermodynamic forces (i.e., gradients of energy ψ̄) are useful in this context for
numerical methods of energy minimization, recalling

√
G = exp[ 12 (mξ2 + kη2)], D1 = lξ , D2 = lη , and

D3 = 0:

P̄ AB = ∂ψ̄

∂εAB
= PAB

√
G, Q̄ A = ∂ψ̄

∂DA
= QA

√
G+ ψ̄

2G

∂G

∂DA
, Z̄ A

B = ∂ψ̄

∂(∂ADB)
= Z A

B

√
G. (3.35)
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3.5 Material characteristics

The material of interest in forthcoming applications is boron carbide (B4C). Material parameters with sup-
porting references or supplementary equation numbers are provided in Table 1. If no reference or equation is
listed for a particular row, the reference quoted above it applies.

The particular Cartesian coordinate system introduced in Sect. 3 corresponds to twinning on the
〈101̄0〉{0001} system [6,7,12] and to fracture on basal {0001} planes. Amorphous (shear) bands may also
form within twinned domains [6,7]. Twinning takes place via coordinated motion of 〈101̄0〉 partial disloca-
tions, with a twinning shear γ0 estimated as 2

3a/c [12]. The surface energy resisting twin formation is computed
as [66,67]

Γ = τb = 1
3τa, (3.36)

where b is the magnitude of Burgers vector of such partial dislocations and τ = 2.9 GPa is the resolved shear
stress needed for twinning [12].

The regularization length l is computed as the cohesive fracture process zone size over which the stress at
a (mode II) crack tip degrades [41,48,68]:

l = 4μϒ/[(1 − ν)πσ 2], (3.37)

where ν is Poisson’s ratio and σ ≈ μ
2π is the theoretical shear strength [14]. The same length is used for regu-

larization of twin and phase boundaries for simplicity, in lieu of other data, and since twinned and amorphous
zones are, like the failure process zone, observed to be of widths on the order of nm [1,8].

The pseudo-Finsler metricGmeasures both densification that accompanies the stress-induced phase trans-
formation from a trigonal crystal to glassy phase [2,4,5,7,9–11,34] as well as dilation associated with fracture
or cavitation [7,11]. Weyl transformation factor k is determined from the ratio of mass density of the crys-
talline phase to that of the glassy phase and use of (3.5) at η = 1. As in [34], a 4% volume reduction upon
structure collapse accompanies total amorphization [2,5,7], dilatation from cavities or fractures is prescribed
to precisely offset such densification at ξ = 1, leading to the value of m = −k in Table 1. The energy barrier
for a quadratic potential is Â at η = 1. This value is found from the difference between ground state energy of
the most stable B4C polytype and the energy of segregated elemental phases (boron and amorphous carbon)
associated with structure collapse: 0.04 eV [3].

Interpolation function parameters α, β, and χ are chosen such that, consistently with (3.2) and (3.3),
initiation of twinning kinematics effectively precedes amorphous densification (i.e., corresponds to a lower
value of order parameter η in this case). For example, invoking the values listed in Table 1,

φξ (0.68) = φη(0.68) = 0.62, φ0(0.68) = φ0(η0) = 0.9, (3.38)

noting that the larger the value ofφ, themore pronounced the contribution from a change in state to deformation
in (3.8), (3.9), and (3.10). The final equality in (3.38) is used to establish the value of η0 in Table 1. From an
energetic standpoint, the barrier to twinning transformation is fully overcome at η = η0 as is clear from (3.16).

The present theory can be used to represent degenerate cases in which one or more inelasticity mechanisms
are suppressed by imposing the following conditions:

Table 1 Physical properties and model constants for boron carbide

Property [Units] Value Description Reference

μ [GPa] 193 Shear modulus [9]
K [GPa] 237 Bulk modulus
c, a [nm] 1.21, 0.56 Lattice parameters
Γ [J/m2] 0.54 Twin boundary surface energy (3.36)
ϒ [J/m2] 3.27 Fracture surface energy [69]
l [nm] 0.97 Regularization length (3.37)
k − 0.0816 Volume reduction (amorphization) [2,7,34]
m 0.0816 Dilatation (cavitation) [7]
Â [GPa] 3.01 Transformation barrier [3]
γ0 0.31 Twinning shear [12]
η0 0.68 Twinning threshold (3.38)
α, β, χ 0, 0, 6 Interpolation constants (3.38)
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• Fracture and cavitation suppressed: ξ(X, t) = 0∀X, t ;
• Twinning and amorphization suppressed: η(X, t) = 0∀X, t ;
• Amorphization suppressed: k = 0, Â = 0;
• Twinning and inelastic shearing (i.e., shear bands) suppressed: γ0 = 0, Γ = 0.
For the final scenario above, it may be realistic to prescribe a gradient coefficient for surface energy of phase
boundaries corresponding to the final term in (3.13) in lieu of twin boundary energy, but this is not essential.
Finally, kinetic parameters Lξ and Lη of (3.24) will be discussed later for particular problems.

4 Analysis: simple shear deformation

A fundamental initial boundary value problem is addressed first to demonstrate or validate features of the
theory. Specifically, considered here is shearing of a nonlinear elastic slab of boron carbide that may undergo
mechanisms of twinning, amorphization, and fracture. Shearing on a basal plane, (0001), in a direction along
one of the “a” lattice vectors, 〈101̄0〉, is the intended physical representation. The fully nonlinear version of
the theory is used.

4.1 Problem geometry and kinematics

The material manifold is a slab of length L0 and effectively infinite width and thickness. In three dimensions,
{M : X1 ∈ [0, L0], |X2| ∈ ∞, |X3| ∈ ∞}. Plane strain conditions hold for the X3-direction. For the spatial
configuration, the deformed material manifold is {m : x1 ∈ [0, L], |x2| ∈ ∞, |x3| ∈ ∞}, where L is the
deformed length of the domain. In reference and spatial Cartesian coordinates, let (X1, X2, X3) → (X, Y, Z)
and (x1, x2, x3) → (x, y, z).

Motions, deformations, and state variable gradients defined in Sects. 2 and 3 are computed as follows for
simple shear. Let ϕ = υ +Y and γ denote respective motion and strain in the shearing (Y ) direction, the latter
parallel to twinning direction S. Field variables are permitted to vary with X and t , where X is parallel to the
basal plane normal vectorM. The out-of-plane coordinate is Z . Then

x = X, y = ϕ(X, Y, t) = Y + υ(X, t), z = Z; ξ = ξ(X, t), η = η(X, t); (4.1)

F(X, t) =
⎡

⎣
∂x(X)/∂X ∂x(X)/∂Y ∂x(X)/∂Z

∂ϕ(X, Y, t)/∂X ∂ϕ(X, Y, t)/∂Y ∂ϕ(X, Y, t)/∂Z
∂z(Z)/∂X ∂z(Z)/∂Y ∂z(Z)/∂Z

⎤

⎦

=
⎡

⎣
1 0 0

∂υ(X, t)/∂X 1 0
0 0 1

⎤

⎦ =
⎡

⎣
1 0 0

γ (X, t) 1 0
0 0 1

⎤

⎦ ;
. (4.2)

J = detF = F1
1 F

2
2 F

3
3 = Fx

X F
y
Y F

z
Z = 1. (4.3)

The total shear strain is γ (X, t), and volume is conserved. The first of (4.1) suggests L = L0.
Now the multiplicative kinematic description of Sect. 3.1 is specialized to the case of simple shear that is

of focus in Sects. 4.2 and 4.3. The total deformation gradient is the product

F(X, t) =
[

1 0 0
γ (X, t) 1 0

0 0 1

]

= FE (X, t)FD[D(X, t)]

=
⎡

⎣
(FE )xX (X, t) 0 0
(FE )

y
X (X, t) (FE )

y
Y (X, t) 0

0 0 (FE )zZ (X, t)

⎤

⎦

⎡

⎣
Fξ (X, t)F̄η(X, t) 0 0

0 Fξ (X, t) 0
0 0 Fξ (X, t)

⎤

⎦
[ 1 0 0
γ D(X, t) 1 0

0 0 1

]

.

(4.4)

Inelastic deformations in the present coordinate system are represented by the scalar components
Fξ (ξ) = 1 + xξφξ (ξ), F̄η(η) = 1 + xηφη(η), γ D(η) = γ0φ0(η). (4.5)

The inelastic volume change is found from (3.12). The elastic volume ratio J E and the elastic shear strain γ E

are then, from (4.2)–(4.5),
J E (ξ, η) = [1 + xξφξ (ξ)]−3[1 + xηφη(η)]−1, γ E (η, X, t) = γ (X, t) − γ D(η). (4.6)

Gradients of state variable components (i.e., order parameter gradients) are simply noted as
ξ ′(X, t) = ∂ξ(X, t)/∂X, η′(X, t) = ∂η(X, t)/∂X. (4.7)
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4.2 Governing transient equations

For the present loading protocol, the energy density of (3.13) becomes

ψ(γ, ξ, η, ξ ′, η′) = W [CE (γ E , ξ, η), ξ ] + fξ (ξ) + fη(η) + ϒl(ξ ′)2 + 3
4Γ l(η′)2. (4.8)

The stress tensor [PaA] of (3.18) in matrix form is

P = μ(1 − ξ)2(J E )2/3
1

(Fξ F̄η)2

⎡

⎣
1 −γ D 0

γ E 1 − γ Eγ D 0
0 0 (F̄η)2

⎤

⎦

− μ(1 − ξ)2(1 + 2
3 ln J E )

⎡

⎣
1 −γ 0
0 1 0
0 0 1

⎤

⎦ + K ln J E

⎡

⎣
1 −γ 0
0 1 0
0 0 1

⎤

⎦ .

(4.9)

Forces QA in (3.19) are computed in a straightforward manner but are too lengthy to list conveniently in
explicit form. Forces in (3.20) simply reduce to

Z1
1 = 2ϒξ ′, Z1

2 = 3
2Γ η′. (4.10)

The balance of linear momentum for stresses in (3.23) reduces to two equations, with fields depending on
(X, t):

d1P11 + P11(mξξ ′ + kηη′) = 0, d1P21 + P21(mξξ ′ + kηη′) = 0. (4.11)

The first kinetic equation in (3.24) reduces to

ξ̇ = −(Lξ l
2/ϒ)

[
Q1 − 2ϒξ ′′ − 2ϒξ ′(mξξ ′ + kηη′) + 2mξψ/ l

]
. (4.12)

Coherent structural transformations such as twinning or phase changes are assumed here to occur much
faster than damage evolution, similar to what is observed in dynamic atomic simulations [7]. It would be
mathematically possible to introduce kinetic equations for the former, but this approach is not pursued here
in order to limit the number of possible solutions to a number feasible for detailed analysis. Thus, energy
minimization is invoked to obtain the solution field η(X, t) via (3.25), which reduces here to

min
x,D

[Ψ (ϕϕϕ,D)] → min
η(X,t)∈[0,1]

[∫

M
ψ̄[γ (X, t), ξ(X, t), η(X, t), ξ ′(X, t), η′(X, t)]dΩ0

]
. (4.13)

Particular solutions depend on initial and boundary conditions as will be discussed in what follows next.

4.3 Solutions: homogeneous case

Sought first are solutions for which internal state variable fields are spatially homogeneous, often denoted by
an H subscript:

ξ(X, t) = ξH (t), η(X, t) = ηH (t). (4.14)

Initial and boundary conditions on order parameters are

ξ(X, 0)=ξH (0)=0, η(X, 0) = ηH (0)=0; ξ(0, t) = ξ(L0, t) = ξH (t), η(0, t) = η(L0, t) = ηH (t).
(4.15)

Values of ξH and ηH that vary with time t will be obtained explicitly as an outcome of the forthcoming solution
procedure. Initial and boundary conditions on shear displacement υ(X, t) are

υ(X, 0) = 0; υ(0, t) = 0, υ(L0, t) = υL(t) = γ̇ t L0. (4.16)

The applied shear strain rate is written as the constant γ̇ . Since ξ ′ = η′ = 0 in (4.7), linear momentum balances
(4.11) yield

d1P11 = 0 ⇒ P11(t) = constant, d1P21 = 0 ⇒ P21(t) = P(t) = constant, (4.17)
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where P(t) is used to denote the homogeneous shear stress at time t . Since order parameters, i.e., D, are
constant at time t , FD(t) = constant, FE (t) = constant, the energy density ψ and all other stress components
are also constants at t , and the imposed shear strain is homogeneous over the domain:

γ (X, t) → γ (t) = γ̇ t. (4.18)

The reference pressure, positive in compression, is defined as

p(t) = − 1
3 [P11(t) + P22(t) + P33(t)]. (4.19)

The kinetic equation for fracture or cavitation in (4.12) reduces to

ξ̇ (t) = −(Lξ l
2/ϒ) [Q1(t) + 2mξ(t)ψ(t)/ l] = −10r (γ̇ l2/ϒ) [Q1(t) + 2mξ(t)ψ(t)/ l] , (4.20)

where r is a dimensionless variable controlling the rate of damage evolution (kinetic rate) relative to the applied
strain rate. In later calculations, the discrete values r = 0, 1, 2, 3, 4 are considered parametrically since known
experimental or atomic simulation data do not provide specific values. At each time increment, the value of
η(t) is obtained by solving the minimization problem in (4.13) which now reduces to

min
η(t)∈[0,1]

[∫ L0

0
ψ̄[γ (t), ξ(t), η(t)]dX

]
→ min

η(t)∈[0,1]

[
ψ[γ (t), ξ(t), η(t)]√G[ξ(t), η(t)]

]
. (4.21)

In practice, kinetic equation (4.20) is numerically evaluated by explicit integration. At each time increment,
stress components are computed from (4.9), driving forces are computed from (3.19), and energy density is
computed from (4.8) with η′ = ξ ′ = 0 for the present homogeneous field solutions. Simultaneously, the order
parameter η(t) is found by searching the domain η ∈ [0, 1] for that value which minimizes the free energy
density ψ̄ = ψ

√
G as in (4.13). The values of ξ(t) and η(t) obtained in this staggered matter can be interpreted

as time-dependent boundary conditions in (4.14).
Results for the case with all inelastic mechanisms enabled—twinning, phase changes, and fracture—are

shown in Fig. 1. Recall that this situation corresponds physically to shear deformation of a boron carbide
single crystal along (0001)〈101̄0〉. In all subfigures, results are depicted versus applied shear γ . As shown
in Fig. 1a, the order parameter associated with twinning and amorphization, η, acquires a positive (nonzero)
value at a relatively low applied strain of γ ≈ 0.01, then increases rapidly to η = 0.8 with increasing γ ,
attaining η = 0.7 at γ ≈ 0.31 ≈ γ0, where γ0 is the eigenstrain from twinning shear in Table 1. Evolution of
η at larger applied strain γ � 0.36 depends on the of choice of damage kinetic parameter r in this case. For
r ≤ 2, i.e., slow damage growth, η attains a maximum value of unity at large applied shear, whereas for r ≥ 3,
this order parameter attains maxima not exceeding η ≈ 0.9. The order parameter associated with fracture, ξ ,
is reported in Fig. 1b. Fracture (measured by increasing ξ ) occurs more rapidly with increasing r but does not
commence until η ≥ 0.7, i.e., upon ≈ 90% saturation of shear accommodation from twinning. Shear stress
P normalized by the shear modulus is shown in Fig. 1c. Results labeled “elastic” correspond to the nonlinear
elastic solution with η = ξ = 0, i.e., P = μγ . Shear stress is relaxed by twinning in each case for γ ≤ γ0
and further reduced by damage (ξ > 0) at larger γ . The larger the value of r , the greater the relaxation due
to fracture, as manifested by a drop in tangent shear modulus μ(1 − ξ)2. Twinning initiates at P/μ ≈ 0.01
or a resolved shear stress of about 1.7 GPa, which is reasonably close to the value of τ = 2.9 GPa reported in
experiments [12] but an order of magnitude smaller than the values on the order of μ/10 reported from atomic
simulations [6,7]. Pressure p of (4.19) is shown in Fig. 1d. For small γ � γ0, pressure p is increasingly negative
(tensile) as amorphization takes place, since inelastic densification from this phase change is offset by elastic
tensile deformation to maintain a state of simple shear with J = 1 in (4.3). Subsequently, the tensile pressure
is reduced in magnitude with increasing γ , noting that cavitation represented by ξ > 0 leads to dilatation
that offsets densification from amorphization and relaxes the otherwise tensile elastic volume change. This
sequence of mechanisms—twinning, amorphization, and cavitation—and corresponding pressure evolution is
similar, qualitatively, to mechanisms observed in atomic simulations [6,7]. Energy density ψ normalized by
the shear modulus is shown in Fig. 1e. Trends are similar to those reported for shear stress P in Fig. 1c. The
energy of the perfectly elastic case, ψ = 1

2μγ 2, equals or exceeds that for all of the other solutions, meaning
that the other solutions are energetically stable over the elastic one which also satisfies the governing equations
of static equilibrium.

Hypothetical problems wherein one or more inelastic deformation mechanisms are suppressed are now
addressed. First consider the case in which amorphization is prohibited but twinning and fracture are enabled.
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(a) (b)

(c) (d)

(e)

Fig. 1 Homogeneous simple shear, all inelasticity mechanisms active a twinning-amorphization parameter b fracture parameter
c shear stress d nominal pressure e total energy density

This corresponds to setting A = 0 and k = 0 in the theory of Sect. 3, disabling the quadratic potential associated
with solid–solid phase change and the contribution to volumetric deformation and the material metric from
densification accompanying this change. Results are given in Fig. 2, with content in each subfigure analogous
to those in Fig. 1. Except for evolution of η and p, differences in results with amorphization suppressed are not
highly discernible compared to those in Fig. 1 in which all inelastic mechanisms are permissible. Regarding
η, as shown in Fig. 2a, the order parameter associated with twinning acquires a positive (nonzero) value at a
relatively low applied strain of γ ≈ 0.02, then increases rapidly to η = 1 with increasing γ , attaining η = 1 at
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(a) (b)

(c) (d)

(e)

Fig. 2 Homogeneous simple shear, amorphization suppressed a twinning parameter b fracture parameter c shear stress d nominal
pressure e total energy density

γ ≈ 0.3 ≈ γ0. Twinning in the absence of phase change initiates at P/μ ≈ 0.02 or a resolved shear stress of
about 3.3 GPa, very close to the value of τ = 2.9 GPa reported in [12]. A notable exception/difference is the
reference pressure in Fig. 2d, which does not demonstrate a tensile (negative) portion prior to attainment of
γ ≈ γ0 ≈ 0.3, in contrast to p in Fig. 1d. The difference is due to the omission of densification in the former
(Fig. 2d): nearly all deformation is accommodated by twinning at low applied shear strain, which is isochoric,
resulting in null pressure change. The onset of damage reflected by ξ > 0 is delayed slightly in the present
case in Fig. 2b with amorphization suppressed relative to results in Fig. 1b.
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(a) (b)

(c) (d)

(e)

Fig. 3 Homogeneous simple shear, twinning suppressed a amorphization parameter b fracture parameter c shear stress d nominal
pressure e total energy density

Presented in Fig. 3 are results corresponding to omission of deformation twinning but allowing for amor-
phization and fracture/cavitation. In boron carbide, such results would pertain to a deformation system such as
〈1̄101〉(011̄1̄)wherein atomic simulations predict the same physical mechanisms [6,7]. In the theory of Sect. 3,
twinning is disabled by setting γ0 = 0 in the kinematics and Γ = 0 in energy contribution f0. In this case, η
solely depicts transformation from crystal to glass, with predicted evolution given in Fig. 3a. Transformation
behavior is strongly coupled to fracture kinetics: the choice of r affects how readily fracture with ξ > 0 occurs
in Fig. 3b, and thus the value of γ at which an abrupt transformation from crystal to glass (η > 0) takes place.
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(a) (b)

(c) (d)

Fig. 4 Homogeneous simple shear, twinning and amorphization suppressed a fracture parameter b shear stress c nominal pressure
d total energy density

Interestingly, the tendency for the onset of earlier amorphization does not always increase with increasing r .
Comparing Fig. 3b with Fig. 1b, fracture usually takes place at a much lower applied strain γ when twinning is
suppressed, since inelastic shear accommodation does not occur. Curves for shear stress in Fig. 3c and energy
density in Fig. 3e are offset leftwards relative to their counterparts in Fig. 1c, e for this reason, i.e., since the
rather flat parts of each curve in Fig. 1 are missing in Fig. 3 when twinning does not take place. Pressure in
Fig. 3d follows rather complex behavior due to the simultaneous competing volume changes induced by phase
change (densification) and cavitation (expansion), but tensile (negative) pressures are never attained since
cavitation alleviates any tensile stress. For the case r = 0, energy density in Fig. 3e is very close to that for
the elastic solution, while for r > 0, ψ is increasingly exceeded by that of the elastic solution with increasing
γ . Comparing Fig. 3a with Fig. 2a, η begins rapidly increasing at a much lower applied strain γ for the latter
case where η represents isolated twinning versus the former case where η represents isolated amorphization.
In other words, the model realistically [7] predicts that twinning should precede amorphization under simple
shear loading for boron carbide when either mechanism is permissible to occur independently of the other.

Finally, results in Fig. 4 demonstrate model capabilities when both twinning and phase changes are sup-
pressed. Physically, this would represent deformation on a plane and in a direction different than those reported
in experiments [1] and atomic simulations [6,7] that do exhibit such coherent structural changes. One such
plane and set of directions is 〈11̄00〉(1100) [6]. In the theory of Sect. 3, suppression of twinning and amor-
phization is effected by setting η(t) = 0∀t . Thus, Fig. 4 contains only four parts, as opposed to Figs. 1, 2,
and 3, since there is no need to present evolution of η here. Similar to results in Fig. 3b, evolution of ξ in
Fig. 4a depends strongly on the choice of kinetic parameter r , with larger r speeding the increase in damage
accumulation. Shear stress in Fig. 4b reaches a lower maximum and then decreases more rapidly the larger
the value of r as expected, recalling that the effective shear modulus of the theory is μ(1 − ξ)2. Pressure in
Fig. 4c is negligible for cases with small r (i.e., r ≤ 1), but increases with increasing ξ for the other cases since
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cavitation is offset by elastic compression to maintain a state of simple shear with total volume ratio J = 1.
Energy density in Fig. 4d follows similar trends as the shear stress reported in Fig. 4b.

4.4 Solutions: stress-free case

The same domain considered in Sect. 4.1 is addressed here, but solutions now require vanishing stress com-
ponents, i.e., PA

a = 0∀X ∈ [0, L0]. The strain energy density W vanishes correspondingly. Restriction to
the static case is also invoked, meaning time is held fixed and is thus effectively omitted from the governing
equations.

For the internal state or order parameter ξ , complete shear failure of the slab is assigned at X = 0, with
the opposite end at X = L0 undamaged. Boundary conditions on the order parameter ξ(X) are thus

ξ(0) = 1, ξ(L0) = 0. (4.22)

For the order parameter η, two conditions are considered that both result in null contributions to energy
potentials fη and ψ . The first sets η(X) = 0∀X , while the second sets η(X) = 1∀X . The slab of material is
assigned shear deformation boundary conditions υ(0) = 0 and υ(L0) = υL = γ L0, with γ = constant the
imposed shear displacement. Within the domain X ∈ (0, L0), arbitrary deformation is permitted to maintain
a stress-free state, as implied but not explicitly stated in some similar prior work [46]. Complete separation of
the slab at X = 0 may occur where ξ = 1 such that rigid body motion enables satisfication of the displacement
boundary condition at X = L0. Solutions with vanishing stress automatically satisfy the macroscopic linear
momentum balance.

For the static case, ξ̇ /Lξ → 0 in (4.12), such that the terms in square brackets vanish identically at
equilibrium, which would correspond to rate parameter r → ∞. Noting again that W = 0 for the stress-free
problem, the resulting governing equation is

ξ ′′ − ξ/ l2 + mξ [(ξ ′)2 − f/(ϒl)] = 0 ⇒ ξ ′′ = (ξ/ l2)(1 + mξ2). (4.23)

A transformation of variables ζ = ξ ′ is now used to restate the above second-order ordinary differential
equation. Then ξ ′′ = ζ · dζ/dξ , and (4.23) becomes a non-homogeneous first-order differential equation and
general solution

ζdζ = (ξ/ l2)(1 + mξ2)dξ ⇒ ζ = ±(ξ/ l)
√
1 + mξ2/2 + c1/ξ2. (4.24)

Here integration constant c1 = 0, and only the negative root is appropriate. The rightmost expression in (4.24)
is integrated for an implicit solution of ξ(X), evaluated numerically:

dξ = −(ξ/ l)
√
1 + mξ2/2 dX ⇒ X (ξ) =

∫ ξ

1

−ldβ

β
√
1 + mβ2/2

. (4.25)

The total free energy per unit cross-sectional area of the original slab is defined as the line integral

ΨF =
∫ L0

0
ψdX =

∫ L0

0
ϒ[(ξ ′)2l + ξ2/ l]dX. (4.26)

Profiles of the damage state variable for a domain size of L0 = 10l are shown in Fig. 5a, b, with the latter
focused on that portion of the domain close to the fully failed end at X = 0. Weyl scaling parameter m is
varied over a suitable range m ∈ [2 ln 0.96,−2 ln 0.96]. The particular value of m = +0.0816 is physically
realistic for cavitation as used in Sect. 4.3, while m = −0.0816 would correspond to m → k of Table 1 and
a density increases with amorphization. When m = 0, the metric no longer depends on internal state, and
the theory becomes similar to a phase field representation [64]. The magnitude of ξ decreases rapidly from
ξ = 1 at X = 0 with increasing X , and this trend is independent of m. Effects of m on the ξ field thus appear
almost negligible. The total energy per unit cross-sectional area of the slab in the Y Z -plane from (4.26) is
listed for two different values of l/L0 in columns 2 and 3 of Table 2, normalized by failure surface energy
ϒ . Total energy ΨF increases very slightly with increasing magnitude |m| in each column, with the minimum
value corresponding to m = 0. A result of ΨF = ϒ would be equivalent to a Griffith-type theory of perfectly
brittle mode II fracture. As l/L0 decreases, convergence of ΨF toward the this value is evident, irrespective
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(a) (b)

Fig. 5 Shear fracture, stress-free solutions, l/L0 = 0.1 a ξ : 0 ≤ X ≤ L0 b ξ : 0 ≤ X ≤ 0.1L0

Table 2 Boron carbide, stress-free solutions for l/L0 = 0.1 and l/L0 = 10−3: energy ΨF , shear displacement υC , and shear
stress PC for favorable transition from homogeneous to localized solutions

Weyl ΨF/ϒ ΨF/ϒ υC/L0 PC/μ

scaling factor l = 0.1L0 l = 10−3L0 l = 0.1L0 l = 0.1L0

m = − 0.0816 1.009183 1.000064 0.486 0.193
m = 0 1.009109 0.999992 0.485 0.191
m = + 0.0816 1.009178 1.000060 0.486 0.193

of the value of m ∈ [−0.0816,+0.0816]. This trend agrees with results in prior works that consider a slightly
different form of Weyl scaling of the material metric.1

Relative stability of homogeneous solutions of Sect. 4.3, with all inelasticity mechanisms enabled and
r ≤ 3, versus localized stress-free solutions of the present section is characterized by the rightmost two
columns of Table 2. Transition from a homogeneous state to a stress free, fully fractured state is energetically
favorable at an applied deformation υL ≥ υC . The value of υC is attained when the homogeneous total energy
ΨH = ψL0 obtained from the analysis of Sect. 4.2 equals or exceeds ΨF of (4.26). At such a transition point
the homogeneous solution becomes relatively unstable. Shear stress at the onset of instability is denoted by
PC . From Table 2, shear strain υC/L0 is on the order of 0.5 and stress PC ≈ 37 GPa is on the order of 20%
of the initial shear modulus μ, irrespective of m.

4.5 Summary of results for simple shear deformation

Essential findings of the semi-analytical results for B4C are summarized in the points below:

• The model predicts the energetically preferred sequence of inelastic mechanisms of twinning followed by
amorphization followed by fracture, in agreement with atomic simulation [6] of shearing on 〈101̄0〉(0001);

• The model predicts a shear stress of 3.3 GPa needed to initiate deformation twinning in the absence of
phase changes, in fair agreement with the experimental estimate of 2.9 GPa [12];

• The model predicts tensile pressure commensurate with amorphization that is later relieved by dilatation
from cavitation, in agreement with atomic simulations [6];

• The model demonstrates convergence to the correct mode II failure energy with decreasing regularization
length l for a physically realistic range of Weyl scaling parameter m;

• The model’s predictions for homogeneous deformation with inelastic mechanism(s) enabled are all ener-
getically stable with respect to homogeneous fully elastic deformation, and a transition from homoge-
neous deformation to localized shear fracture becomes energetically favorable at an applied shear strain of

1 In [41,44–46], a metric with determinant of the form G(ξ) = exp(2mξ) was considered, leading to solutions of the here-
corrected form X (ξ) = ∫ ξ

1 (−ldβ)/(β
√
1 + 2mβ/3). Trends in results reported in those references are unchanged and agree with

those corresponding to the current analysis of Sect. 4.4.
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γ ≈ 0.49 and stress of P ≈ 37 GPa. These values of shear strain and failure stress are similar to theoretical
maximums observed in atomic simulations [6,7].

Importantly, results presented in Sect. 4 are obtained without any fitting/calibration of parameters to explicitly
match data from any external sources: all parameters in Sect. 3.5 are specified a priori, noting that the relative
rate of damage kinetics is varied parametrically.

5 Numerical simulations

Analytical or semi-analytical solutions are generally unavailable for general three-dimensional boundary value
problems due to the complexity of the constitutive model. Advanced numerical methods of solution are
implemented here via the finite element (FE) method.

5.1 Finite element method

In this work, FE solutions are limited to those of quasi-statics, whereby boundary conditions are updated
incrementally as the analysis proceeds. The geometrically linear theory is used for computational efficiency,
with global energy minimization applied toward solution of the discretized problem. More specifically, the
static equilibrium equations are those of Sect. 3.4, (3.34) and (3.35). The algorithms invoked herein are similar
to those implemented in [50]. A notable difference is the presence of the scaling factor

√
G in the energy

functional of (3.34) and conjugate forces in (3.35) that is absent in the phase field models implemented
previously [31,36,50].

Recall from prior discussion in Sect. 3.1 that components of the internal state vector D, when normalized
by the regularization length l, are identified with two order parameters ξ(X) and η(X), where dependence
on all three Cartesian coordinates is implicit in the notation, e.g., η(X) is shorthand for η(X, Y, Z) in the
present context. In the FE implementation, each node supports five degrees-of-freedom: three components of
displacement u and the aforementioned two order parameters. Boundary conditions for displacement u and
order parameters (or their conjugate forces) are updated during each load increment. Candidate solutions,
i.e., fields u(X), ξ(X), and η(X), are obtained that minimize total system energy Ψ subjected to boundary
constraints. BecauseΨ is generally non-convex, multiple (local) minima may exist, and solutions may be non-
unique. For cases when Ψ of such a local minima exceeds the global minimum energy, then such a solution
is said to be “metastable”. First and second derivatives of energy density with respect to displacements,
order parameters, and their gradients are used in the algorithms implemented for conjugate gradient energy
minimization, similarly to those in [50]. The preconditioned conjugate gradient method for nonlinear equations
is invoked, specifically the Polak–Ribiere variant of the conjugate gradient techniquewith the secantmethod for
line searching. Because all degrees-of-freedom are sought or solved for simultaneously, Jacobi preconditioning
provides accelerated convergence.

As in prior work [31,50], to ensure irreversibility of crack extension, constraints δξ(X) ≥ 0 for ξ(X)
exceeding a threshold value are imposed. Similarly, to make twinning and phase changes irreversible, δη(X) ≥
0 for η(X) exceeding a threshold are imposed. Otherwise, these deformation mechanisms would become
thermodynamically reversible and highly damaged or transformed zones in the material could unrealistically
disappear on unloading. (However, in some cases reversible twinning or phase changes may not be unrealistic
depending on the material and loading, as will be discussed later in the context of numerical results.) Threshold
values are taken as 0.9 in subsequent simulations, as in [50]. With such constraint(s) active, the incremental
energy minimization problem can be viewed as minimization of energy of an alternative system with time-
dependent boundary conditions associated with introduction of new free surfaces along which ξ ≥ 0.9 is
prescribed, with analogous interpretation and conditions for irreversible phase changes. The local equilibrium
equations remain satisfied in solutions obtained for this alternative system.

As shown in Fig. 6, a synthetic microstructure of a polycrystal with equi-axed grains is considered, similar
to those in prior work [49]. Volumemeshes are created from stereolithographic (STL) files of surface represen-
tations of grains comprising the microstructure. A three-dimensional volume mesh of hexahedral continuum
finite elements is then created within the surface mesh of every crystal in the aggregate. The polycrystal in
Fig. 6 consists of 50 grains. The body is a cube of dimensions L × L × L . In a global Cartesian system, one
corner is fixed at (X, Y, Z) = (0, 0, 0), and the opposite corner is initially located at (X, Y, Z) = (L , L , L).
Average grain sizes are estimated as L/4. In the present application, L = 100 nm, so average grains are sized
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Fig. 6 Polycrystalline microstructure, two views a, b referred to a global (X, Y, Z) coordinate frame

on the order of 25 nm, which is about two orders of magnitude smaller than the average grain size of boron
carbide polycrystals obtained from conventional processing [70]. Presently, computing restrictions render con-
sideration of a polycrystal with grains of micron-scale dimensions impossible if a realistic regularization length
on the order of l ≈ 1 nm is used (Table 1) since the element size cannot reasonably exceed the regularization
length.

The FE mesh contains ≈ 3.5M elements, and it is sufficiently refined to resolve grain boundary surface
morphology, the regularization length, and gradients of field variables when 2 × 2 × 2 integration (8 Gauss
points per element) is invoked. Reduced integration was found inadequate, on the other hand, for the present set
of model parameters. In the present simulations, perfectly bonded grains are considered, restricting fractures
to transgranular or cleavage type, though stress concentrations from cleavage plane orientation mismatch at
grain boundaries may affect failure.

The constitutive model of Sect. 3 is invoked, noting that preferred planes and directions correspond to
orientations of a local Cartesian coordinate frame assigned to each crystal in the aggregate. Each crystal is
assigned a single plane M along which fracture, twinning, and/or amorphization is concentrated. In other
words, the present simulations restrict inelastic mechanisms to a single twin system, and single plane for
amorphization, and a single cleavage plane. For boron carbide, the plane for all such mechanisms is here taken
as the basal plane of each crystal, as discussed in Sect. 3.5. It is understood that this idealized representation
omits the real possibility of inelastic deformation and failure on other planes and in other directions in the
crystal; for example, a very large number of conceivable inelastic deformation systems are reported in atomic
simulations [6,7]. Consideration of all potential inelastic deformation and failure mechanisms (which would
require introduction of additional components of D or more order parameters) exceeds current computational
capabilities. The present simulations are thought to offer some insight into deformation and failure behavior of
boron carbide polycrystals despite the aforementioned idealizations. As will be noted later, the overall strength
of the polycrystals considered in the current simulations is thought to exceed that of real polycrystals due to
the very small grain size [49] and restricted set of potential deformation and failure mechanisms available in
the simulations.

Material behaviors and properties correspond to those of Sect. 3.5,with several additions. Firstly, the tangent
elastic bulk modulus K is permitted to degrade with cumulative damage (i.e., with increasing ξ ) for elastically
tensile states, when trβββE > 0, but maintains its full (initial) value under elastic compression. Secondly, the
bulk and shear moduli retain small positive values, here 1% of their initial values, even at integration points
within elements at which damage variable ξ → 1, corresponding to zones or regions of the body termed
herein as “failed”. The equations governing such behaviors are identical to those used in [31,50] and are not
repeated here. These features are necessary such that a compressed crystal, even if fractured, retains resistance
to volume reduction (e.g., like a liquid) and prevent interpenetration of matter in failed zones. Finally, random
initial lattice orientations corresponding to directions of cleavage and habit planes are assigned to each crystal,
with two sets of orientations considered in forthcoming reported simulations. To enforce cleavage along the
basal plane of each crystal, the parameter ϑξ in (3.17) is assigned a value of 100, as in prior work [31,49,50].

Two different sets of deformation boundary conditions are considered, corresponding to pure shear and
uniaxial (stress) compression. Pure shear, i.e., compression and tension applied in equal magnitudes along
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perpendicular directions, is considered rather than simple shear as in Sect. 4 since simulations invoking simple
shear were found to yield uninteresting solutions with failure behavior concentrated almost entirely at the
boundaries of the domain. Let ε̄ denote the loading parameter that is incrementally increased as a simulation
proceeds. For pure shear, boundary conditions on displacement are imposed as the updated spatial coordinates

y(X, 0, Z) = 0, y(X, L , Z) = (1 − ε̄)L; z(X, Y, 0) = 0, z(X, Y, L) = (1 + ε̄)L . (5.1)

For uniaxial compression,
z(X, Y, 0) = 0, z(X, Y, L) = (1 − ε̄)L , (5.2)

and the body is free to expand in lateral directions due to a positive Poisson’s ratio and dilatation due to fracture,
for example. For either case, free boundary conditions on the order parameters are imposed, i.e.,

∂ψ

∂∇ξ
· N = 0,

∂ψ

∂∇η
· N = 0 (along ∂Ω0), (5.3)

with ∂Ω0 the external boundary of the aggregate with outward reference normal vector N in Cartesian space.
Results from twelve distinct simulations are reported later. Varied among simulations are the two afore-

mentioned kinds of boundary conditions (shear or compression), two sets of initial lattice orientations (labeled
1 and 2), and three classes of material behavior. Regarding the latter, class one enables all three potential inelas-
tic deformation mechanisms of Sect. 3: twinning, solid–solid phase changes (crystal to glass), and fracture.
The second class enables twinning and fracture but not amorphization. Suppression of a particular inelastic
mechanism is enforced by methods outlined in Sect. 3.5. The third class enables amorphization and fracture
but not twinning. Twelve total simulations result from the space of 2 boundary condition types × 2 orientation
sets × 3 material behavior classes.

Analysis of results is later aided by several definitions relating physical and mathematical variables. Let A
and T denote local values of glass phase fraction and twin density, where

A(X, ε̄) = η(X, ε̄), T (X, ε̄) = min[η(X, ε̄)/η0, 1)]. (5.4)

Average amorphous fraction, twin density, and damage for the polycrystal are then defined as the respective
volume integrals

Ā(ε̄) = 1

L3

∫
A(X, ε̄)dΩ0, T̄ (ε̄) = 1

L3

∫
T (X, ε̄)dΩ0, D̄(ε̄) = 1

L3

∫
ξ(X, ε̄)dΩ0. (5.5)

The average shear stress for pure shear loading and the average normal stress for compressive loading,
both positive in sign for the boundary conditions in (5.1) and (5.2), are defined, respectively, as

τ̄ (ε̄) = 1

2L3

∫
[PZZ (X, ε̄) − PYY (X, ε̄)]dΩ0, σ̄ (ε̄) = −1

L3

∫
PZZ (X, ε̄)dΩ0. (5.6)

As a point of reference, recall that for a homogeneous isotropic linear elastic material, τ̄ = 2με̄ and σ̄ = E ε̄
where E = 9μK/(μ + 3K ) is the Young’s modulus obtained from initial values of the elastic shear modulus
μ and elastic bulk modulus K .

5.2 Simulation results

Model predictions obtained fromFE simulations of deformation and failure of B4C polycrystals are analyzed in
what follows. Considered first are those six simulations invoking shear boundary conditions of (5.1). Results
from the simulation with lattice orientation set 1 and all three mechanisms—fracture, twinning, and phase
changes—enabled are shown in Fig. 7, corresponding to an applied strain of ε̄ = 0.08. Contours of damage
variable ξ are depicted in Fig. 7a. Highly damaged elements with ξ > 0.8 are removed from these and
subsequent graphical images to aid viewing of cracks. The polycrystal is also rendered with intermediate
transparency to allow for viewing of fields within, damage is rather diffuse in this simulation. Twin density
T and glass fraction A of (5.4) are shown in respective Fig. 7b, c. In some regions, damage and coherent
transformation zones are correlated, e.g., at the upper left corner, but in other regions there is less apparent
correlation. Twins and glassy regions cut across multiple grains. Recall from Sect. 3 that the same order
parameter η, with different ranges, is used to represent amorphization and twinning shear, where the latter
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Fig. 7 Local field variables, shear, orientation set 1, ε̄ = 0.08, all mechanisms enabled: a fracture parameter b twin density c
glassy fraction

can also be interpreted as inelastic shear in a localized glassy band rather than twinning shear due to partial
dislocations [12]. Thus, correlation of twinned and glassy regions is inevitable according to the present model
implementation, where physically, a fully amorphous state has already undergone twinning, i.e., the sequence
parent crystal to twinned crystal to glass has been completed at such a location in the deformed body.

Results for orientation set 1 and same strain level ε̄ = 0.08, but with amorphization suppressed, are shown
in Fig. 8. Damage in Fig. 8a is highly localized, with a dominant crack oriented diagonally along a plane of
maximum shear stress. Twinning is concentrated along the crack boundary and at the lower right corner in
Fig. 8b, which coincides with the heavily twinned zone in the lower right corner of Fig. 7b.

Results for orientation set 1 and same strain level ε̄ = 0.08, but with twinning suppressed, are shown
in Fig. 9. Damage in Fig. 9a is highly diffuse, similar in nature to that in Fig. 7a, but with crack locations
differing among the two cases. Regions of glass are rather blocky, rather than band-like, in appearance and
tend to encompass fully fractured zones.

Results from the simulation with lattice orientation set 2 and all three inelasticity mechanisms enabled
are shown in Fig. 10, again corresponding to an applied strain of ε̄ = 0.08. Contours of damage variable ξ
are depicted in Fig. 10a. Damage is rather diffuse in this simulation, as was the case for its counterpart with
lattice orientation set 1 in Fig. 7a, but crack locations and orientations differ among the two cases as a result
of differing orientations of basal/cleavage planes. Twin density T and glass fraction A are shown in respective
Fig. 10b, c. As was the case for Fig. 7, damage and transformation zones are positively correlated in some
regions but not in others. Twins and glassy regions are often band-like and again traverse multiple crystals.

Results for orientation set 2 at ε̄ = 0.08 andwith amorphization suppressed are shown in Fig. 11.Damage in
Fig. 11a is highly localized, with a dominant crack oriented diagonally along a plane of maximum shear stress;
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Fig. 8 Local field variables, shear, orientation set 1, ε̄ = 0.08, amorphization suppressed: a fracture parameter b twin density

Fig. 9 Local field variables, shear, orientation set 1, ε̄ = 0.08, twinning suppressed: a fracture parameter b glassy fraction

this is a similar trend, but with a differently oriented failure plane than that observed in the complementary
simulation of Fig. 8. Twinning is scarce and is mostly concentrated along the crack boundary and at the upper
right corner in Fig. 11b.

Results for orientation set 2 at the same strain level ε̄ = 0.08, but with twinning suppressed, are shown
in Fig. 12. Damage in Fig. 12a is diffuse, similar to that in Figs. 7a, 10a, but with fractured locations dif-
ferent among these cases. Regions of glass are either blocky or band-like and are widespread throughout the
polycrystal.

Average shear stress of definition (5.6) and average structural variables of definitions in (5.5) are shown
versus applied strain in Fig. 13 for the six cases invoking shear boundary conditions. Shear stress in Fig. 13a
deviates from a perfectly linear elastic result, i.e., yielding corresponding to τ̄ < 2με̄, at a global shear strain
level between 1 and 2%. Peak shear stresses are similar among the six cases, attaining maximum values on the
order of 6% of the initial shear modulus μ at strain levels on the order of 5%. Noteworthy are the severe stress
drops experienced by the two cases with amorphization suppressed (i.e., labeled “glass and fracture”), results
that correlate with development of localized large cracks evident in Figs. 8a and 11a. Post-peak average shear
stresses decline less severely for the other cases in which damage is more diffuse.

Average fracture/damage parameter D̄ is shown in Fig. 13b. Damage increases steadily after yielding for
all cases, although its progression slows (i.e., lower slope) for the cases with amorphization suppressed. The
slower growth of damage for these two cases correlates with formation of one or two large diagonal cracks
as opposed to the diffuse damage observed in the other four simulations. Interestingly, an inverse correlation
exists between average stress and average damage at applied strains exceeding 6%. This result emphasizes
the importance of crack morphology and dominant flaws, the latter which evidently contribute much more to
global stiffness loss than regions of diffuse microcracks. A similar finding was obtained from analysis of a
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Fig. 10 Local field variables, shear, orientation set 2, ε̄ = 0.08, all mechanisms enabled: a fracture parameter b twin density c
glassy fraction

Fig. 11 Local field variables, shear, orientation set 2, ε̄ = 0.08, amorphization suppressed: a fracture parameter b twin density

cohesive zone model of fracture, where defects of size small relative to the regularization length were found
to not influence the peak global load supported by an elastic body with crack(s) [71].

Average twin density T̄ is given in Fig. 13c. Behavior depends strongly on lattice orientation, with average
twin density larger for set 1 than set 2. Upon achievement of peak stresses and emergence of localized fractured
zones, twin densities for cases with glass disabled decrease with increasing applied load as a result of lower
mechanical/elastic driving forces. This is possible in the model’s numerical implementation (see Sect. 5.1)
since local values of order parameter η that have not attained the threshold value of 0.9 are permitted to
decrease with increasing load. Reversible twinning has been observed in some other kinds of (transparent)
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Fig. 12 Local field variables, shear orientation set 2, ε̄ = 0.08, twinning suppressed: a fracture parameter b glassy fraction

(a) (b)

(c) (d)

Fig. 13 Averaged field variables, shear, orientation sets 1 and 2: a shear stress b fracture parameter c twin density d glassy fraction

crystals such as calcite [37,66], though the possibility of reversible twinning or de-twinning in opaque boron
carbide is uncertain.

Average amorphous fraction Ā is shown in Fig. 13d. The glass fraction increases rather slowly and steadily
with increasing applied shear strain exceeding 1% for the two cases with all three mechanisms enabled,
reaching maxima on the order of 1 or 2% at ε̄ = 0.08. In contrast, for simulations with twinning suppressed,
transformation behavior does not begin until applied strains on the order of 5 or 6% are reached; subsequently,
increases in Ā are rapid and extreme, especially for orientation set 2 (see also Fig. 12b). Since such large volume
fractions of glassy phase are not observed in experiments [1,2,10], it is concluded that suppression of inelastic
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Fig. 14 Local field variables, compression, orientation set 1, ε̄ = 0.08, all mechanisms enabled: a fracture parameter b twin
density c glassy fraction

shear in the model gives physically unrealistic results. Rather, these predictions imply that inelastic shearing
by twinning or by inclusion of shear bands accompanying transformation as in [47] should be incorporated in
realistic continuum models of amorphization of boron carbide.

Collectively, these results also point to the possibility of increasing overall shear strength of the polycrystal
and decreasing the tendency for localized fracture and localized shear failure if the inelastic shear accommo-
dation by twins or glassy regions can be suppressed. Such a possibility is consistent with the recommendation
for increasing resistance to failure under planar shock loading set forth in [47], based on parameter studies for
semi-analytical homogeneous solutions. Polycrystalline resistance to shear deformation is thought to be a key
metric of performance of ceramics in applications involving ballistic penetration [72–74].

Considered now are those six simulations invoking compression boundary conditions of (5.2). Results
from the simulation with lattice orientation set 1 and all three inelasticity mechanisms, i.e., fracture, twinning,
and phase changes, permitted, are shown in Fig. 14, at an applied axial compressive strain of ε̄ = 0.08.
Contours of damage variable ξ are given in Fig. 14a. Damage is rather diffuse in this simulation, similar to
what was observed for shear boundary conditions in Figs. 7a and 10a. Twin density T and glass fraction A
of (5.4) are depicted in Fig. 14b, c, respectively. As was the case for shear loading, in some regions damage
and transformation zones are correlated, such as along the left edge, but in other regions there is less apparent
correlation. Twinned zones and glassy regions cut across multiple grains. The green zone on the left side of
Fig. 14c corresponds to material that has twinned but not yet (fully) transformed to glass.

Results for orientation set 1 at global compressive strain ε̄ = 0.08 and with amorphization suppressed are
shown in Fig. 15. Damage in Fig. 15a is mostly localized along a dominant shear-type crack, although some
diffuse fractures are evident at the lower right side of the image. Twinning is concentrated along the left edge
and lower right corner in Fig. 15b, both regions coinciding with the twinned zones evident in Fig. 14b.
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Fig. 15 Local field variables, compression, orientation set 1, ε̄ = 0.08, amorphization suppressed: a fracture parameter b twin
density

Fig. 16 Local field variables, compression, orientation set 1, ε̄ = 0.08, twinning suppressed: a fracture parameter b glassy
fraction

Results for orientation set 1 and ε̄ = 0.08, but with twinning suppressed, are shown in Fig. 16. Damage in
Fig. 16a is the most diffuse among all observed results, with no apparent localized fractures. Regions of glass
are blocky and encompass a large fraction of the domain in Fig. 16b: in fact, the deformed body here consists
of more glass than crystal.

Three other simulations with compression boundary conditions and orientation set 2 were analyzed, with
inelasticity mechanisms enabled or suppressed analogously to the three simulations just described for orien-
tation set 1. Contours of results demonstrate similar trends to those in Figs. 14, 15, and 16.

Average axial stress of definition (5.6), positive in compression, and average structural variables defined in
(5.5) are shown versus applied compressive strain in Fig. 17 for all six cases invoking compression boundary
conditions. Axial stress in Fig. 17a decreases relative to a perfectly linear elastic result, i.e., yielding corre-
sponding to σ̄ < E ε̄, at an applied strain level between 1% and 2%. Peak stresses differ significantly among
the six cases, attaining maximum values between of 2.5 and 4% of the initial tensile modulus E at global strain
levels on the order of 7%.

Notable is a severe stress drops experienced by one of the two cases with amorphization suppressed (i.e.,
labeled “twin & fracture 1”) correlating with the localized large crack evident in Fig. 15a. Stiffness reduction
with increasing load is less rapid for the other cases wherein damage is more diffuse. Lattice orientation affects
average stresses more here than what was observed in Fig. 13a for shear loading, the exception being the
two cases with twinning suppressed. The latter two cases demonstrate very little softening at large strains
corresponding to ε̄ ≥ 0.07.

Amaximum stress of 4% of E corresponding to orientation set 1 (black curve in Fig. 17a) is approximately
18GPa, very similar to theHugoniot elastic limit (HEL) of the polycrystal determined from impact experiments
[9,70,75]. However, the present numerical results correspond to uniaxial stress, quasi-static loading, nano-
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(a) (b)

(c) (d)

Fig. 17 Averaged field variables, compression, orientation sets 1 and 2: a axial stress b fracture parameter c twin density d glassy
fraction

scale sized grains, and a restricted set of deformation mechanisms, e.g., a single twin system and fracture plane
per crystal, with no grain boundary fracture. In contrast, the HEL is obtained for highly dynamic uniaxial strain
loading, micron-scale sized grains, and potentially many more failure mechanisms. It is speculated that the
smaller size and number of grains and the reduced number of inelasticitymechanisms result in greater strengths
for the simulation results compared to unconfined (uniaxial stress) compression data from experiments. For
example, the unconfined compressive strength of hot pressed polycrystalline boron carbide has been reported
for specimens of dimensions of several mm as ranging from 3.5 to 4 GPa depending on loading rate from
quasi-static to moderate rates achieved in a Kolsky bar apparatus [76].

Average fracture/damage parameter D̄ is shown in Fig. 17b. Damage increases steadily after yielding for
all cases, and its progression slows (i.e., lower slope) for orientation set 1 with amorphization suppressed.
The latter results correlate with formation of a large diagonal crack apparent in Fig. 15a as opposed to the
diffuse damage observed in other simulations. As was observed for shear loading, an inverse correlation exists
between average stress and average damage, again highlighting the importance of dominant flaws over diffuse
microcracks when considering the overall strength of a relatively brittle polycrystal.

Average twin density T̄ is shown in Fig. 17c and demonstrates strong dependence on lattice orientation, as
was the case for shear loading in Fig. 13c. However, here average twin density tends to be larger for orientation
set 2 than set 1. The de-twinning behavior for orientation set 1 at large compressive strain follows a similar
trend to that observed for some cases under shear loading.

Finally, average amorphous fraction Ā is shown in Fig. 17d. Some trends are similar to those reported for
shear boundary conditions in the context of Fig. 13d. The glass fraction increases rather slowly and steadily
with increasing applied shear strain exceeding 1% for the two cases with all three mechanisms enabled, again
reaching maxima on the order of 1 or 2% by ε̄ = 0.08. For the two simulations with twinning suppressed,
transformation behavior begins sooner than observed for shear loading, at applied strains on the order of 1
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or 2%. Subsequently, increases in Ā are rapid, extreme, and deemed unrealistically large (see Fig. 16b). As
was the case for shear loading, these results confirm that suppression of inelastic shear in the model results in
excessive phase transformation behavior. Instead, inelastic shearing by twinning or by inclusion of shear bands
accompanying transformation as in [47] should be incorporated in continuummodels of large deformation and
failure of B4C. Findings for static axial compression of polycrystals reported here are consistent with those of
shear loading already discussed in the present work and for shock loading of single crystals discussed in [47]:
suppression of inelastic shear accommodation by twins or glassy regions should lead to increased compressive
strength and failure resistance.

5.3 Summary of results from polycrystal simulations

Important outcomes of the numerical (FE) results for B4C are summarized in the points below:

• Localized damage zones more strongly influence failure behavior than diffuse microfractures, the latter
leading to less severe tangent stiffness reduction than one or two dominant flaws;

• Inelastic shear accommodation by twinning or slippage in glassy bands leads to overall strength degradation
and localized fractures;

• Elimination of the possibility of inelastic shearing by twinning or amorphization leads to unrealistically
large volume fractions of glassy material;

• Lattice orientations tend to affect twinning behavior more strongly than they affect average damage or
amorphous volume fractions;

• Similar trends are observed for pure shear loading and for uniaxial stress compression.

Perhaps most important in the context of design of boron-based ceramics for improved failure resistance
[52,77], processing or alloying steps that would decrease the inelastic shear accommodation in twinned or
amorphous regions should lead to more diffuse damage patterns and an increase in overall strength of the
polycrystal, a conclusion also drawn from semi-analytical results reported for shock loading of single crystals
in [47].

6 Conclusions

A novel geometrically nonlinear continuum theory has been developed to account for the physical mecha-
nisms of elasticity, deformation twinning, solid–solid crystal-to-glass phase changes, and fracture in crys-
talline solids. These mechanisms are thought to occur sequentially, and in some cases simultaneously, in
boron carbide ceramics. The theory has been specialized to consider inelastic deformation mechanisms on
the basal plane in single crystals and polycrystals of this material. An analytical system of equations gov-
erning mechanical and transformation behavior has been derived and solved for simple shear deformations
parallel to basal planes of a single crystal. Semi-analytical results demonstrate stresses for twin nucleation
and subsequent failure similar in magnitude to those estimated from experiments or atomic simulations. A
geometrically linearized version of the has been implemented in three-dimensional finite element simulations
of compression or pure shear of polycrystalline microstructures. Numerical results demonstrate positive corre-
lation between global strength and stiffness loss, nucleation and growth of large/dominant cracks, and inelastic
shear deformation in band-like twinned or glassy regions that traverse multiple grains. Predicted compres-
sive strengths exceed those observed in unconfined specimens of much larger dimensions with much larger
grains. Future work should consider more potential inelasticity and failure mechanisms, e.g., other planes for
shear localization or twinning as well as grain boundary fractures, that would tend to reduce predicted peak
stresses.
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